第二講 線性規(guī)劃模型_第1頁
第二講 線性規(guī)劃模型_第2頁
第二講 線性規(guī)劃模型_第3頁
第二講 線性規(guī)劃模型_第4頁
第二講 線性規(guī)劃模型_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第二講線性規(guī)劃模型統(tǒng)計與應用數(shù)學系張耀峰Themodeloflinearprogramming1/31/20231第二講線性規(guī)劃模型1.1優(yōu)化的思想1.2什么是線性規(guī)劃模型1.3如何使用Lingo軟件求解線性規(guī)劃問題1.4案例解析1/31/202321.1優(yōu)化的思想1/31/20233燒水小明同學,燒一壺水要8分鐘,灌開水要1分鐘,取牛奶和報紙要5分鐘(不能間斷),整理書包要6分鐘(可間斷),為了盡快做完這些事,怎樣安排才能使時間最少?最少需要幾分鐘?例1、如何安排早上的時間?取牛奶和報紙收拾書包灌水收拾書包5891201/31/20234例2、怎么排隊才合理呢?

碼頭上現(xiàn)在同時有3艘貨船需要卸貨,但是只能一條一條地卸貨,并且每艘船卸貨所需的時間各不相同,分別為4小時、8小時和1小時。按照怎樣的順序卸貨能使3艘貨船等候的總時間最少呢?

1/31/20235方案卸貨順序船1的等候時間船2的等候時間船3的等候時間總的等候時間1船1—船2—船388+48+4+1332船1—船3—船288+1+48+1303船2—船1—船34+844+8+1294船2—船3—船14+1+844+1225船3—船1—船21+81+8+41236船3—船2—船11+4+81+41191/31/202361.2什么是線性規(guī)劃模型1/31/20237例3運輸問題1/31/20238解:設A1,A2調(diào)運到三個糧站的大米分別為x11,x12,

x13,

x21,

x22,

x23噸。題設量可總到下表:84庫存量x23x22x21A2542需要量x13x12x11A1B3B2B1糧庫糧站距離及運量121224308241/31/20239結(jié)合存量限制和需量限制得數(shù)學模型:目標函數(shù)約束條件決策變量1/31/2023101.3如何使用Lingo軟件求解線性規(guī)劃問題1/31/202311程序編寫1model:min=12*x11+24*x12+8*x13+30*x21+12*x22+24*x23;x11+x12+x13<4;x21+x22+x23<8;x11+x21>2;x12+x22>4;x13+x23>5;end1/31/202312運行結(jié)果

Globaloptimalsolutionfound.Objectivevalue:160.0000Totalsolveriterations:5VariableValueReducedCostX112.0000000.000000X120.00000028.00000X132.0000000.000000X210.0000002.000000X224.0000000.000000X233.0000000.000000RowSlackorSurplusDualPrice1160.0000-1.00000020.00000016.0000031.0000000.00000040.000000-28.0000050.000000-12.0000060.000000-24.000001/31/202313

例4生產(chǎn)計劃問題某工廠計劃安排生產(chǎn)Ⅰ,Ⅱ兩種產(chǎn)品,已知每種單位產(chǎn)品的利潤,生產(chǎn)單位產(chǎn)品所需設備臺時及A,B兩種原材料的消耗,現(xiàn)有原材料和設備臺時的定額如表所示,問:1)怎么安排生產(chǎn)使得工廠獲利最大?2)產(chǎn)品Ⅰ的單位利潤降低到1.8萬元,要不要改變生產(chǎn)計劃,如果降低到1萬元呢?3)產(chǎn)品Ⅱ的單位利潤增大到5萬,要不要改變生產(chǎn)計劃4)如果產(chǎn)品Ⅰ,Ⅱ的單位利潤同時降低了1萬元,要不要改變生產(chǎn)計劃?產(chǎn)品Ⅰ產(chǎn)品Ⅱ最大資源量設備128臺時原材料A4016kg原材料B0412kg單位產(chǎn)品利潤231/31/2023141/31/202315程序編寫model:title生產(chǎn)計劃問題;[maxf]max=2*x1+3*x2;[A]x1+2*x2<8;[B]4*x1<16;[TIME]4*x2<12;END1/31/202316運行結(jié)果ModelTitle:生產(chǎn)計劃問題VariableValueReducedCostX14.0000000.000000X22.0000000.000000RowSlackorSurplusDualPriceMAXF14.000001.000000A0.0000001.500000B0.0000000.1250000TIME4.0000000.000000

對問題1,安排是生產(chǎn)產(chǎn)品Ⅰ4單位,產(chǎn)品Ⅱ2單位,最大盈利為14萬元。1/31/202317線性模型-敏感性分析要使用敏感性分析必須要在這里選擇Prices&Ranges然后保存退出路徑:LINGO︱Options︱GeneralSolver(通用求解程序)選項卡1/31/202318要調(diào)出敏感性分析的結(jié)果,必須先求解后再在程序窗口下點擊LINGO|Range,1/31/202319Rangesinwhichthebasisisunchanged:ObjectiveCoefficientRanges

CurrentAllowableAllowableVariableCoefficientIncreaseDecreaseX12.000000INFINITY0.5000000X23.0000001.0000003.000000RighthandSideRangesRowCurrentAllowableAllowableRHSIncreaseDecreaseA8.0000002.0000004.000000B16.0000016.000008.000000TIME12.00000INFINITY4.000000

當前變量系數(shù)允許增加量允許減少量1/31/202320對問題4,因為兩個系數(shù)同時改變了,所以只有更改程序的數(shù)據(jù),重新運行得:不改變生產(chǎn)計劃,但是最大利潤降低到6萬元.

對問題2,產(chǎn)品Ⅰ的單位利潤降低到1.8萬元,在(1.5,∞)之間,所以不改變生產(chǎn)計劃。如果降低到1萬元,不在(1.5,∞)內(nèi),要改變生產(chǎn)計劃。在程序中將目標函數(shù)的系數(shù)“2”改為“1”,可得新的計劃為安排是生產(chǎn)產(chǎn)品Ⅰ2單位,產(chǎn)品Ⅱ3單位,最大盈利為11萬元.對問題3,要改變生產(chǎn)計劃,更改程序得新計劃為生產(chǎn)產(chǎn)品Ⅰ2單位,產(chǎn)品Ⅱ3單位,最大盈利為19萬元.1/31/202321例5加工奶制品的生產(chǎn)計劃1桶牛奶3公斤A1

12小時8小時4公斤A2

或獲利24元/公斤獲利16元/公斤50桶牛奶時間480小時至多加工100公斤A1

制訂生產(chǎn)計劃,使每天獲利最大

35元可買到1桶牛奶,買嗎?若買,每天最多買多少?可聘用臨時工人,付出的工資最多是每小時幾元?

A1的獲利增加到30元/公斤,應否改變生產(chǎn)計劃?每天:1/31/2023221桶牛奶3公斤A1

12小時8小時4公斤A2

或獲利24元/公斤獲利16元/公斤x1桶牛奶生產(chǎn)A1

x2桶牛奶生產(chǎn)A2

獲利24×3x1

獲利16×4x2

原料供應

勞動時間

加工能力

決策變量

目標函數(shù)

每天獲利約束條件非負約束

線性規(guī)劃模型(LP)時間480小時至多加工100公斤A1

50桶牛奶每天1/31/202323模型求解

OBJECTIVEFUNCTIONVALUE

1)3360.000

VARIABLEVALUEREDUCEDCOST

X120.0000000.000000

X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000NO.ITERATIONS=220桶牛奶生產(chǎn)A1,30桶生產(chǎn)A2,利潤3360元。max=72*x1+64*x2;x1+x2<50;12*x1+8*x2<480;3*x1<100;1/31/202324模型求解

reducedcost值表示當該非基變量增加一個單位時(其他非基變量保持不變)目標函數(shù)減少的量(對max型問題)

OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000NO.ITERATIONS=21/31/202325OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000

ROW

SLACKORSURPLUSDUALPRICES

2)0.00000048.000000

3)0.0000002.0000004)40.0000000.000000原料無剩余時間無剩余加工能力剩余40max72x1+64x2st2)x1+x2<503)12x1+8x2<4804)3x1<100end三種資源結(jié)果解釋

1/31/202326OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES

2)0.00000048.000000

3)0.0000002.000000

4)40.0000000.000000結(jié)果解釋

最優(yōu)解下“資源”增加1單位時“效益”的增量原料增1單位,利潤增48時間加1單位,利潤增2能力增減不影響利潤影子價格

35元可買到1桶牛奶,要買嗎?35<48,應該買!聘用臨時工人付出的工資最多每小時幾元?2元!1/31/202327RANGESINWHICHTHEBASISISUNCHANGED:

OBJCOEFFICIENTRANGES

VARIABLECURRENTALLOWABLEALLOWABLECOEFINCREASEDECREASE

X172.00000024.0000008.000000X264.0000008.00000016.000000RIGHTHANDSIDERANGESROWCURRENTALLOWABLEALLOWABLERHSINCREASEDECREASE250.00000010.0000006.6666673480.00000053.33333280.0000004100.000000INFINITY40.000000最優(yōu)解不變時目標系數(shù)允許變化范圍DORANGE(SENSITIVITY)ANALYSIS?

Yesx1系數(shù)范圍(64,96)

x2系數(shù)范圍(48,72)

A1獲利增加到30元/千克,應否改變生產(chǎn)計劃x1系數(shù)由243=72增加為303=90,在允許范圍內(nèi)不變!(約束條件不變)結(jié)果解釋

1/31/202328結(jié)果解釋

RANGESINWHICHTHEBASISISUNCHANGED:OBJCOEFFICIENTRANGESVARIABLECURRENTALLOWABLEALLOWABLECOEFINCREASEDECREASEX172.00000024.0000008.000000X264.0000008.00000016.000000

RIGHTHANDSIDERANGESROWCURRENTALLOWABLEALLOWABLERHSINCREASEDECREASE250.00000010.0000006.6666673480.00000053.33333280.0000004100.000000INFINITY40.000000影子價格有意義時約束右端的允許變化范圍原料最多增加10時間最多增加53

35元可買到1桶牛奶,每天最多買多少?最多買10桶?(目標函數(shù)不變)1/31/2023291.4案例分析1/31/202330例6階段生產(chǎn)問題某公司生產(chǎn)某產(chǎn)品,最大生產(chǎn)能力為10000單位,每單位存儲費2元,預定的銷售量與單位成本如下:月份單位成本(元)銷售量12347060007170008012000766000求一生產(chǎn)計劃,使1)滿足需求;2)不超過生產(chǎn)能力;3)成本(生產(chǎn)成本與存儲費之和)最低.1/31/202331解:假定1月初無庫存,4月底賣完,當月生產(chǎn)的不庫存,庫存量無限制.第j+1個月的庫存量第j+1個月的庫存費共3個月的庫存費到本月總生產(chǎn)量大于等于銷售量4個月總生產(chǎn)量等于總銷售量4個月總生產(chǎn)成本1/31/202332model:title生產(chǎn)計劃程序1;Sets:yuefen/1..4/:c,x,e,d;endsetsdata:c=70718076;d=60007000120006000;e=2222;a=10000;enddatamin=@sum(yuefen:c*x)+

@sum(yuefen(j)|j#lt#4:

@sum(yuefen(i)|i#le#j:x-d)*e(j+1));@for(yuefen(j)|j#lt#4:

@sum(yuefen(i)|i#le#j:x)>@sum(yuefen(i)|i#le#j:d));@sum(yuefen:x)=@sum(yuefen:d);@for(yuefen:x<a);end

1/31/202333露天礦里鏟位已分成礦石和巖石:平均鐵含量不低于25%的為礦石,否則為巖石。每個鏟位的礦石、巖石數(shù)量,以及礦石的平均鐵含量(稱為品位)都是已知的。每個鏟位至多安置一臺電鏟,電鏟平均裝車時間5分鐘卡車在等待時所耗費的能量也是相當可觀的,原則上在安排時不應發(fā)生卡車等待的情況。例7、露天礦生產(chǎn)的車輛安排(CUMCM-2003B)

礦石卸點需要的鐵含量要求都為29.5%1%(品位限制),搭配量在一個班次(8小時)內(nèi)滿足品位限制即可。卸點在一個班次內(nèi)不變??ㄜ囕d重量為154噸,平均時速28km,平均卸車時間為3分鐘。問題:出動幾臺電鏟,分別在哪些鏟位上;出動幾輛卡車,分別在哪些路線上各運輸多少次?1/31/202334平面示意圖1/31/202335問題數(shù)據(jù)距離鏟位1鏟位2鏟位3鏟位4鏟位5鏟位6鏟位7鏟位8鏟位9鏟位10礦石漏5.265.194.214.002.952.742.461.900.641.27倒裝Ⅰ1.900.991.901.131.272.251.482.043.093.51巖場5.895.615.614.563.513.652.462.461.060.57巖石漏0.641.761.271.832.742.604.213.725.056.10倒裝Ⅱ4.423.863.723.162.252.810.781.621.270.50鏟位1鏟位2鏟位3鏟位4鏟位5鏟位6鏟位7鏟位8鏟位9鏟位10礦石量0.951.051.001.051.101.251.051.301.351.25巖石量1.251.101.351.051.151.351.051.151.351.25鐵含量30%28%29%32%31%33%32%31%33%31%1/31/202336問題分析與典型的運輸問題明顯有以下不同:這是運輸?shù)V石與巖石兩種物資的問題;屬于產(chǎn)量大于銷量的不平衡運輸問題;為了完成品位約束,礦石要搭配運輸;產(chǎn)地、銷地均有單位時間的流量限制;運輸車輛只有一種,每次滿載運輸,154噸/車次;鏟位數(shù)多于鏟車數(shù)意味著要最優(yōu)的選擇不多于7個產(chǎn)地作為最后結(jié)果中的產(chǎn)地;最后求出各條路線上的派出車輛數(shù)及安排。近似處理:先求出產(chǎn)位、卸點每條線路上的運輸量(MIP模型)然后求出各條路線上的派出車輛數(shù)及安排1/31/202337模型假設卡車在一個班次中不應發(fā)生等待或熄火后再啟動的情況;在鏟位或卸點處由兩條路線以上造成的沖突問題面前,我們認為只要平均時間能完成任務,就認為不沖突。我們不排時地進行討論;空載與重載的速度都是28km/h,耗油相差很大;卡車可提前退出系統(tǒng),等等。如理解為嚴格不等待,難以用數(shù)學規(guī)劃模型來解個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論