線性規(guī)劃-基本概念_第1頁
線性規(guī)劃-基本概念_第2頁
線性規(guī)劃-基本概念_第3頁
線性規(guī)劃-基本概念_第4頁
線性規(guī)劃-基本概念_第5頁
已閱讀5頁,還剩52頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

線性規(guī)劃--基本概念2-2學(xué)習(xí)目標(biāo)在讀完本章后,你應(yīng)該能夠:1. 解釋什么是「線性規(guī)劃」。2. 了解建構(gòu)試算表模式前所必須找出的三項(xiàng)核心問題。3. 指出及確認(rèn)線性規(guī)劃試算表模式中四種儲存格的目的。4. 根據(jù)問題描述于試算表中建構(gòu)線性規(guī)劃模式。5. 在試算表中表示線性規(guī)劃模型的代數(shù)式。6. 運(yùn)用圖解法求解雙變數(shù)線性規(guī)劃問題。7. 使用Excel求解線性規(guī)劃試算表模式。2-3偉伯玻璃公司產(chǎn)品組合問題偉伯公司發(fā)展以下的新產(chǎn)品:鋁框8呎玻璃門4呎6呎可雙面懸掛的木框窗戶公司擁有三間工廠:工廠1:生產(chǎn)鋁框及金屬器件工廠2:生產(chǎn)木框工廠3:生產(chǎn)玻璃并進(jìn)行門及窗戶的組裝問題:公司是否應(yīng)該從事新產(chǎn)品的生產(chǎn)?如果是的話,最佳的產(chǎn)品組合為何?2-4發(fā)展試算表模式步驟一:資料儲存格在試算表上輸入問題所有相關(guān)的資料使用一致性的欄與列儲存方式利用不同顏色來顯示這些「資料儲存格」(例如:淺色)是不錯的方法2-5發(fā)展試算表模式(續(xù))步驟二:變動儲存格在試算表上替每個需要做的決策設(shè)置一儲存格若是你沒有特殊的起始解(initialvalues)考量,只要輸入0即可利用顏色與框線等來顯示這些「變動儲存格」(例如:淺色并加框線)是不錯的方法2-6發(fā)展試算表模式(續(xù))步驟三:目標(biāo)儲存格發(fā)展一個方程式來定義模式的目標(biāo)基本上此方程式涉及資料儲存格與變動儲存格以便決定感興趣的數(shù)量(例如:總利潤或總成本)利用顏色來顯示這個儲存格(例如:深色并加粗框線)是不錯的方法2-7發(fā)展試算表模式(續(xù))步驟四:限制式對于受限制的資源,在試算表某一儲存格中計算該資源使用量(輸出儲存格)在三個連續(xù)的儲存格中定義限制式。例如:若數(shù)量A<=數(shù)量B,將此三項(xiàng)(數(shù)量A、

<=、數(shù)量B)置于相鄰的儲存格2-8一組試驗(yàn)解偉伯問題試算表中將一組試驗(yàn)解(4扇門及3個窗戶)輸入于變動儲存格2-9偉伯玻璃公司之代數(shù)模式令 D=玻璃門的生產(chǎn)數(shù)量

W

=木框窗戶的生產(chǎn)數(shù)量最大化P=$300D+$500W受限于

D≤4

2W≤12

3D+2W≤

18且

D≥

0,W≥

02-10產(chǎn)品組合示意圖2-11滿足限制式:D

0及W≥0之區(qū)域示意圖木框窗戶的產(chǎn)能玻璃門的產(chǎn)能2-12滿足D

≤4之非負(fù)解木框窗戶的產(chǎn)能玻璃門的產(chǎn)能2-13滿足2W

12之非負(fù)解木框窗戶的產(chǎn)能玻璃門的產(chǎn)能2-14限制式3D+2W≤

18之邊界線木框窗戶的產(chǎn)能玻璃門的產(chǎn)能2-15改變右側(cè)值將產(chǎn)生一些平行的限制式邊界線木框窗戶的產(chǎn)能玻璃門的產(chǎn)能2-16滿足3D

+2W≤

18之非負(fù)解木框窗戶的產(chǎn)能玻璃門的產(chǎn)能2-17可行解區(qū)域之示意圖2-18目標(biāo)函數(shù)(P

=1,500)木框窗戶的生產(chǎn)率玻璃門的生產(chǎn)率可行區(qū)域2-19尋找最佳解2-20圖解法摘要畫出每個函數(shù)限制式的限制邊界線,利用原點(diǎn)(或其他不在線上的點(diǎn))決定線的哪一邊才能滿足限制式。確定是否同時滿足所有的限制式,找出可行區(qū)域。求出目標(biāo)函數(shù)線的斜率,所有的目標(biāo)函數(shù)線的斜率要相同。以這個斜率,在可行區(qū)域內(nèi)往可改善目標(biāo)值的方向移動線段,直到此線段與可行區(qū)域只交于一點(diǎn)即停止移動,包含這條線段的直線即是最佳目標(biāo)函數(shù)線。在最佳目標(biāo)函數(shù)線上的可行點(diǎn)即為最佳解。2-21辨識目標(biāo)儲存格與變動儲存格從「工具」選單選擇「規(guī)劃求解」在「設(shè)定目標(biāo)儲存格」視窗中,選擇你想要最佳化的儲存格依據(jù)你是否要最大化或最小化目標(biāo)儲存格,選擇「最大值」或「最小值」在「變動儲存格」視窗中輸入所有變動儲存格2-22新增限制式若要輸入限制式,選擇限制式視窗右側(cè)的「新增」按鈕在「新增限制式」對話視窗中輸入限制式相關(guān)資料2-23完整的「規(guī)劃求解」對話視窗2-24一些重要的選項(xiàng)按「選項(xiàng)」鈕,并且選取「采用線性模式」以及「采用非負(fù)值」二個選項(xiàng)「采用線性模式」告訴規(guī)劃求解這是一個線性規(guī)劃模式「采用非負(fù)值」會將非負(fù)限制式加到所有變動儲存格2-25「規(guī)劃求解結(jié)果」對話視窗2-26最佳解2-27Profit&Gambit公司管理階層決定推動一個新的廣告活動,并把目標(biāo)鎖定在以下三種主要產(chǎn)品上:噴霧去漬劑液態(tài)洗衣精洗衣粉這個活動將運(yùn)用電視及平面媒體作廣告最根本的目標(biāo)是希望增加這些產(chǎn)品的銷售量管理階層為該廣告活動訂定以下目標(biāo):去漬劑的銷售額至少要增加3%。洗衣精的銷售額至少要增加18%。洗衣粉的銷售額至少要增加4%。問題:目標(biāo)是要決定于各種媒體應(yīng)該廣告多少數(shù)量,在達(dá)到銷售目標(biāo)的前提下,使總成本最小化?2-28Profit&Gambit公司試算表模式2-29Profit&Gambit公司問題之代數(shù)模式令 TV=電視廣告的單位數(shù)量 PM=平面媒體廣告的單位數(shù)量最小化成本=TV+2PM(百萬美元)受限于去潰劑增加的銷售量: PM≥3

液狀洗衣精增加的銷售量:3TV+2PM≥

18洗衣粉增加的銷售量:–TV+4PM≥

4 TV

0,PM

02-30運(yùn)用圖解法電視廣告的單位數(shù)量平面媒體廣告的單位數(shù)量可行區(qū)域2-31最佳解電視廣告的單位數(shù)量平面媒體廣告的單位數(shù)量可行區(qū)域最佳解2-32圖解法摘要畫出每個函數(shù)限制式的限制邊界線,利用原點(diǎn)(或其他不在線上的點(diǎn))決定線的哪一邊才能滿足限制式。確定是否同時滿足所有的限制式,找出可行區(qū)域。求出目標(biāo)函數(shù)線的斜率,所有的目標(biāo)函數(shù)線的斜率要相同。以這個斜率,在可行區(qū)域內(nèi)往可改善目標(biāo)值的方向移動線段,直到此線段與可行區(qū)域只交于一點(diǎn)即停止移動,包含這條線段的直線即是最佳目標(biāo)函數(shù)線。在最佳目標(biāo)函數(shù)線上的可行點(diǎn)即為最佳解。2-33一個生產(chǎn)問題原物料每周供給量:8個小木塊6個大木塊產(chǎn)品:桌子利潤=$20/桌子椅子利潤=$15/椅子2-34線性規(guī)劃線性規(guī)劃使用數(shù)學(xué)模式來找出對于各項(xiàng)活動最佳的資源配置以使得利潤最大或是成本最小令 T=桌子生產(chǎn)量

C=椅子生產(chǎn)量

最大化利潤

=($20)T+($15)C

受限于

2T

+C≤6大木塊

2T+2C≤

8小木塊

T≥

0,C≥

02-35圖形表示2-36線性規(guī)劃模式的組成元素資料儲存格變動儲存格(決策變數(shù))目標(biāo)儲存格(目標(biāo)函數(shù))限制式2-37線性規(guī)劃的四項(xiàng)假設(shè)線性(Linearity)不可分割性(Divisibility)確定性(Certainty)非負(fù)值(Nonnegativity)2-38何種情況下試算表模式為線性?所有方程式(輸出儲存格)必須具有以下形式:

=ax+by+cz+…

其中

a,b,c

為常數(shù)(資料儲存格)且

x,y,z

為變動儲存格若C1:C6為變動儲存格,

D1:D6為資料儲存格

以下何者可能為LP模式的一部分?SUMPRODUCT(D1:D6,C1:C6)SUM(C1:C6)C1*SUM(C4:C6)SUMPRODUCT(C1:C3,C4:C6)IF(C1>3,2*C3+C4,3*C3+C5)IF(D1>3,C1,C2)MIN(C1,C2)MIN(D1,D2)*C1ROUND(C1)2-39為何使用線性規(guī)劃?線性規(guī)劃模式較易于(較有效率)求解最好的(最佳的)解確保可以找到(若存在的話)可以產(chǎn)生有用的敏感度分析相關(guān)資訊許多問題本質(zhì)上是線性的2-40發(fā)展試算表模式步驟一:資料儲存格在試算表上輸入問題所有相關(guān)的資料使用一致性的欄與列儲存方式利用不同顏色來顯示這些「資料儲存格」(例如:淺藍(lán)色)是不錯的方法2-41發(fā)展試算表模式(續(xù))步驟二:變動儲存格在試算表上替每個需要做的決策設(shè)置一儲存格若是你沒有特殊的起始解(initialvalues)考量,只要輸入0即可利用顏色與框線等來顯示這些「變動儲存格」(例如:黃色并加框線)是不錯的方法2-42發(fā)展試算表模式(續(xù))步驟三:目標(biāo)儲存格發(fā)展一個方程式來定義模式的目標(biāo)基本上此方程式涉及資料儲存格與變動儲存格以便決定感興趣的數(shù)量(例如:總利潤或總成本)利用顏色來顯示這個儲存格(例如:橙色并加粗框線)是不錯的方法2-43發(fā)展試算表模式(續(xù))步驟四:限制式對于受限制的資源,在試算表某一儲存格中計算該資源使用量(輸出儲存格)在三個連續(xù)的儲存格中定義限制式。例如:若數(shù)量A<=數(shù)量B,將此三項(xiàng)(數(shù)量A、

<=、數(shù)量B)置于相鄰的儲存格2-44定義目標(biāo)儲存格從「工具」選單選擇「規(guī)劃求解」在「設(shè)定目標(biāo)儲存格」視窗中,選擇你想要最佳化的儲存格依據(jù)你是否要最大化或最小化目標(biāo)儲存格,選擇「最大值」或「最小值」2-45辨識變動儲存格在「變動儲存格」視窗中輸入所有變動儲存格你可以將游標(biāo)點(diǎn)一下儲存格位址或是直接輸入位址若有多組變動儲存格,以逗號將其隔開2-46新增限制式若要輸入限制式,選擇限制式視窗右側(cè)的「新增」按鈕在「新增限制式」對話視窗中輸入限制式相關(guān)資料2-47一些重要的選項(xiàng)按「選項(xiàng)」鈕,并且選取「采用線性模式」以及「采用非負(fù)值」二個選項(xiàng)「采用線性模式」告訴Solver這是一個線性規(guī)劃模式「采用非負(fù)值」會將非負(fù)限制式加到所有變動儲存格2-48解在按下「求解」后,你將會看到以下四則訊息其中之一:「規(guī)劃求解找到一解,可滿足所有的限制式及最佳狀況」「規(guī)劃求解找不到合適的解」「儲存格所設(shè)的值并不收斂」「線性模式的假設(shè)并不成立」2-49以圖解法求解線性規(guī)劃問題將問題建構(gòu)成為一個線性規(guī)劃模式畫出限制式找出可行解區(qū)域畫一條與目標(biāo)函數(shù)平行的直線(Z

=a)找出最佳解2-50范例#1最大化Z=3x1+5x2

受限于

x1

≤4 2x2≤

12

3x1+2x2≤

18

x1≥

0,x2≥

02-51范例#2最小化Z=15x1+20x2

受限于

x1

+2x2≥10 2x1–3x2≤

6

x1+x2≥

6

x1≥

0,x2≥

02-52范例#3最大化Z=x1+x2

受限于

x1

+2x2=8

x1–x2≤

0

x1≥

0,x2≥

02-53線性規(guī)劃解之特性最佳解必定落在可行解區(qū)域的邊緣線性規(guī)劃有四種可能的結(jié)果:找到唯一最佳解存在有無窮多組最佳解不存在可行解有無窮大(或無窮小的)目標(biāo)函數(shù)值(沒有最佳解)若一個

LP模式有最佳解,則此解必定落在端點(diǎn)(cornerpoint)上若一個

LP模式有許多組最佳解,則其中至少有二組解會落在端點(diǎn)上2-54范例#4(多組最佳解)最小化Z=6x1+4x2

受限于

x1

≤4

2x2

≤12 3x1+2x2≤18

x1≥

0,x2≥

02-55范例#5(無可行解)最大化Z=3x1+5x2

受限于

x1

≥5

x2≥4 3x1+2x2≤

18

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論