2023年廣東省深圳市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁
2023年廣東省深圳市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁
2023年廣東省深圳市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁
2023年廣東省深圳市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁
2023年廣東省深圳市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年廣東省深圳市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.

2.A.A.

B.

C.

D.

3.

4.微分方程y+y=0的通解為().A.A.

B.

C.

D.

5.()A.A.1B.2C.1/2D.-1

6.下列命題中正確的有().A.A.

B.

C.

D.

7.

8.

9.

10.A.A.導(dǎo)數(shù)存在,且有f(a)=一1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值11.A.(2+X)^2B.3(2+X)^2C.(2+X)^4D.3(2+X)^4

12.曲線y=ex與其過原點(diǎn)的切線及y軸所圍面積為

A.

B.

C.

D.

13.

14.

15.設(shè),則函數(shù)f(x)在x=a處().A.A.導(dǎo)數(shù)存在,且有f'(a)=-1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值16.曲線y=x-ex在點(diǎn)(0,-1)處切線的斜率k=A.A.2B.1C.0D.-1

17.管理幅度是指一個(gè)主管能夠直接、有效地指揮下屬成員的數(shù)目,經(jīng)研究發(fā)現(xiàn),高層管理人員的管理幅度通常以()較為合適。

A.4~8人B.10~15人C.15~20人D.10~20人18.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x

B.y=C1e-3x+C2e4x

C.y=C1e3x+C2e4x

D.y=C1e-3x+C2e-4x

19.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面

20.

21.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。

A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)

B.勻速直線運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為

C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為

D.增大靜變形是減小沖擊載荷的主要途徑

22.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.

B.1

C.

D.-1

23.A.A.sin(x-1)+C

B.-sin(x-1)+C

C.sinx+C&nbsbr;

D.-sinx+C

24.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線25.A.A.

B.

C.

D.

26.

A.

B.

C.

D.

27.()。A.過原點(diǎn)且平行于X軸B.不過原點(diǎn)但平行于X軸C.過原點(diǎn)且垂直于X軸D.不過原點(diǎn)但垂直于X軸28.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.

B.

C.

D.

29.設(shè)球面方程為(x-1)2+(y+2)2+(z-3)2=4,則該球的球心坐標(biāo)與半徑分別為()A.(-1,2,-3);2B.(-1,2,-3);4C.(1,-2,3);2D.(1,-2,3);4

30.

31.

32.

33.

34.

35.

36.

37.設(shè)函數(shù)f(x)與g(x)均在(α,b)可導(dǎo),且滿足f'(x)<g'(x),則f(x)與g(x)的關(guān)系是

A.必有f(x)>g(x)B.必有f(x)<g(x)C.必有f(x)=g(x)D.不能確定大小

38.設(shè)Y=e-5x,則dy=().

A.-5e-5xdx

B.-e-5xdx

C.e-5xdx

D.5e-5xdx

39.

40.

41.

42.()。A.e-2

B.e-2/3

C.e2/3

D.e2

43.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-244.A.A.1/3B.3/4C.4/3D.345.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)46.下列關(guān)系正確的是()。A.

B.

C.

D.

47.

48.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

49.單位長度扭轉(zhuǎn)角θ與下列哪項(xiàng)無關(guān)()。

A.桿的長度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)50.設(shè)k>0,則級(jí)數(shù)為().A.A.條件收斂B.絕對(duì)收斂C.發(fā)散D.收斂性與k有關(guān)二、填空題(20題)51.52.=______.

53.

54.

55.

56.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為______.57.

58.設(shè)函數(shù)y=y(x)由方程x2y+y2x+2y=1確定,則y'=______.59.冪級(jí)數(shù)

的收斂半徑為________。

60.

61.二階常系數(shù)線性微分方程y-4y+4y=0的通解為__________.

62.

63.

64.

65.

66.設(shè)y=lnx,則y'=_________。

67.

68.

69.

70.

三、計(jì)算題(20題)71.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.72.

73.求微分方程y"-4y'+4y=e-2x的通解.

74.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

75.

76.求曲線在點(diǎn)(1,3)處的切線方程.77.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.78.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).79.80.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則81.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

82.83.將f(x)=e-2X展開為x的冪級(jí)數(shù).

84.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

85.求微分方程的通解.86.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.87.證明:

88.

89.90.

四、解答題(10題)91.

92.

93.

94.求y"+4y'+4y=e-x的通解.

95.

96.

97.設(shè)y=x2+2x,求y'。

98.

99.100.(本題滿分8分)設(shè)y=x+arctanx,求y.五、高等數(shù)學(xué)(0題)101.當(dāng)x→0時(shí),tan2x是()。

A.比sin3x高階的無窮小B.比sin3x低階的無窮小C.與sin3x同階的無窮小D.與sin3x等價(jià)的無窮小六、解答題(0題)102.設(shè)z=z(x,y)由x2+2y2+3z2+yz=1確定,求

參考答案

1.C

2.D

3.B

4.D本題考查的知識(shí)點(diǎn)為-階微分方程的求解.

可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.

解法1將方程認(rèn)作可分離變量方程.

解法2將方程認(rèn)作-階線性微分方程.由通解公式可得

解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:

特征方程為r+1=0,

特征根為r=-1,

5.C由于f'(2)=1,則

6.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的性質(zhì).

可知應(yīng)選B.通常可以將其作為判定級(jí)數(shù)發(fā)散的充分條件使用.

7.C

8.C

9.C解析:

10.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

11.B

12.A

13.A

14.B

15.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由于,可知f'(a)=-1,因此選A.

由于f'(a)=-1≠0,因此f(a)不可能是f(x)的極值,可知C,D都不正確.

16.C

17.A解析:高層管理人員的管理幅度通常以4~8人較為合適。

18.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x

19.C本題考查的知識(shí)點(diǎn)為二次曲面的方程。

將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對(duì)照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。

20.D

21.C

22.B

23.A本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.

可知應(yīng)選A.

24.D

25.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:

26.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.

由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知

可知應(yīng)選C.

27.C將原點(diǎn)(0,0,O)代入直線方程成等式,可知直線過原點(diǎn)(或由

28.C

29.C

30.B

31.C

32.C

33.D解析:

34.D解析:

35.C

36.D

37.D解析:由f'(x)<g'(x)知,在(α,b)內(nèi),g(x)的變化率大于f(x)的變化率,由于沒有g(shù)(α)與f(α)的已知條件,無法判明f(x)與g(x)的關(guān)系。

38.A

【評(píng)析】基本初等函數(shù)的求導(dǎo)公式與導(dǎo)數(shù)的四則運(yùn)算法則是常見的試題,一定要熟記基本初等函數(shù)求導(dǎo)公式.對(duì)簡單的復(fù)合函數(shù)的求導(dǎo),應(yīng)該注意由外到里,每次求一個(gè)層次的導(dǎo)數(shù),不要丟掉任何一個(gè)復(fù)合層次.

39.D

40.C解析:

41.B

42.B

43.A由于

可知應(yīng)選A.

44.B

45.Bf(x)=2x3-9x2+12x-3的定義域?yàn)?-∞,+∞)

f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。

令f'(x)=0得駐點(diǎn)x1=1,x2=2。

當(dāng)x<1時(shí),f'(x)>0,f(x)單調(diào)增加。

當(dāng)1<x<2時(shí),f'(x)<0,f(x)單調(diào)減少。

當(dāng)x>2時(shí),f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。

46.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)。

47.A

48.B如果y1,y2這兩個(gè)特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。

49.A

50.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.

由于為萊布尼茨級(jí)數(shù),為條件收斂.而為萊布尼茨級(jí)數(shù)乘以數(shù)-k,可知應(yīng)選A.

51.

52.本題考查的知識(shí)點(diǎn)為定積分的換元積分法。設(shè)t=x/2,則x=2t,dx=2dt.當(dāng)x=0時(shí),t=0;當(dāng)x=π時(shí),t=π/2。因此

53.(03)(0,3)解析:

54.

55.6x26x2

解析:

56.本題考查的知識(shí)點(diǎn)為直線方程的求解.

由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).由直線的點(diǎn)向式方程可知所求直線方程為

57.

58.

;本題考查的知識(shí)點(diǎn)為隱函數(shù)的求導(dǎo).

將x2y+y2x+2y=1兩端關(guān)于x求導(dǎo),(2xy+x2y')+(2yy'x+y2)+2y'=0,(x2+2xy+2)y'+(2xy+y2)=0,因此y'=59.所給冪級(jí)數(shù)為不缺項(xiàng)情形,可知ρ=1,因此收斂半徑R==1。

60.f(x)+Cf(x)+C解析:

61.

62.

63.1/(1-x)2

64.

65.1/3

66.1/x

67.

解析:

68.

解析:69.1/6

70.11解析:71.由二重積分物理意義知

72.

73.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

74.

75.76.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

77.

78.

列表:

說明

79.

80.由等價(jià)無窮小量的定義可知

81.

82.

83.

84.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

85.86.函數(shù)的定義域?yàn)?/p>

注意

87.

88.

89.

90.由一階線性微分方程通解公式有

91.

9

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論