版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年福建省龍巖市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。
A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)3.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx4.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)
5.設(shè)y=2^x,則dy等于().
A.x.2x-1dx
B.2x-1dx
C.2xdx
D.2xln2dx
6.設(shè)f(x)=x3+x,則等于()。A.0
B.8
C.
D.
7.
8.A.3B.2C.1D.1/2
9.收入預(yù)算的主要內(nèi)容是()
A.銷售預(yù)算B.成本預(yù)算C.生產(chǎn)預(yù)算D.現(xiàn)金預(yù)算
10.
11.A.0B.1C.2D.任意值
12.A.連續(xù)且可導(dǎo)B.連續(xù)且不可導(dǎo)C.不連續(xù)D.不僅可導(dǎo),導(dǎo)數(shù)也連續(xù)13.設(shè)函數(shù)f(x)在點(diǎn)x0處連續(xù),則下列結(jié)論肯定正確的是()。A.
B.
C.
D.
14.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
15.
16.
17.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=A.-1/x
B.1/x
C.-1/x2
D.1/x2
18.
19.
20.
二、填空題(20題)21.
22.
23.
24.
25.
26.
27.
28.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為______.
29.
30.31.
32.33.
34.
35.
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.42.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.43.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).45.求曲線在點(diǎn)(1,3)處的切線方程.
46.
47.求微分方程的通解.48.將f(x)=e-2X展開為x的冪級(jí)數(shù).49.
50.51.52.53.
54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.55.證明:
56.求微分方程y"-4y'+4y=e-2x的通解.
57.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
58.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
59.
60.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則四、解答題(10題)61.
62.
63.64.設(shè)存在,求f(x).
65.
66.
67.求曲線y=x3+2過(guò)點(diǎn)(0,2)的切線方程,并求該切線與曲線及直線x=1所圍成的平面圖形D的面積S。
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.設(shè)生產(chǎn)某產(chǎn)品利潤(rùn)L(x)=5000+x一0.0001x2百元[單位:件],問(wèn)生產(chǎn)多少件時(shí)利潤(rùn)最大,最大利潤(rùn)是多少?
六、解答題(0題)72.
參考答案
1.A
2.A
3.B
4.B由于f'(x)>0,可知.f(x)在(0,1)內(nèi)單調(diào)增加。因此選B。
5.D南微分的基本公式可知,因此選D.
6.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱性質(zhì)可知
可知應(yīng)選A。
7.D
8.B,可知應(yīng)選B。
9.A解析:收入預(yù)算的主要內(nèi)容是銷售預(yù)算。
10.A
11.B
12.B
13.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應(yīng)選D。
14.C
15.A
16.B
17.C
18.B
19.A解析:
20.C
21.-2-2解析:
22.
23.由不定積分的基本公式及運(yùn)算法則,有
24.0.
本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)為奇函數(shù),因此
25.
26.[01)∪(1+∞)
27.
本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系,左極限、右極限與極限的關(guān)系.28.y=f(1)本題考查的知識(shí)點(diǎn)有兩個(gè):一是導(dǎo)數(shù)的幾何意義,二是求切線方程.
設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過(guò)該點(diǎn)的切線方程為
y-f(x0)=f'(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為
y=f(1)=0.
本題中考生最常見(jiàn)的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為
y-f(x0)=f'(x)(x-x0)
而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為
y-f(1)=f'(x)(x-1).
本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為
y-1=0.
29.30.1.
本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.
由于f(1)=2,可知
31.本題考查了函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
32.
33.1
34.2
35.
36.55解析:
37.
解析:
38.
39.
本題考查的知識(shí)點(diǎn)為隱函數(shù)的微分.
解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得
從而
解法2將所給表達(dá)式兩端微分,
40.41.函數(shù)的定義域?yàn)?/p>
注意
42.由二重積分物理意義知
43.
44.
列表:
說(shuō)明
45.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
46.
47.
48.49.由一階線性微分方程通解公式有
50.
51.
52.
53.
則
54.
55.
56.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
57.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
58.
59.
60.由等價(jià)無(wú)窮小量的定義可知
61.
62.63.本題考查的知識(shí)點(diǎn)為求隱函數(shù)的微分.
解法1將方程兩端關(guān)于x求導(dǎo),可得
解法2將方程兩端求微分
【解題指導(dǎo)】
若y=y(tǒng)(x)由方程F(x,y)=0確定,求dy常常有兩種方法.
(1)將方程F(x,y)=0直接求微分,然后解出dy.
(2)先由方程F(x,y)=0求y,再由dy=y(tǒng)dx得出微分dy.
64.本題考查的知識(shí)點(diǎn)為兩個(gè):極限的運(yùn)算;極限值是個(gè)確定的數(shù)值.
設(shè)是本題求解的關(guān)鍵.未知函數(shù)f(x)在極限號(hào)內(nèi)或f(x)在定積分號(hào)內(nèi)的、以方程形式出現(xiàn)的這類問(wèn)題,求解的基本思想是一樣的.請(qǐng)讀者明確并記住這種求解的基本思想.
本題考生中多數(shù)人不會(huì)計(jì)算,感到無(wú)從下手.考生應(yīng)該記住這類題目的解題關(guān)鍵在于明確:
如果存在,則表示一個(gè)確定的數(shù)值.
65.
66.
67.
68.69.本題考查的知識(shí)點(diǎn)為參數(shù)方程形式的函數(shù)的求導(dǎo).
70.
71.L(x)=5000+x一0.0001x2L"(x)=1—0.0002x=0:x=5000;L"
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025上海保險(xiǎn)交易所校園招聘30人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年福建屏南縣事業(yè)單位擬聘人員(第四批)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年廣東深圳市龍華區(qū)赴外面向應(yīng)屆生招聘職員擬聘(第三批)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年四川綿陽(yáng)市屬事業(yè)單位公開招聘89人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年四川省廣安事業(yè)單位招聘1051人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年內(nèi)蒙古呼倫貝爾滿洲里市及扎賚諾爾區(qū)事業(yè)單位招聘87人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年私人裝修工程合同
- 二年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)匯編
- 一年級(jí)數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)1000題匯編
- 2024年石材加工廠質(zhì)量認(rèn)證與品牌建設(shè)的合同
- 山東現(xiàn)代學(xué)院《思想道德與法治》2022-2023學(xué)年期末試卷
- 幼兒園大班安全《防性侵警報(bào)》微課件
- 三年級(jí)上冊(cè)《貴州省生態(tài)文明城市建設(shè)讀本》小學(xué)中年級(jí)版教案
- 小區(qū)新型光纖分布系統(tǒng)施工方案小區(qū)光纖入戶施工方案
- 國(guó)家安全教育學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 變壓器巡視課件
- 中國(guó)重癥患者腸外營(yíng)養(yǎng)治療臨床實(shí)踐專家共識(shí)(2024)解讀
- 精益生產(chǎn)篇(培訓(xùn)資料)
- 河南省鄭州市鄭東新區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期期末學(xué)情調(diào)研數(shù)學(xué)試題
- 產(chǎn)品檢驗(yàn)合格證模板
- 2024年全國(guó)職業(yè)院校技能大賽中職組(安全保衛(wèi)賽項(xiàng))考試題庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論