版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.2.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件3.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.4.若,則的值為()A. B. C. D.5.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a7.的展開式中的系數(shù)為()A. B. C. D.8.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.9.某學(xué)校組織學(xué)生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學(xué)生人數(shù)是()A.45 B.50 C.55 D.6010.港珠澳大橋于2018年10月2刻日正式通車,它是中國境內(nèi)一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現(xiàn)對大橋某路段上1000輛汽車的行駛速度進(jìn)行抽樣調(diào)查.畫出頻率分布直方圖(如圖),根據(jù)直方圖估計在此路段上汽車行駛速度在區(qū)間[85,90)的車輛數(shù)和行駛速度超過90km/h的頻率分別為()A.300, B.300, C.60, D.60,11.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.12.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為拋物線的焦點,為上互相不重合的三點,且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標(biāo)為_______.14.若函數(shù)(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.15.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),則?_____,△ABC的面積為_____.16.某校為了解家長對學(xué)校食堂的滿意情況,分別從高一、高二年級隨機(jī)抽取了20位家長的滿意度評分,其頻數(shù)分布表如下:滿意度評分分組合計高一1366420高二2655220根據(jù)評分,將家長的滿意度從低到高分為三個等級:滿意度評分評分70分70評分90評分90分滿意度等級不滿意滿意非常滿意假設(shè)兩個年級家長的評價結(jié)果相互獨立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級各隨機(jī)抽取1名家長,記事件:“高一家長的滿意度等級高于高二家長的滿意度等級”,則事件發(fā)生的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線l的極坐標(biāo)方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請分別把直線l和圓C的方程化為直角坐標(biāo)方程;(2)求直線l被圓截得的弦長.18.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最小值為,正實數(shù)、滿足,求證:.19.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.20.(12分)已知,,設(shè)函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.21.(12分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設(shè)函數(shù)的極值點為,當(dāng)變化時,點構(gòu)成曲線,證明:過原點的任意直線與曲線有且僅有一個公共點.22.(10分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價格(元)產(chǎn)品銷量(件)已知變量且有線性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計算結(jié)果是正確的.(1)試判斷誰的計算結(jié)果正確?(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機(jī)抽取個,求“理想數(shù)據(jù)”的個數(shù)為的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當(dāng)時,的展開式中的系數(shù)為.當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關(guān)鍵.2.A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡易邏輯的判定方法,考查了推理能力與計算能力.3.B【解析】
連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運(yùn)算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【點睛】本題考查平面向量的數(shù)量積及其運(yùn)算律的應(yīng)用,屬于基礎(chǔ)題.4.C【解析】
根據(jù),再根據(jù)二項式的通項公式進(jìn)行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應(yīng)用,考查了二項式展開式通項公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力5.D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當(dāng)時,,但,故充分條件推不出;當(dāng)時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數(shù)在解三角形中的具體應(yīng)用,屬于基礎(chǔ)題6.C【解析】
兩復(fù)數(shù)相等,實部與虛部對應(yīng)相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復(fù)數(shù)的概念,屬于基礎(chǔ)題.7.C【解析】由題意,根據(jù)二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數(shù)為.故選C.點睛:此題主要考查二項式定理的通項公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識與技能,屬于中低檔題,也是常考知識點.在二項式定理的應(yīng)用中,注意區(qū)分二項式系數(shù)與系數(shù),先求出通項公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項公式進(jìn)行計算,從而問題可得解.8.C【解析】
畫出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點睛】應(yīng)用平面向量基本定理應(yīng)注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運(yùn)算或數(shù)乘運(yùn)算.9.D【解析】
根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據(jù)樣本容量求出班級人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學(xué)生人數(shù))是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應(yīng)用問題,也考查了頻率的應(yīng)用問題,屬于基礎(chǔ)題10.B【解析】
由頻率分布直方圖求出在此路段上汽車行駛速度在區(qū)間的頻率即可得到車輛數(shù),同時利用頻率分布直方圖能求行駛速度超過的頻率.【詳解】由頻率分布直方圖得:在此路段上汽車行駛速度在區(qū)間的頻率為,∴在此路段上汽車行駛速度在區(qū)間的車輛數(shù)為:,行駛速度超過的頻率為:.故選:B.【點睛】本題考查頻數(shù)、頻率的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.11.C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學(xué)生對這些知識的理解掌握水平.12.A【解析】
由余弦定理求出角,再由三角形面積公式計算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點睛】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學(xué)生的運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13.或【解析】
設(shè)出三點的坐標(biāo),結(jié)合等差數(shù)列的性質(zhì)、線段垂直平分線的性質(zhì)、拋物線的定義進(jìn)行求解即可.【詳解】拋物線的準(zhǔn)線方程為:,設(shè),由拋物線的定義可知:,,,因為、、成等差數(shù)列,所以有,所以,因為線段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點睛】本題考查了拋物線的定義的應(yīng)用,考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.14.(1,)【解析】
在定義域[m,n]上的值域是[m2,n2],等價轉(zhuǎn)化為與的圖像在(1,)上恰有兩個交點,考慮相切狀態(tài)可求a的取值范圍.【詳解】由題意知:與的圖像在(1,)上恰有兩個交點考查臨界情形:與切于,.故答案為:.【點睛】本題主要考查導(dǎo)數(shù)的幾何意義,把已知條件進(jìn)行等價轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).15.【解析】
①根據(jù)向量數(shù)量積的坐標(biāo)表示結(jié)合兩角差的正弦公式的逆用即可得解;②結(jié)合①求出,根據(jù)面積公式即可得解.【詳解】①2(sin32°?cos77°﹣cos32°?sin77°),②,,∴,∴.故答案為:.【點睛】此題考查平面向量與三角函數(shù)解三角形綜合應(yīng)用,涉及平面向量數(shù)量積的坐標(biāo)表示,三角恒等變換,根據(jù)三角形面積公式求解三角形面積,綜合性強(qiáng).16.0.42【解析】
高一家長的滿意度等級高于高二家長的滿意度等級有三種情況,分別求出三種情況的概率,再利用加法公式即可.【詳解】由已知,高一家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高二家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高一家長的滿意度等級高于高二家長的滿意度等級有三種情況:1.高一家長滿意,高二家長不滿意,其概率為;2.高一家長非常滿意,高二家長不滿意,其概率為;3.高一家長非常滿意,高二家長滿意,其概率為.由加法公式,知事件發(fā)生的概率為.故答案為:【點睛】本題考查獨立事件的概率,涉及到概率的加法公式,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1).x2+y2=1.(2)16【解析】
(1)直接利用極坐標(biāo)方程和參數(shù)方程公式化簡得到答案.(2)圓心到直線的距離為,故弦長為得到答案.【詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長為.【點睛】本題考查了極坐標(biāo)方程和參數(shù)方程,圓的弦長,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.18.(1);(2)見解析.【解析】
(1)分、、三種情況解不等式,綜合可得出原不等式的的解集;(2)利用絕對值三角不等式可求得函數(shù)的最小值為,進(jìn)而可得出,再將代數(shù)式與相乘,利用基本不等式求得的最小值,進(jìn)而可證得結(jié)論成立.【詳解】(1)當(dāng)時,由,得,即,解得,此時;當(dāng)時,由,得,即,解得,此時;當(dāng)時,由,得,即,解得,此時.綜上所述,不等式的解集為;(2),當(dāng)且僅當(dāng)時取等號,所以,.所以,當(dāng)且僅當(dāng),即,時等號成立,所以.所以,即.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式成立,涉及絕對值三角不等式的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.19.(1);(2)【解析】
(1)根據(jù)遞推公式,用配湊法構(gòu)造等比數(shù)列,求其通項公式,進(jìn)而求出的通項公式;(2)求出數(shù)列的通項公式,利用錯位相減法求數(shù)列的前項和.【詳解】解:(1),,是首項為,公比為的等比數(shù)列.所以,.(2).【點睛】本題考查了由數(shù)列的遞推公式求通項公式,錯位相減法求數(shù)列的前n項和的問題,屬于中檔題.20.(1);(2)證明見解析【解析】
(1)利用零點分段法,求出各段的取值范圍然后取并集可得結(jié)果.(2)利用絕對值三角不等式可得,然后使用柯西不等式可得結(jié)果.【詳解】(1)由,所以由當(dāng)時,則所以當(dāng)時,則當(dāng)時,則綜上所述:(2)由當(dāng)且僅當(dāng)時取等號所以由,所以所以令根據(jù)柯西不等式,則當(dāng)且僅當(dāng),即取等號由故,又則【點睛】本題考查使用零點分段法求解絕對值不等式以及柯西不等式的應(yīng)用,屬基礎(chǔ)題.21.(1);(2)證明見解析【解析】
(1)由恒成立,可得恒成立,進(jìn)而構(gòu)造函數(shù),求導(dǎo)可判斷出的單調(diào)性,進(jìn)而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進(jìn)而可得,即曲線的方程為,進(jìn)而只需證明對任意,方程有唯一解,然后構(gòu)造函數(shù),分、和三種情況,分別證明函數(shù)在上有唯一的零點,即可證明結(jié)論成立.【詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調(diào)遞增,又,時,;時,,即時,;時,,時,單調(diào)遞減;時,單調(diào)遞增,時,取最小值,.(2)證明:由,令,由,結(jié)合二次函數(shù)性質(zhì)可知,存在唯一的,使得,故存在唯一的極值點,則,,,曲線的方程為.故只需證明對任意,方程有唯一解.令,則,①當(dāng)時,恒成立,在上單調(diào)遞增.,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 向父母認(rèn)錯萬能檢討書(14篇)
- 汽車裝調(diào)工、維修工理論2023版練習(xí)試題及答案
- 高考數(shù)學(xué)復(fù)習(xí)解答題提高第一輪專題復(fù)習(xí)專題03平面與平面所成角(二面角)(含探索性問題)(典型題型歸類訓(xùn)練)(學(xué)生版+解析)
- 專題十視頻營銷 (課件)職教高考電子商務(wù)專業(yè)《網(wǎng)絡(luò)營銷實務(wù)》
- 《學(xué)前兒童衛(wèi)生保健》 教案 2 運(yùn)動系統(tǒng)、呼吸系統(tǒng)的衛(wèi)生保健
- 第1章 數(shù)據(jù)庫基礎(chǔ)知識課件
- 七下語文21課教學(xué)課件教學(xué)課件教學(xué)
- 2024屆上海市部分重點中學(xué)高三一診模擬考試(一)數(shù)學(xué)試題
- 4.1.1 線段、射線、直線 北師版數(shù)學(xué)七年級上冊課件
- 5年中考3年模擬試卷初中道德與法治七年級下冊01第1課時法律為我們護(hù)航
- 2024屆河北省涿州市實驗中學(xué)九年級物理第一學(xué)期期中檢測模擬試題含解析
- 太陽能熱利用太陽能制冷課件
- 《A科技公司員工培訓(xùn)現(xiàn)狀及問題研究(論文)》10000字
- 《經(jīng)濟(jì)學(xué)(第2版)》課程標(biāo)準(zhǔn)
- 2023年湖南省高中學(xué)業(yè)水平合格性考試英語試卷真題(答案詳解)
- 國家基本公衛(wèi)生服務(wù)項目第三版課件
- 溝通與傾聽技巧
- 演講比賽評分表評委打分成績表
- 新時代中國特色社會主義理論與實踐(2021版)課后思考題答案
- 人教版培智一年級下生活適應(yīng)教案
- 保險合同電子版(六篇)
評論
0/150
提交評論