版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年河北省保定市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.A.0B.1C.∞D(zhuǎn).不存在但不是∞
2.
3.
4.設(shè)y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x
5.曲線y=x+(1/x)的凹區(qū)間是
A.(-∞,-1)B.(-1,+∞)C.(-∞,0)D.(0,+∞)
6.方程z=x2+y2表示的曲面是()
A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面
7.若xo為f(x)的極值點,則()A.A.f(xo)必定存在,且f(xo)=0
B.f(xo)必定存在,但f(xo)不一定等于零
C.f(xo)可能不存在
D.f(xo)必定不存在
8.1954年,()提出了一個具有劃時代意義的概念——目標管理。
A.西蒙B.德魯克C.梅奧D.亨利.甘特
9.設(shè)方程y''-2y'-3y=f(x)有特解y*,則它的通解為A.y=C1e-x+C2e3x+y*
B.y=C1e-x+C2e3x
C.y=C1xe-x+C2e3x+y*
D.y=C1ex+C2e-3x+y*
10.設(shè)y=e-3x,則dy=A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
11.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
12.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
13.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無水平漸近線,又無鉛直漸近線
14.設(shè)y=f(x)在(a,b)內(nèi)有二階導(dǎo)數(shù),且f"<0,則曲線y=f(x)在(a,b)內(nèi)().A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少
15.
16.A.
B.
C.-cotx+C
D.cotx+C
17.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當△x>0時,有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
18.A.A.-(1/2)B.1/2C.-1D.2
19.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
20.
21.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)
22.
23.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
24.A.e2
B.e-2
C.1D.0
25.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
26.曲線的水平漸近線的方程是()
A.y=2B.y=-2C.y=1D.y=-1
27.設(shè)y=2x3,則dy=()
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
28.設(shè)f(x)為連續(xù)函數(shù),則等于()A.A.
B.
C.
D.
29.設(shè)y=2-cosx,則y'=
A.1-sinxB.1+sinxC.-sinxD.sinx
30.收入預(yù)算的主要內(nèi)容是()
A.銷售預(yù)算B.成本預(yù)算C.生產(chǎn)預(yù)算D.現(xiàn)金預(yù)算
31.()。A.
B.
C.
D.
32.。A.
B.
C.
D.
33.()。A.sinx+ccosx
B.sinx-xcosx
C.xcosx-sinx
D.-(sinx+xcosx)
34.A.A.3yx3y-1
B.yx3y-1
C.x3ylnx
D.3x3ylnx
35.
36.在特定工作領(lǐng)域內(nèi)運用技術(shù)、工具、方法等的能力稱為()
A.人際技能B.技術(shù)技能C.概念技能D.以上都不正確
37.
38.微分方程y'+y=0的通解為y=A.e-x+C
B.-e-x+C
C.Ce-x
D.Cex
39.
40.()A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件41.設(shè)f'(x)=1+x,則f(x)等于().A.A.1
B.X+X2+C
C.x++C
D.2x+x2+C
42.已知斜齒輪上A點受到另一齒輪對它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
43.
44.A.A.π/4
B.π/2
C.π
D.2π
45.設(shè)函數(shù)f(x)=(1+x)ex,則函數(shù)f(x)()。
A.有極小值B.有極大值C.既有極小值又有極大值D.無極值46.設(shè)二元函數(shù)z==()A.1
B.2
C.x2+y2D.47.
48.
49.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-250.等于().A.A.0
B.
C.
D.∞
二、填空題(20題)51.
52.
53.若∫x0f(t)dt=2e3x-2,則f(x)=________。
54.55.
56.
則F(O)=_________.
57.58.
59.
60.
61.設(shè)x2為f(x)的一個原函數(shù),則f(x)=_____62.
63.
64.
65.
66.
67.
68.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為__________.
69.
70.極限=________。三、計算題(20題)71.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
72.
73.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.74.求微分方程的通解.75.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.76.將f(x)=e-2X展開為x的冪級數(shù).77.當x一0時f(x)與sin2x是等價無窮小量,則78.
79.
80.
81.求微分方程y"-4y'+4y=e-2x的通解.
82.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.83.
84.求曲線在點(1,3)處的切線方程.85.86.
87.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
88.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
89.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.90.證明:四、解答題(10題)91.
92.93.(本題滿分8分)計算
94.
95.
96.
97.98.設(shè)y=ln(1+x2),求dy。
99.求函數(shù)f(x,y)=e2x(x+y2+2y)的極值.
100.在曲線y=x2(x≥0)上某點A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點A的坐標((a,a2).(2)過切點A的切線方程.五、高等數(shù)學(xué)(0題)101.設(shè)生產(chǎn)某產(chǎn)品利潤L(x)=5000+x一0.0001x2百元[單位:件],問生產(chǎn)多少件時利潤最大,最大利潤是多少?
六、解答題(0題)102.
參考答案
1.D
2.C
3.A
4.D本題考查的知識點為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈式法則.
Y=sin2x,
則y'=cos(2x)·(2x)'=2cos2x.
可知應(yīng)選D.
5.D解析:
6.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.
7.C
8.B解析:彼得德魯克最早提出了目標管理的思想。
9.A考慮對應(yīng)的齊次方程y''-2y'-3y==0的通解.特征方程為r2-2r-3=0,所以r1=-1,r2=3,所以y''-2y'-3y==0的通解為,所以原方程的通解為y=C1e-x+C2e3x+y*.
10.C
11.B本題考查了函數(shù)的單調(diào)性的知識點,
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
12.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
13.A
14.A本題考查的知識點為利用二階導(dǎo)數(shù)符號判定曲線的凹凸性.
由于在(a,b)區(qū)間內(nèi)f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹的,因此選A.
15.C
16.C本題考查的知識點為不定積分基本公式.
17.B
18.A
19.B本題考查的知識點為線性常系數(shù)微分方程解的結(jié)構(gòu).
已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個解,由解的結(jié)構(gòu)定理可知C1y1+C2y2為所給方程的解,因此應(yīng)排除D.又由解的結(jié)構(gòu)定理可知,當y1,y2線性無關(guān)時,C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應(yīng)該選B.
本題中常見的錯誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結(jié)構(gòu)定理中的條件所導(dǎo)致的錯誤.解的結(jié)構(gòu)定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個線性無關(guān)的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒有指出)y1,y2為線性無關(guān)的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結(jié)構(gòu)定理知C1y1+C2y2為方程的解,因此應(yīng)選B.
20.A解析:
21.Bf(x)=2x3-9x2+12x-3的定義域為(-∞,+∞)
f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。
令f'(x)=0得駐點x1=1,x2=2。
當x<1時,f'(x)>0,f(x)單調(diào)增加。
當1<x<2時,f'(x)<0,f(x)單調(diào)減少。
當x>2時,f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。
22.D
23.Dy=ex+e-x,則y'=ex-e-x,當x>0時,y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.
24.A
25.B本題考查的知識點為定積分的幾何意義.
由定積分的幾何意義可知應(yīng)選B.
常見的錯誤是選C.如果畫個草圖,則可以避免這類錯誤.
26.D
27.B
28.D本題考查的知識點為定積分的性質(zhì);牛-萊公式.
可知應(yīng)選D.
29.D解析:y=2-cosx,則y'=2'-(cosx)'=sinx。因此選D。
30.A解析:收入預(yù)算的主要內(nèi)容是銷售預(yù)算。
31.D由所給二次積分可知區(qū)域D可以表示為0≤y≤l,y≤x≤1。其圖形如右圖中陰影部分.又可以表示為0≤x≤1,0≤y≤x。因此選D。
32.A本題考查的知識點為定積分換元積分法。
因此選A。
33.A
34.D
35.B
36.B解析:技術(shù)技能是指管理者掌握和熟悉特定專業(yè)領(lǐng)域中的過程、慣例、技術(shù)和工具的能力。
37.A
38.C
39.A
40.D內(nèi)的概念,與f(x)在點x0處是否有定義無關(guān).
41.C本題考查的知識點為不定積分的性質(zhì).
可知應(yīng)選C.
42.C
43.B
44.B
45.A因f(x)=(1+x)ex且處處可導(dǎo),于是,f'(x)=ex+(1+x)·ex=(x+2)ex,令f'(x)=0得駐點x=-2;又x<-2時,f'(x)<0;x>-2時,f'(x)>0;從而f(x)在i=-2處取得極小值,且f(x)只有一個極值.
46.A
47.B
48.B
49.D本題考查的知識點為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
50.A
51.-2
52.0
53.6e3x
54.解析:55.3x2
56.57.1
58.
59.3/23/2解析:
60.61.由原函數(shù)的概念可知
62.本題考查的知識點為定積分運算.
63.-2-2解析:
64.
65.
66.
67.x/1=y/2=z/-168.[-1,1
69.70.因為所求極限中的x的變化趨勢是趨近于無窮,因此它不是重要極限的形式,由于=0,即當x→∞時,為無窮小量,而cosx-1為有界函數(shù),利用無窮小量性質(zhì)知
71.
72.
73.
列表:
說明
74.
75.
76.77.由等價無窮小量的定義可知
78.
79.
80.
81.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
82.
83.
則
84.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
85.
86.由一階線性微分方程通解公式有
87.函數(shù)的定義域為
注意
88.需求規(guī)律為Q=1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞保防護知識培訓(xùn)
- 中醫(yī)股骨頸骨折護理查房
- 2024-2025學(xué)年江蘇省無錫市江陰文林中學(xué)九年級(上)國慶假期作業(yè)一數(shù)學(xué)試卷(含答案)
- T-XMSSAL 0109-2024 供廈食品 蠔油
- Windows Server網(wǎng)絡(luò)管理項目教程(Windows Server 2022)(微課版)課件 項目1 部署虛擬環(huán)境和安裝Windows Server 2022操作系統(tǒng)
- 組裝電腦基礎(chǔ)理論知識單選題100道及答案解析
- 臨床試驗設(shè)計中的統(tǒng)計學(xué)基礎(chǔ)
- 高三化學(xué)蘇教版一輪31化學(xué)反應(yīng)中熱效應(yīng)
- 2024-2025學(xué)年八年級上學(xué)期歷史期中模擬試卷(統(tǒng)編版+含答案解析)
- 小學(xué)高年級安全教育教案
- 【圖文】計算機之父――圖靈
- 制作新春燈籠
- 電加熱器選型計算
- 2016雕塑工程計價定額(共10頁)
- 液壓油缸項目建設(shè)用地申請報告(范文參考)
- 實驗室人員比對試驗結(jié)果小結(jié)與分析
- 2020版《中國藥典》試液配制操作規(guī)程
- 《固體物理·黃昆》第四章(3)
- 七年級上冊歷史時間軸
- 個人壽險業(yè)務(wù)人員基本管理辦法(試行2012A版)
- 口風(fēng)琴結(jié)題報告-復(fù)件(1)
評論
0/150
提交評論