chap最大值原理實(shí)用_第1頁(yè)
chap最大值原理實(shí)用_第2頁(yè)
chap最大值原理實(shí)用_第3頁(yè)
chap最大值原理實(shí)用_第4頁(yè)
chap最大值原理實(shí)用_第5頁(yè)
已閱讀5頁(yè),還剩91頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

會(huì)計(jì)學(xué)1chap最大值原理實(shí)用2023/1/172二.最大值原理和動(dòng)態(tài)規(guī)劃

為了解決古典變分法在求解最優(yōu)控制問(wèn)題中所暴露出來(lái)的上述問(wèn)題,許多學(xué)者進(jìn)行了各種探索。其中以蘇聯(lián)學(xué)者龐特里雅金(Л.C.ПoHTpЯГИH)的最大值原理(或最小值原理)與美國(guó)學(xué)者貝爾曼(R.E.Bellman)的動(dòng)態(tài)規(guī)劃較為成功,應(yīng)用也較廣泛,現(xiàn)已成為求解最優(yōu)控制問(wèn)題的強(qiáng)有力的工具。

在這一章里,首先通過(guò)積分型最優(yōu)控制問(wèn)題提出最大值原理,然后再推廣到復(fù)合型最優(yōu)控制問(wèn)題中,然后利用增量法對(duì)最大值原理進(jìn)行證明。第1頁(yè)/共96頁(yè)2023/1/173§2.1最大值原理的提出

2.1.1積分型最優(yōu)控制問(wèn)題

問(wèn)題2.1.1(積分型最優(yōu)控制問(wèn)題)給定系統(tǒng)的狀態(tài)方程:

(2.1.1)

其中,f是n維連續(xù)可微的向量函數(shù);X(t)是n維狀態(tài)變量,其初態(tài)X(t0)=X0,而終態(tài)應(yīng)滿足的條件是:終端時(shí)刻tf固定,終端狀態(tài)X(tf)自由,U(t)是m維控制變量,其所受約束條件是(2.1.2)其中,是以U(t)為元素的m維實(shí)函數(shù)空間中的一個(gè)閉子集。式(2.1.2)表明,控制變量是這個(gè)閉子集中的元素。滿足式(2.1.2)約束條件的控制變量稱為容許控制變量,簡(jiǎn)稱容許控制。要求在滿足式(2.1.2)的容許控制中,確定一控制變量U(t),使系統(tǒng)(2.1.1)從給定的初態(tài)X(t0)轉(zhuǎn)移到某個(gè)終態(tài)

第2頁(yè)/共96頁(yè)2023/1/174X(tf)的過(guò)程中,性能泛函

達(dá)到極小值。其中L是連續(xù)可微的標(biāo)量函數(shù)。這個(gè)積分型最優(yōu)控制問(wèn)題所確定的控制U(t)稱為最優(yōu)控制,記為U*(t)。如果不考慮式(2.1.2)的約束條件,那么該最優(yōu)控制問(wèn)題的解的必要條件可由第一章的定理1.6.1給出,現(xiàn)引述如下:

定理1.6.1設(shè)系統(tǒng)的狀態(tài)方程為

則為將系統(tǒng)從給定的初態(tài)X(t0)=X0轉(zhuǎn)移到終端時(shí)刻tf固定,終端狀態(tài)X(tf)自由的某個(gè)終態(tài),并使性能泛函(2.1.3)第3頁(yè)/共96頁(yè)2023/1/175

達(dá)到極小值的最優(yōu)控制應(yīng)滿足的必要條件是(1)設(shè)U*(t)是最優(yōu)控制,X*(t)是對(duì)應(yīng)與U*(t)的最優(yōu)軌線,則必存在一與U*(t)和X*(t)相對(duì)應(yīng)的n維協(xié)態(tài)變量(t),使得X(t)與(t)滿足規(guī)范方程

(2.1.4)(2.1.5)其中,(2.1.6)第4頁(yè)/共96頁(yè)2023/1/176

(2)邊界條件為(3)哈密頓函數(shù)H對(duì)控制變量U(t)(t0ttf)取極小值,即定理1.6.1是在控制變量u(t)不受約束的情況下,求最優(yōu)控制函數(shù)U*(t),使哈密頓函數(shù)(2.1.6)達(dá)到極小值。這也是在控制函數(shù)U(t)不受約束或只受開集性的約束的情況下的最小值原理。顯然,控制方程(2.1.9)也可以寫成如下形式(2.1.7)(2.1.8)(2.1.9)(2.1.10)第5頁(yè)/共96頁(yè)2023/1/177說(shuō)明:(1)當(dāng)控制函數(shù)U(t)不受約束或只受開集性約束條件下,控制方程(2.1.9)和(2.1.10)是等價(jià)的。(2)在控制函數(shù)U(t)受到式(2.1.2)所表示的閉集性約束的條件下,控制方程(2.1.9)未必是最優(yōu)控制問(wèn)題的解的必要條件之一。

a.因?yàn)?/p>

b.作為控制變量U(t)的函數(shù)的Hamilton函數(shù)H[X(t),(t),U(t),t]在閉子集內(nèi)可能不存在極值點(diǎn),而企圖以H/U來(lái)求極小值點(diǎn)也是難以奏效的。因此,在控制函數(shù)U(t)受到式(2.1.2)那樣閉集性約束的條件下,控制方程(2.1.9)不再是由式(2.1.1)~式(2.1.3)所給定的最優(yōu)控制問(wèn)題解的必要條件了。第6頁(yè)/共96頁(yè)2023/1/178但是,控制方程(2.1.10)總是成立的,它仍然是由式(2.1.1)~式(2.1.3)所給定的最優(yōu)控制問(wèn)題解的必要條件。定理2.1.1(積分型最優(yōu)控制問(wèn)題的最小值原理)給定系統(tǒng)的狀態(tài)方程

和初態(tài)X(t0)=X0,而終端時(shí)刻tf固定,終端狀態(tài)X(tf)自由以及控制變量U(t)所受約束條件是則為將系統(tǒng)從給定的初態(tài)X(t0)轉(zhuǎn)移到某個(gè)終態(tài)X(tf),并使性能泛函達(dá)到極小值的最優(yōu)控制應(yīng)滿足的必要條件是:第7頁(yè)/共96頁(yè)2023/1/179(1)設(shè)U*(t)是最優(yōu)控制,X*(t)是對(duì)應(yīng)于U*(t)的最優(yōu)軌線,則必存在一與U*(t)和X*(t)相對(duì)應(yīng)的n維協(xié)態(tài)變量(t),使得X*(t)和(t)滿足規(guī)范方程式中H是哈密頓函數(shù),且為(2)邊界條件為第8頁(yè)/共96頁(yè)2023/1/1710(3)哈密頓函數(shù)在最優(yōu)控制U*(t)和最優(yōu)軌線X*(t)上達(dá)到最小值,即

說(shuō)明:(1)由于定理2.1.1的中心內(nèi)容是,使性能泛函(2.1.3)達(dá)到最小值的最優(yōu)控制的必要條件是哈密頓函數(shù)H達(dá)到最小值,所以,該定理稱為最小值原理。(2)一個(gè)函數(shù)的最小值點(diǎn)與該函數(shù)反號(hào)后的最大值是一致的。所以,若令哈密頓函數(shù)為則下列二式第9頁(yè)/共96頁(yè)2023/1/1711和的結(jié)果是一致的,只是二式中的協(xié)態(tài)變量(t)是互為反號(hào)的。定理2.1.2(積分型最優(yōu)控制問(wèn)題的最大值原理)

給定系統(tǒng)的狀態(tài)方程和初態(tài)X(t0)=X0,而終端時(shí)刻tf固定,終端狀態(tài)X(tf)自由以及控制變量U(t)所受約束條件是則為將系統(tǒng)從給定的初態(tài)X(t0)轉(zhuǎn)移到某個(gè)終態(tài)X(tf),并使性能泛函第10頁(yè)/共96頁(yè)2023/1/1712達(dá)到極小值的最優(yōu)控制應(yīng)滿足的必要條件是:(1)設(shè)U*(t)是最優(yōu)控制,X*(t)是對(duì)應(yīng)于U*(t)的最優(yōu)軌線,則必存在一與U*(t)和X*(t)相對(duì)應(yīng)的n維協(xié)態(tài)變量(t),使得X*(t)和(t)滿足規(guī)范方程其中,第11頁(yè)/共96頁(yè)2023/1/1713(2)邊界條件為(3)在最優(yōu)控制U*(t)和最優(yōu)軌線X*(t)上哈密頓函數(shù)達(dá)到最大值,即說(shuō)明:由于定理2.1.2的中心內(nèi)容是,使性能泛函達(dá)到極小值的最優(yōu)控制的必要條件是哈密頓函數(shù)H達(dá)到最大值,所以,該定理稱為最大值原理。

第12頁(yè)/共96頁(yè)2023/1/1714例

2.1.1

給定一階線性系統(tǒng)和初始條件

(2.1.11)其中控制作用u(t)的約束條件為

(2.1.12)要求確定控制函數(shù)u(t),使性能泛函(2.1.13)達(dá)到極小值。

解:這是一個(gè)積分型最優(yōu)控制問(wèn)題,其終端時(shí)刻tf=1固定,終端狀態(tài)X(tf)是自由的。控制函數(shù)受到閉集性的約束條件??梢岳蒙厦娼榻B過(guò)的最大值原理(定理2.1.2)或最小值原理(定理2.1.1)來(lái)求解。在這里,為了進(jìn)行比較,將分別利用這兩個(gè)定理來(lái)求解。(1)應(yīng)用最大值原理求解,為此構(gòu)造哈密頓函數(shù)

(2.1.14)第13頁(yè)/共96頁(yè)2023/1/1715

按照最大值原理,為使泛函(2.1.13)達(dá)到極小值必須選擇控制函數(shù)u(t),使哈密頓函數(shù)(2.1.14)達(dá)到最大值。由式(2.1.14)可見(jiàn),當(dāng)u(t)與((t)+1/2)同號(hào),且取其約束條件的邊界值,即|u(t)|=1時(shí),使哈密頓函數(shù)H達(dá)到最大值。所以,控制函數(shù)應(yīng)選擇為

(2.1.15)或(2.1.16)第14頁(yè)/共96頁(yè)2023/1/1716

由上式可見(jiàn),若要確定u(t)

,必須通過(guò)協(xié)態(tài)方程解出(t)。根據(jù)哈密頓函數(shù)(2.1.14)可以寫出協(xié)態(tài)方程

因?yàn)閠f=1固定,x(1)自由,所以(1)=0,則協(xié)態(tài)方程的解為

其曲線如圖2-1(a)所示。由此可得最優(yōu)控制為或

(2.1.17)第15頁(yè)/共96頁(yè)2023/1/1717第16頁(yè)/共96頁(yè)2023/1/1718式中=ln(e/2),控制函數(shù)的曲線如圖2-1(b)所示。將最優(yōu)控制u*(t)代入狀態(tài)方程(2.1.11)得到(2.1.18)(2.1.19)利用初始條件x(0)=1,可得式(2.1.18)的解

當(dāng)t==ln(e/2)時(shí),有

將它作為式(2.1.19)的初始條件。解得

第17頁(yè)/共96頁(yè)2023/1/1719

于是有將u*(t)和x*(t)代入式(2.1.13),得由于只有一個(gè)u

(t)滿足最大值原理。根據(jù)實(shí)際情況,可判定它是最優(yōu)控制u*(t)。(2)應(yīng)用最小值原理求解,為此構(gòu)造哈密頓函數(shù)

(2.1.20)第18頁(yè)/共96頁(yè)2023/1/1720按照最小值原理,為使泛函(2.1.13)達(dá)到極小值,必須選擇控制函數(shù)u

(t)使哈密頓函數(shù)(2.1.20)達(dá)到最小值。由式(2.1.20)可知,當(dāng)u

(t)與((t)-1/2)異號(hào),且取其約束條件的邊界值(即|u(t)|=1)時(shí),哈密頓函數(shù)H達(dá)到最小值,所以控制函數(shù)應(yīng)取為由上式可見(jiàn),若要確定u(t)

,必須由協(xié)態(tài)方程解出(t)

,根據(jù)哈密頓函數(shù)(2.1.20),可寫出協(xié)態(tài)方程

其解為

第19頁(yè)/共96頁(yè)2023/1/1721由此可得最優(yōu)控制函數(shù)為

可見(jiàn),這一結(jié)果與應(yīng)用最大值原理所得到的結(jié)果是一致的。將它代入狀態(tài)方程(2.1.11),當(dāng)然也會(huì)得到相同的結(jié)果。以下的計(jì)算可以仿照(1)進(jìn)行,這里就不重復(fù)了。

說(shuō)明:由例2.1.1可以看出,分別應(yīng)用最大值原理和最小值原理求解同一個(gè)最優(yōu)控制問(wèn)題,所得到的最優(yōu)控制和最優(yōu)軌線是一致的,但是,協(xié)態(tài)變量卻是互為反號(hào)的。

第20頁(yè)/共96頁(yè)2023/1/17222.1.2復(fù)合型最優(yōu)控制問(wèn)題

問(wèn)題2.1.2(復(fù)合型最優(yōu)控制問(wèn)題)給定系統(tǒng)的狀態(tài)方程:(

2.1.21)其中f是n維連續(xù)可微的向量函數(shù)。X(t)是n維狀態(tài)變量,已知其初態(tài)為

X(t0)=X0,終端的約束條件為:

(2.1.22)其中是r維連續(xù)可微的向量函數(shù),且r<n,U(t)是m維控制變量,且其約束條件為

(2.1.23)其中是以U(t)為元素的m維實(shí)函數(shù)空間中的閉子集。要求我們?cè)跐M足式(2.1.23)的容許控制中,確定一控制變量U(t),使系統(tǒng)(2.2.21)從給定的初態(tài)X(t0)轉(zhuǎn)移到滿足式(2.1.22)條件下的某個(gè)終態(tài)X(tf),并使性能泛函第21頁(yè)/共96頁(yè)2023/1/1723

(2.1.24)達(dá)到極小值。其中和L都是連續(xù)可微的標(biāo)量函數(shù),而終端時(shí)刻tf是可變的。定理2.1.3(復(fù)合型最優(yōu)控制問(wèn)題的最小值原理)給定系統(tǒng)的狀態(tài)方程和控制函數(shù)U(t)的閉集約束條件則為將系統(tǒng)從給定的初態(tài)X(t0)=X0,轉(zhuǎn)移到滿足終端約束條件

的某個(gè)終態(tài)X(tf),其中tf是可變的,并使性能泛函

第22頁(yè)/共96頁(yè)2023/1/1724達(dá)到極小值的最優(yōu)控制應(yīng)滿足的必要條件是

(1)

設(shè)U*(t)是最優(yōu)控制,X*(t)是對(duì)應(yīng)于U*(t)的最優(yōu)軌線,則存在一與U*(t)和X*(t)相對(duì)應(yīng)的n維協(xié)態(tài)變量(t),使得X*(t)和(t)滿足規(guī)范方程其中

(2)狀態(tài)變量和協(xié)態(tài)變量的邊界條件為第23頁(yè)/共96頁(yè)2023/1/1725在上述各式中的是待定的r維乘子向量,即

(3)哈密頓函數(shù)H在最優(yōu)控制與最優(yōu)軌線上達(dá)到最小值。即

終端受限tf自由第24頁(yè)/共96頁(yè)2023/1/1726定理2.1.4(復(fù)合型最優(yōu)控制問(wèn)題的最大值原理)給定系統(tǒng)的狀態(tài)方程和控制函數(shù)U(t)的閉集約束條件則為將系統(tǒng)從給定的初態(tài)X(t0)=X0,轉(zhuǎn)移到滿足終端約束條件

的某個(gè)終態(tài)X(tf),其中tf是可變的,并使性能泛函達(dá)到極小值的最優(yōu)控制應(yīng)滿足的必要條件是:(1)

設(shè)U*(t)是最優(yōu)控制,X*(t)是對(duì)應(yīng)于U*(t)的最優(yōu)軌線,則必存在一與U*(t)和X*(t)相對(duì)應(yīng)的(t),使得X*(t)和(t)滿足規(guī)范方程

第25頁(yè)/共96頁(yè)2023/1/1727其中(2)狀態(tài)變量和協(xié)態(tài)變量的邊界條件為第26頁(yè)/共96頁(yè)2023/1/1728(3)哈密頓函數(shù)H在最優(yōu)控制與最優(yōu)軌線上達(dá)到最大值。即

2.1.3有關(guān)最大值原理(或最小值原理)的幾點(diǎn)說(shuō)明

最大值原理(當(dāng)然包括最小值原理,以下同)是對(duì)古典變分法的發(fā)展。它不僅可以用來(lái)求解函數(shù)U(t)不受約束或只受開集性約束的最優(yōu)控制問(wèn)題,而且也可以用來(lái)求解控制函數(shù)U(t)受到閉集性約束條件的最優(yōu)控制問(wèn)題。這就意味著最大值原理放寬了對(duì)控制函數(shù)U(t)的要求。

最大值原理沒(méi)有提出哈密頓函數(shù)H對(duì)控制函數(shù)U(t)的可微性的要求,因此,其應(yīng)用條件進(jìn)一步放寬了。并且,由最大值原理所求得的最優(yōu)控制U(t)使哈密頓函數(shù)H達(dá)到全局、絕對(duì)最大值,而由古典變分法的極值條件H/U=0所得到的解是H的局部、相對(duì)最大值或駐值。因此,最大值原理將古典變分法求解最優(yōu)控制問(wèn)題的極值條件作為一個(gè)特例概括在自己之中。第27頁(yè)/共96頁(yè)2023/1/1729最大值原理是最優(yōu)控制問(wèn)題的必要條件,并非充分條件。也就是說(shuō),由最大值原理所求得的解能否使性能泛函J達(dá)到極小值,還需要進(jìn)一步分析與判定。但是,如果根據(jù)物理意義已經(jīng)能夠斷定所討論的最優(yōu)控制問(wèn)題的解是存在的,而由最大值原理所得到的解只有一個(gè),那么,該解就是最優(yōu)解。實(shí)際上,我們遇到的問(wèn)題往往屬于這種情況。

利用最大值原理和古典變分法求解最優(yōu)控制問(wèn)題時(shí),除了控制方程的形式不同外,其余條件是相同的。一般來(lái)說(shuō),根據(jù)最大值原理確定最優(yōu)控制U*(t)和最優(yōu)軌線X*(t)仍然需要求解兩點(diǎn)邊界值問(wèn)題。這是一件復(fù)雜的工作。

由最大值原理和最小值原理所得到的最優(yōu)控制U*(t)和最優(yōu)軌線X*(t)是一致的,只是協(xié)態(tài)變量(t)是互為反號(hào)的。

若所討論問(wèn)題是確定最優(yōu)控制U*(t)

,使性能泛函

第28頁(yè)/共96頁(yè)2023/1/1730達(dá)到極大值,最大值原理仍然成立,這時(shí)只要將上述性能泛函變?yōu)?/p>

就可以了。

第29頁(yè)/共96頁(yè)2023/1/1731§2.2最大值原理的證明2.2.1一般型最優(yōu)控制問(wèn)題

問(wèn)題2.2.1(一般型最優(yōu)控制問(wèn)題)給定系統(tǒng)的狀態(tài)方程:(2.2.1)的初態(tài)X(t0)=X0和控制函數(shù)的約束條件(2.2.2)從滿足約束條件(2.2.2)的容許控制函數(shù)中,確定一個(gè)控制函數(shù)U(t),使性能泛函

(2.2.3)達(dá)到極小值,其中

tf是終端時(shí)刻,X(tf)是終端狀態(tài)。

龐特里雅金函數(shù)第30頁(yè)/共96頁(yè)2023/1/1732

說(shuō)明:最優(yōu)控制問(wèn)題的上述提法具有一般性,它將許多常見(jiàn)的最優(yōu)控制問(wèn)題概括成為自己的特殊情況,故稱為一般型最優(yōu)控制問(wèn)題,許多最優(yōu)控制問(wèn)題都可以轉(zhuǎn)化為一般型最優(yōu)控制問(wèn)題。

最速控制問(wèn)題給定n階系統(tǒng)的狀態(tài)方程的初始狀態(tài)X(t0)=X0和控制函數(shù)的約束條件需要從容許控制U(t)中,確定一個(gè)控制函數(shù)U(t)

,能在最短的時(shí)間內(nèi),將系統(tǒng)從給定的初態(tài)X(t0)轉(zhuǎn)移到給定的終態(tài)X(tf)。這是最速控制問(wèn)題,其性能泛函

第31頁(yè)/共96頁(yè)2023/1/1733

其中,t0是固定的初始時(shí)刻,tf是可變的終端時(shí)刻。下面將其化為一般型最優(yōu)控制問(wèn)題。為此,引入一個(gè)新的狀態(tài)變量xn+1(t),令

其中,于是一個(gè)n階系統(tǒng)的最速控制問(wèn)題就轉(zhuǎn)化為一個(gè)n+1階系統(tǒng)的一般型最優(yōu)控制問(wèn)題。

第32頁(yè)/共96頁(yè)2023/1/1734積分型最優(yōu)控制問(wèn)題給定n階系統(tǒng)的狀態(tài)方程的初始狀態(tài)X(t0)=X0和控制函數(shù)的約束條件要求從容許控制U(t)中,確定一個(gè)控制函數(shù)U(t)

,將系統(tǒng)從給定的初態(tài)X(t0)轉(zhuǎn)移到某個(gè)終態(tài)X(tf),并使性能泛函達(dá)到極小值。這是個(gè)積分型最優(yōu)控制問(wèn)題,引入一個(gè)新的狀態(tài)變量xn+1(t),滿足

第33頁(yè)/共96頁(yè)2023/1/1735其中,于是一個(gè)n階系統(tǒng)的積分型最優(yōu)控制問(wèn)題便轉(zhuǎn)化成一個(gè)n+1階系統(tǒng)的一般型最優(yōu)控制問(wèn)題。終端型指標(biāo)的最優(yōu)控制問(wèn)題給定n階系統(tǒng)的狀態(tài)方程的初始狀態(tài)X(t0)=X0和控制函數(shù)的約束條件第34頁(yè)/共96頁(yè)2023/1/1736 要求從容許控制U(t)中,確定一個(gè)控制函數(shù)U(t),使性能泛函達(dá)到極小值。這是個(gè)終端型指標(biāo)的最優(yōu)控制問(wèn)題,引入一個(gè)新的狀態(tài)變量xn+1(t),滿足

第35頁(yè)/共96頁(yè)2023/1/1737于是,一個(gè)n階系統(tǒng)的終端型指標(biāo)的最優(yōu)控制問(wèn)題也可轉(zhuǎn)化為一個(gè)n+1階系統(tǒng)的一般型最優(yōu)控制問(wèn)題。

說(shuō)明:類似地,一個(gè)復(fù)合型指標(biāo)的最優(yōu)控制問(wèn)題,也能夠轉(zhuǎn)化為一般型最優(yōu)控制問(wèn)題。這里只要結(jié)合應(yīng)用積分型指標(biāo)和終端型指標(biāo)最優(yōu)控制問(wèn)題轉(zhuǎn)化為一般型指標(biāo)最優(yōu)控制問(wèn)題的思想和方法,就可以完成這種轉(zhuǎn)化工作。

第36頁(yè)/共96頁(yè)2023/1/17382.2.2一般型最優(yōu)控制問(wèn)題的最大值原理及證明定理2.2.1(一般型最優(yōu)控制問(wèn)題的最大值原理—終端時(shí)刻固定,終端狀態(tài)自由)給定系統(tǒng)的狀態(tài)方程

和控制函數(shù)U(t)的約束條件則為將系統(tǒng)從給定的初態(tài)X(t0)=X0轉(zhuǎn)移到終端時(shí)刻tf固定,終端狀態(tài)自由的某個(gè)終態(tài)X(tf),并使性能泛函

達(dá)到極小值的最優(yōu)控制應(yīng)滿足的必要條件是:

(1)

設(shè)U*(t)是最優(yōu)控制,X*(t)是對(duì)應(yīng)于U*(t)的最優(yōu)軌線,則必存在一與U*(t)和X*(t)相對(duì)應(yīng)的(t),使得X*(t)和(t)滿足規(guī)范方程第37頁(yè)/共96頁(yè)2023/1/1739其中,(2)邊界條件為(3)在最優(yōu)控制和最優(yōu)軌線上哈密頓函數(shù)H達(dá)到最大值。即(2.2.4)

第38頁(yè)/共96頁(yè)2023/1/1740證明:證明該定理的基本思路是,設(shè)最優(yōu)控制U*(t)獲得變分U

(t),相應(yīng)地,最優(yōu)軌線X*(t)也發(fā)生變分

X

(t),這時(shí)求出性能泛函J的增量J。根據(jù)最優(yōu)控制U*(t)使J達(dá)到極小值,則其增量為(2.2.5)的性質(zhì),利用反證法證明,若最大值原理不成立,則式(2.2.5)一定不成立。這與控制函數(shù)U*(t)使J達(dá)到極小值的假設(shè)相矛盾,于是就完成了定理2.2.1的證明。其具體步驟如下:

求增量J設(shè)最優(yōu)控制U*(t)已經(jīng)求得,即U*(t)使J達(dá)到了極小值?,F(xiàn)在令U*(t)獲得一個(gè)變分U

(t),則最優(yōu)軌線X*(t)相應(yīng)地也發(fā)生變分,設(shè)為

X

(t)

由狀態(tài)方程(2.2.1)得

(2.2.6)第39頁(yè)/共96頁(yè)2023/1/1741 (2.2.7) 將式(2.2.7)與式(2.2.6)相減,并左乘以T(t),得(2.2.8)考慮到哈密頓函數(shù)為

則式(2.2.8)變?yōu)?/p>

對(duì)上式兩端進(jìn)行積分,得

(2.2.9)第40頁(yè)/共96頁(yè)2023/1/1742 對(duì)上式左端進(jìn)行分部積分,得

將上式代入式(2.2.9),移項(xiàng)后,得

(2.2.10) 第41頁(yè)/共96頁(yè)2023/1/1743 將上式代入式(2.2.10),得性能泛函的增量為(2.2.11)化簡(jiǎn)增量J由于協(xié)態(tài)變量方程為

(2.2.12)

并利用泰勒公式,將式(2.2.11)右端的第二項(xiàng)積分中的第一個(gè)函數(shù)的最優(yōu)軌線X*(t)處展開,得

第42頁(yè)/共96頁(yè)2023/1/1744

(2.2.13) 其中,0

1,是n×n階非負(fù)定矩陣,且為

第43頁(yè)/共96頁(yè)2023/1/1745 將式(2.2.12)和式(2.2.13)代入式(2.2.11)中,經(jīng)整理得

(2.2.14)在上式右端后兩個(gè)積分中都含有

X

(t)

,它們相對(duì)于第一個(gè)積分而言,都是高階無(wú)窮小量,記為,于是,式(2.2.14)變?yōu)?/p>

第44頁(yè)/共96頁(yè)2023/1/1746(2.2.15)

反證法證明定理為了證明最大值原理是使性能泛函J達(dá)到極小值的必要條件,需要證明:如果在容許控制

(2.2.16)

中,至少能找到一個(gè)控制函數(shù)U

(t),使哈密頓函數(shù)H不能達(dá)到最大值的話,那么,該控制函數(shù)就一定不會(huì)使性能泛函J達(dá)到極小值。如果在容許控制(2.2.16)中能夠找到使性能泛函J達(dá)到極小值的最優(yōu)控制U*(t),那么當(dāng)它發(fā)生任何變分U

(t)時(shí),都有J0?,F(xiàn)在假定最優(yōu)控制U*(t)只在區(qū)間[t0,tf]中的任一小區(qū)間[ta,tb]上發(fā)生變分U

(t),即假定第45頁(yè)/共96頁(yè)2023/1/1747 并且,假設(shè)U*(t)不能使哈密頓函數(shù)H滿足最大值原理,也就是說(shuō),對(duì)于控制函數(shù)U*(t)發(fā)生微小變分U

(t)后,有

其中t[ta,tb],是一個(gè)正常數(shù),對(duì)上式兩邊積分,得

由于控制函數(shù)U

(t)的變分U

(t)只在區(qū)間[ta,tb]上發(fā)生,所以式(2.2.15)的泛函的增量將變?yōu)?/p>

第46頁(yè)/共96頁(yè)2023/1/1748

由于是無(wú)窮小量,它的存在與否,不影響上面不等式關(guān)系,所以J0。這表明,若控制函數(shù)U*(t)不能使哈密頓函數(shù)H滿足最大值原理,則該控制函數(shù)U*(t)也不會(huì)使泛函J達(dá)到極小值。這與控制函數(shù)U*(t)是使泛函J達(dá)到極小值的假設(shè)矛盾。所以,使性能泛函J達(dá)到極小值的控制函數(shù)U*(t)

,一定使哈密頓函數(shù)滿足最大值原理,于是定理2.2.1得到證明。

第47頁(yè)/共96頁(yè)2023/1/1749推論

2.3.1對(duì)于線性系統(tǒng)

來(lái)說(shuō),最大值原理是使性能泛函J(見(jiàn)式2.2.3)達(dá)到極小值的充要條件。

證明:在這種情況下,哈密頓函數(shù)為

第48頁(yè)/共96頁(yè)2023/1/1750 這時(shí),相應(yīng)的式(2.2.14)中的后兩個(gè)積分均等于零,于是得到

因此,若哈密頓函數(shù)H滿足最大值原理,則上式右端的積分就是非負(fù)的,即

J0,這樣,性能泛函J達(dá)到極小值的條件滿足了,充分條件得到證明。

第49頁(yè)/共96頁(yè)2023/1/1751例

2.2.1

給定二階系統(tǒng)的狀態(tài)方程及初始狀態(tài)

其中控制函數(shù)的約束條件為|u(t)|1,現(xiàn)在需要容許控制中,確定一控制函數(shù)u(t)

,使系統(tǒng)在終態(tài)自由的情況下,從給定的初態(tài)(x1(0)=1,x2(0)=0)轉(zhuǎn)移到某個(gè)終態(tài)(x1(1),x2(1)),并使性能泛函 達(dá)到極小值。

解:這是一個(gè)一般型最優(yōu)控制問(wèn)題,其終端時(shí)刻tf=1固定,終端狀態(tài)自由,可以利用定理2.2.1求解。為此,構(gòu)造哈密頓函數(shù)第50頁(yè)/共96頁(yè)2023/1/1752 協(xié)態(tài)方程

求解協(xié)態(tài)方程得其中(t)曲線如圖2-2所示。根據(jù)定理2.2.1,為使變量u(t)的函數(shù)H在約束|u(t)|1條件下達(dá)到最大值,顯然應(yīng)取

第51頁(yè)/共96頁(yè)2023/1/1753 由圖2-2可見(jiàn),在區(qū)間[0,1]上,

1<0,所以 將它代入狀態(tài)方程,得到

由此得到性能泛函的極小值

第52頁(yè)/共96頁(yè)2023/1/1754定理2.2.2(一般型最優(yōu)控制問(wèn)題的最大值原理—終端時(shí)刻固定,終端狀態(tài)受限) 給定系統(tǒng)的狀態(tài)方程(2.2.17) 和控制函數(shù)U(t)的約束條件(2.2.18) 則為將系統(tǒng)從給定的初態(tài)X(t0)=X0轉(zhuǎn)移到滿足終端約束條件(2.2.19)某個(gè)終態(tài)X(tf),其中,tf是固定,并使性能泛函(2.2.20) 達(dá)到極小值的最優(yōu)控制應(yīng)滿足的必要條件是:(1)

設(shè)U*(t)是最優(yōu)控制,X*(t)是對(duì)應(yīng)于U*(t)的最優(yōu)軌線,則必存在一與U*(t)和X*(t)相對(duì)應(yīng)的(t),使得X*(t)和(t)滿足規(guī)范方程

第53頁(yè)/共96頁(yè)2023/1/1755其中,(2)邊界條件為(2.2.21a)

或者(2.2.21b)(3)在最優(yōu)控制和最優(yōu)軌線上哈密頓函數(shù)H達(dá)到最大值。即第54頁(yè)/共96頁(yè)2023/1/1756例

2.2.2

給定系統(tǒng)的狀態(tài)方程和初始條件 其終端狀態(tài)的約束條件為

上面的約束方程在四維空間中代表一個(gè)三維圖形,也就是說(shuō),系統(tǒng)的終態(tài)不自由,被限制在這個(gè)三維圖形上?,F(xiàn)在的問(wèn)題是要求確定控制函數(shù)u(t),使系統(tǒng)在t=0時(shí)從原點(diǎn)開始,在t=1時(shí)到達(dá)上述三維圖形上,并使性能泛函第55頁(yè)/共96頁(yè)2023/1/1757

達(dá)到極小值。

解:寫出問(wèn)題的哈密頓函數(shù) 由此得協(xié)態(tài)方程

而c1=c2=c3=0,c4=1,所以第56頁(yè)/共96頁(yè)2023/1/1758 可以解出

將上式代入Hamilton函數(shù)得

因?yàn)閷?duì)控制函數(shù)u(t)沒(méi)有施加約束條件,所以由

第57頁(yè)/共96頁(yè)2023/1/1759

可以求出滿足最大值原理的控制函數(shù)為

將上述結(jié)果綜合起來(lái),求解本例題的最優(yōu)控制和最優(yōu)軌線問(wèn)題就轉(zhuǎn)化為求解下列的兩點(diǎn)邊界值問(wèn)題。

第58頁(yè)/共96頁(yè)2023/1/1760 加上終端狀態(tài)的約束條件

上述方程組的解就確定了。不過(guò),欲將它解出來(lái),卻是非常困難的,因?yàn)闋顟B(tài)方程與終端條件是非線性的。(可以借助MATLAB求解)

特例:狀態(tài)變量某些分量的終態(tài)xj(tf)是完全固定的情況

設(shè)狀態(tài)變量的前r個(gè)分量的終態(tài)是固定的,而其余分量的終態(tài)是沒(méi)有約束的。這時(shí)約束條件(2.2.19)變?yōu)?/p>

其中xif是常數(shù),將上述終端約束條件代入式(2.2.21b),則可得到在這種情況下協(xié)態(tài)變量的終端條件為

第59頁(yè)/共96頁(yè)2023/1/1761 既然狀態(tài)變量前r個(gè)分量的終態(tài)是固定的,它們?cè)谛阅苤笜?biāo)泛函中自然不會(huì)出現(xiàn)。也就是說(shuō),對(duì)應(yīng)于狀態(tài)變量這些分量的常數(shù)ci等于零。所以最后得

由于i是待定的常數(shù),所以由上面兩式可以得到一個(gè)重要的結(jié)論:若狀態(tài)變量的分量xi(t)的終態(tài)xi(tf)是固定的,則協(xié)態(tài)變量與之相應(yīng)的分量i(t)的終態(tài)i(tf)是自由的;反之,若狀態(tài)變量的分量xi(t)的終態(tài)xi(tf)是自由的,則協(xié)態(tài)變量與之相應(yīng)的分量i(t)的終態(tài)i(tf)是固定的,且為-ci。第60頁(yè)/共96頁(yè)2023/1/1762例2.2.3

給定系統(tǒng)的狀態(tài)方程

初始條件

(2.2.23) 和終端條件

(2.2.24)

現(xiàn)在需要確定最優(yōu)控制u1*(t)和u2*(t)以及最優(yōu)軌線x1*(t)和x2*(t)

,將系統(tǒng)從t=0時(shí)的初態(tài)轉(zhuǎn)移到t=1時(shí)的終態(tài),并使性能泛函

達(dá)到極小值。

(2.2.22)第61頁(yè)/共96頁(yè)2023/1/1763

解:

這是一個(gè)積分型最優(yōu)控制問(wèn)題。應(yīng)用定理2.1.2來(lái)求解,為此構(gòu)造哈密頓函數(shù)

由此可寫出協(xié)態(tài)方程

由于x1(1)和x2(1)都是固定的,所以1(1)和2(1)都是自由的,故得協(xié)態(tài)方程的解為 其中積分常數(shù)a和b需要根據(jù)另外的條件來(lái)確定。下面分三種情況進(jìn)行討論。

第62頁(yè)/共96頁(yè)2023/1/1764u1(t)和u2(t)都不受約束

此時(shí),當(dāng)時(shí),H達(dá)到最大值。于是有

第63頁(yè)/共96頁(yè)2023/1/1765

將上式代入系統(tǒng)狀態(tài)方程(2.2.22)并考慮到狀態(tài)變量的初始條件(2.2.23),可得

代入終端條件(2.2.24),就得到關(guān)于a和b的聯(lián)立方程

由此得到最優(yōu)控制為

第64頁(yè)/共96頁(yè)2023/1/1766

最優(yōu)軌線為

而性能泛函為

解的曲線如圖2-3(a)所示。

第65頁(yè)/共96頁(yè)2023/1/1767u1(t)不受約束,u2(t)1/4`前面已經(jīng)指出,對(duì)于u2(t)來(lái)說(shuō),哈密頓函數(shù)H的最大值發(fā)生在a/2的地方,但是,這時(shí)a之值尚不知道,不過(guò)從情況1知a=1時(shí),u2(t)=1/2,依此判斷,H的最大值現(xiàn)在發(fā)生在u2(t)=1/4的地方,因此,取

u2(t)=1/4。 由于u1(t)不受約束,所以

將u1(t)和u2(t)代入系統(tǒng)方程(2.2.22)并考慮到狀態(tài)變量的初始條件(2.2.23),可得第66頁(yè)/共96頁(yè)2023/1/1768

利用終端條件(2.2.24),可得聯(lián)立方程

由于

所以,我們?nèi)2(t)=1/4是正確的,代入a,b之值后,求得的最優(yōu)控制為

第67頁(yè)/共96頁(yè)2023/1/1769

而最優(yōu)軌線為 性能指標(biāo)泛函之值為

由此可以看出,對(duì)u2(t)加了約束之后,泛函J的極小值變大了。這時(shí)解的曲線如圖2-3(b)所示。

第68頁(yè)/共96頁(yè)2023/1/1770u1(t)

0和u2(t)1/4

由情況2中已經(jīng)看到,u1(t)之值在后一段時(shí)間是小于零的?,F(xiàn)在對(duì)u1(t)施加了不小于零的限制。由于函數(shù)H對(duì)于u1(t)來(lái)說(shuō)是二次函數(shù),所以在這種情況下為使H達(dá)到最大值的最優(yōu)控制也將包含有

(1)(2) 兩部分,這兩部分的轉(zhuǎn)換時(shí)間是需要確定的,問(wèn)題的復(fù)雜性在于,現(xiàn)在還不知道常數(shù)a和b之值,因而也不知道u2(t)應(yīng)取多大值方能滿足最大值原理。所以,我們應(yīng)采用的方法多少帶有試探的性質(zhì)。假設(shè)

第69頁(yè)/共96頁(yè)2023/1/1771

至于u1(t)應(yīng)如何假設(shè),我們先分析一下,如果在開始一段時(shí)間,設(shè)u1(t)=0,那么這等于在方程中設(shè)b<0,為了要在時(shí)間區(qū)間[0,1]上實(shí)現(xiàn)一次轉(zhuǎn)換,這又要求a<1+b,因此a一定小于1,甚至小于零,以至于u2(t)也可能小于零。將這樣的u1(t)和u2(t)代入原狀態(tài)方程(2.2.22),顯然不能滿足終端條件(2.2.24),所以先設(shè)b>0,于是在t=0時(shí),有u1(t)>0,因而取

將假設(shè)的u1(t)和u2(t)代入原狀態(tài)方程(2.2.22),并考慮初始條件(2.2.23),可得

第70頁(yè)/共96頁(yè)2023/1/1772第71頁(yè)/共96頁(yè)2023/1/1773

這種狀態(tài)運(yùn)動(dòng)將一直繼續(xù)到轉(zhuǎn)換時(shí)刻,我們令u1(t)=0可求出轉(zhuǎn)換時(shí)刻 在時(shí)刻,x1(t)和x2(t)分別為第72頁(yè)/共96頁(yè)2023/1/1774

此后控制函數(shù)變?yōu)?將此控制函數(shù)代入原狀態(tài)方程(2.2.22),并以x1()和x2()作為初始值,可得轉(zhuǎn)換時(shí)刻以后的狀態(tài)運(yùn)動(dòng)方程為

現(xiàn)在將終點(diǎn)條件(2.2.24)代入上式,可得聯(lián)立方程

(2.2.25)第73頁(yè)/共96頁(yè)2023/1/1775 若取d=a/2,則上列聯(lián)立方程的解為 而轉(zhuǎn)換時(shí)刻與d分別為

與題設(shè)是矛盾的。若取d=1/4,代入式(2.2.25),得第74頁(yè)/共96頁(yè)2023/1/1776

與題相符。綜合以上結(jié)果,就得到最優(yōu)控制與最優(yōu)軌線分別為(1)當(dāng)0

t3/4時(shí),

第75頁(yè)/共96頁(yè)2023/1/1777 (2)當(dāng)3/4

t1時(shí)

它們隨時(shí)間變化的情況如圖2-3(c)所示

這個(gè)例子一方面說(shuō)明了最大值原理的應(yīng)用,另一方面也說(shuō)明了,即使能夠用于計(jì)算的簡(jiǎn)單問(wèn)題也會(huì)遇到很大的困難。稍微復(fù)雜的問(wèn)題,就得借助于MATLAB求其數(shù)值解。第76頁(yè)/共96頁(yè)2023/1/1778第77頁(yè)/共96頁(yè)2023/1/1779§2.3一般型最優(yōu)控制問(wèn)題終端時(shí)刻tf可變的情況問(wèn)題2.3.1(一般型最優(yōu)控制問(wèn)題)給定系統(tǒng)的狀態(tài)方程:(23.1)的初態(tài)X(t0)=X0和終端的約束條件(2.3.2) 其中tf是可變的終端時(shí)刻,[X(tf)]是r維函數(shù)向量,即

以及控制函數(shù)的約束條件(2.3.3) 要求從滿足約束條件(2.3.3)的容許控制中,確定一最優(yōu)控制U*(t),使性能泛函

(2.3.4)第78頁(yè)/共96頁(yè)2023/1/1780

達(dá)到極小值。 利用拉格朗日乘子法,可以將性能泛函寫成為

(2.3.5) 其中是待定的r維乘子向量,即

假設(shè)終端時(shí)刻tf變化了d

tf,則由式(2.3.5)可得

(2.3.6) 由上節(jié)的式(2.2.21a),有

第79頁(yè)/共96頁(yè)2023/1/1781

所以式(2.3.6)可以寫為

由于當(dāng)tf=tf*時(shí),性能泛函J達(dá)到極小值,所以上式應(yīng)等于零,即

又因?yàn)閐tf*是任意的,所以有

(2.3.7)

上述結(jié)果表明,對(duì)于終端時(shí)刻tf可變的情況,除了增加一個(gè)方程(2.3.7)用來(lái)確定終端時(shí)刻以外,最優(yōu)控制與終端時(shí)刻tf固定時(shí)應(yīng)滿足的條件完全相同。于是,可以寫出關(guān)于問(wèn)題2.3.1的最優(yōu)控制所應(yīng)滿足的必要條件的最大值原理的定理。

第80頁(yè)/共96頁(yè)2023/1/1782定理2.3.1(一般型最優(yōu)控制問(wèn)題的最大值原理—終端時(shí)刻可變,終端狀態(tài)受限-不顯含tf)給定系統(tǒng)的狀態(tài)方程:和控制函數(shù)U(t)的約束條件

則為將系統(tǒng)從給定的初態(tài)

X(t0)=X0轉(zhuǎn)移到滿足約束條件

的某個(gè)終態(tài)X(tf),其中tf是可變的,并使性能泛函

達(dá)到極小值的最優(yōu)控制應(yīng)滿足的必要條件是:(1)

設(shè)U*(t)是最優(yōu)控制,X*(t)是對(duì)應(yīng)于U*(t)的最優(yōu)軌線,則必存在一與U*(t)和X*(t)相對(duì)應(yīng)的(t),使得X*(t)和(t)滿足規(guī)范方程第81頁(yè)/共96頁(yè)2023/1/1783其中,(2)邊界條件為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論