版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,四邊形ABCD是⊙O的內接四邊形,若∠A=70°,則∠C的度數(shù)是()A.100° B.110° C.120° D.130°2.將二次函數(shù)y=2x2-4x+4的圖象向左平移2個單位,再向下平移1個單位后所得圖象的函數(shù)解析式為()A.y=2(x+1)2+1 B.y=2(x+1)2+3 C.y=2(x-3)2+1 D.y=-2(x-3)2+33.如圖所示是一個運算程序,若輸入的值為﹣2,則輸出的結果為()A.3 B.5 C.7 D.94.下列圖形中,既是中心對稱圖形又是軸對稱圖形的有幾個()A.4個 B.3個 C.2個 D.1個5.兩個相鄰自然數(shù)的積是1.則這兩個數(shù)中,較大的數(shù)是()A.11 B.12 C.13 D.146.若一元二次方程x2﹣2x+m=0有兩個不相同的實數(shù)根,則實數(shù)m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<17.下列方程中,是一元二次方程的是()A. B.C. D.8.如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,若BO=6cm,OC=8cm則BE+CG的長等于()A.13 B.12 C.11 D.109.若函數(shù)其幾對對應值如下表,則方程(,,為常數(shù))根的個數(shù)為()A.0 B.1 C.2 D.1或210.如圖,A、B、C是⊙O上互不重合的三點,若∠CAO=∠CBO=20°,則∠AOB的度數(shù)為()A.50° B.60° C.70° D.80°11.如圖,已知矩形的面積是,它的對角線與雙曲線圖象交于點,且,則值是()A. B. C. D.12.如圖,在四邊形中,,對角線、交于點有以下四個結論其中始終正確的有()①;②;③;④A.1個 B.2個 C.3個 D.4個二、填空題(每題4分,共24分)13.若⊙O是等邊△ABC的外接圓,⊙O的半徑為2,則等邊△ABC的邊長為__.14.如下圖,圓柱形排水管水平放置,已知截面中有水部分最深為,排水管的截面半徑為,則水面寬是__________.
15.關于的一元二次方程的二根為,且,則_____________.16.如圖,拋物線y=x2在第一象限內經(jīng)過的整數(shù)點(橫坐標、縱坐標都為整數(shù)的點)依次為A1,A2,A3…An,將拋物線y=x2沿直線L:y=x向上平移,得到一系列拋物線,且滿足下列條件:①拋物線的頂點M1,M2,M3,…Mn都在直線L:y=x上;②拋物線依次經(jīng)過點A1,A2,A3…An,則頂點M2020的坐標為_____.17.如圖,在△ABC中,AB=4,BC=7,∠B=60°,將△ABC繞點A按順時針旋轉一定角度得到△ADE,當點B的對應點D恰好落在BC邊上時,則CD的長為__________.18.如圖,一組等距的平行線,點A、B、C分別在直線l1、l6、l4上,AB交l3于點D,AC交l3于點E,BC交于l5點F,若△DEF的面積為1,則△ABC的面積為_____.三、解答題(共78分)19.(8分)如圖,對稱軸為直線的拋物線與軸交于兩點,與軸交于點連接其中點坐標.(1)求拋物線的解析式;(2)直線與拋物線交于點與軸交于點求的面積;(3)在直線下方拋物線上有一點過作軸交直線于點.四邊形為平行四邊形,求點的坐標.20.(8分)如圖,拋物線y=ax2+bx﹣3經(jīng)過點A(2,﹣3),與x軸負半軸交于點B,與y軸交于點C,且OC=3OB.(1)求拋物線的解析式;(2)拋物線的對稱軸上有一點P,使PB+PC的值最小,求點P的坐標;(3)點M在拋物線上,點N在拋物線的對稱軸上,是否存在以點A,B,M,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.21.(8分)如圖,在中,點在邊上,,分別過點,作,的平行線,并交于點,且的延長線交于點,.(1)求證:.(2)求證:四邊形為菱形.(3)若,,求四邊形的面積.22.(10分)指出“垃圾分類工作就是新時尚”.某小區(qū)為響應垃圾分類處理,改善生態(tài)環(huán)境,將生活垃圾分成三類:廚余垃圾、可回收垃圾和其他垃圾,分別記為a,b,c,并且設置了相應的垃圾箱:“廚余垃圾”箱、“可回收垃圾”箱和“其他垃圾”箱,分別記為A,B,C.(1)若小明將一袋分好類的生活垃圾隨機投入一類垃圾箱,畫樹狀圖求垃圾投放正確的概率;(2)為了了解居民生活垃圾分類投放的情況,現(xiàn)隨機抽取了小區(qū)某天三類垃圾箱中總共10噸的生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):ABCa30.81.2b0.262.440.3c0.320.281.4該小區(qū)所在的城市每天大約產(chǎn)生500噸生活垃圾,根據(jù)以上信息,試估算該城市生活垃圾中的“廚余垃圾”每月(按30天)有多少噸沒有按要求投放.23.(10分)如圖,在中,,以為直徑作交于點.過點作,垂足為,且交的延長線于點.(1)求證:是的切線;(2)若,,求的長.24.(10分)在平面直角坐標系中,一次函數(shù)(a≠0)的圖象與反比例函數(shù)的圖象交于第二、第四象限內的A、B兩點,與軸交于點C,過點A作AH⊥軸,垂足為點H,OH=3,tan∠AOH=,點B的坐標為(,-2).(1)求該反比例函數(shù)和一次函數(shù)的解析式;(2)求△AHO的周長.25.(12分)2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價格不斷走高,引起了民眾與政府的高度關注,據(jù)統(tǒng)計:今年7月20日豬肉價格比今年年初上漲了60%,某市民今年7月20日在某超市購買1千克豬肉花了80元錢.(1)問:今年年初豬肉的價格為每千克多少元?(2)某超市將進貨價為每千克65元的豬肉,按7月20日價格出售,平均一天能銷售出100千克,經(jīng)調查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬內每天有1560元的利潤,并且可能讓顧客得到實惠,豬肉的售價應該下降多少元?26.如圖,二次函數(shù)的圖象與一次函數(shù)的圖象交于點及點(1)求二次函數(shù)的解析式及的坐標(2)根據(jù)圖象,直按寫出滿足的的取值范圍
參考答案一、選擇題(每題4分,共48分)1、B【分析】利用圓內接四邊形對角互補的性質求解.【詳解】解:∵四邊形ABCD是⊙O的內接四邊形,∴∠C+∠A=180°,∴∠A=180°﹣70°=110°.故選B.【點睛】本題考查圓內接四邊形的性質,掌握圓內接四邊形對角互補是解題關鍵.2、A【分析】先配方成頂點式,再根據(jù)二次函數(shù)圖象的平移規(guī)律“上加下減,左加右減”解答即可.【詳解】由“上加下減,左加右減”的原則可知,將二次函數(shù)y=2x2-4x+4配方成的圖象向左平移2個單位,再向下平移1個單位,得以新的拋物線的表達式是y=2(x+1)2+1,故選:A.【點睛】本題主要考查的是函數(shù)圖象的平移,由y=ax2平移得到y(tǒng)=a(x-h)2+k,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式即可.3、B【分析】根據(jù)圖表列出算式,然后把x=-2代入算式進行計算即可得解.【詳解】解:把x=﹣2代入得:1﹣2×(﹣2)=1+4=1.故選:B.【點睛】此題考查代數(shù)式求值,解題關鍵在于掌握運算法則.4、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:第一個圖形是軸對稱圖形,不是中心對稱圖形;第二個圖形是軸對稱圖形,是中心對稱圖形;第三個圖形是軸對稱圖形,不是中心對稱圖形;第四個圖形不是軸對稱圖形,是中心對稱圖形;既是中心對稱圖形又是軸對稱圖形的有1個,故選:D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.5、B【分析】設這兩個數(shù)中較大的數(shù)為x,則較小的數(shù)為(x﹣1),根據(jù)兩數(shù)之積為1,即可得出關于x的一元二次方程,解之取其正值即可得出結論.【詳解】解:設這兩個數(shù)中較大的數(shù)為x,則較小的數(shù)為(x﹣1),依題意,得:x(x﹣1)=1,解得:x1=12,x2=﹣11(不合題意,舍去).故選:B.【點睛】本題考查的知識點是一元二次方程的應用,找準題目中的等量關系式是解此題的關鍵.6、D【解析】分析:根據(jù)方程的系數(shù)結合根的判別式△>0,即可得出關于m的一元一次不等式,解之即可得出實數(shù)m的取值范圍.詳解:∵方程有兩個不相同的實數(shù)根,∴解得:m<1.故選D.點睛:本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數(shù)根”是解題的關鍵.7、B【解析】根據(jù)一元二次方程的定義進行判斷即可.【詳解】A.屬于多項式,錯誤;B.屬于一元二次方程,正確;C.未知數(shù)項的最高次數(shù)是2,但不屬于整式方程,錯誤;D.屬于整式方程,未知數(shù)項的最高次數(shù)是3,錯誤.故答案為:B.【點睛】本題考查了一元二次方程的性質以及定義,掌握一元二次方程的定義是解題的關鍵.8、D【解析】根據(jù)切線長定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBF+∠OCF=90°,∴∠BOC=90°,∵OB=6cm,OC=8cm,∴BC=10cm,∴BE+CG=BC=10cm,故選D.【點睛】本題主要考查了切線長定理,涉及到平行線的性質、勾股定理等,求得BC的長是解題的關鍵.9、C【分析】先根據(jù)表格得出二次函數(shù)的圖象與x軸的交點個數(shù),再根據(jù)二次函數(shù)與一元二次方程的關系即可得出答案.【詳解】由表格可得,二次函數(shù)的圖象與x軸有2個交點則其對應的一元二次方程根的個數(shù)為2故選:C.【點睛】本題考查了二次函數(shù)的圖象、二次函數(shù)與一元二次方程的關系,掌握理解二次函數(shù)的圖象特點是解題關鍵.10、D【分析】連接CO并延長交⊙O于點D,根據(jù)等腰三角形的性質,得∠CAO=∠ACO,∠CBO=∠BCO,結合三角形外角的性質,即可求解.【詳解】連接CO并延長交⊙O于點D,∵∠CAO=∠ACO,∠CBO=∠BCO,∴∠CAO=∠ACO=∠CBO=∠BCO=20°,∴∠AOD=∠CAO+∠ACO=40°,∠BOD=∠CBO+∠BCO=40°,∴∠AOB=∠AOD+∠BOD=80°.故選D.【點睛】本題主要考查圓的基本性質,三角形的外角的性質以及等腰三角形的性質,添加和數(shù)的輔助線,是解題的關鍵.11、D【分析】過點D作DE∥AB交AO于點E,通過平行線分線段成比例求出的長度,從而確定點D的坐標,代入到解析式中得到k的值,最后利用矩形的面積即可得出答案.【詳解】過點D作DE∥AB交AO于點E∵DE∥AB∴∵∴∴∴∵點D在上∴∵∴故選D【點睛】本題主要考查平行線分線段成比例及反比例函數(shù),掌握平行線分線段成比例是解題的關鍵.12、C【分析】根據(jù)相似三角形的判定定理、三角形的面積公式判斷即可.【詳解】解:∵AB∥CD,∴△AOB∽△COD,①正確;∵∠ADO不一定等于∠BCO,∴△AOD與△ACB不一定相似,②錯誤;∴,③正確;∵△ABD與△ABC等高同底,∴,∵,∴,④正確;故選C.【點睛】本題主要考查了相似三角形的判定與性質,掌握相似三角形的判定與性質是解題的關鍵.二、填空題(每題4分,共24分)13、【解析】試題解析:如圖:連接OA交BC于D,連接OC,是等邊三角形,是外心,故答案為14、【分析】利用垂徑定理構建直角三角形,然后利用勾股定理即可得解.【詳解】設排水管最低點為C,連接OC交AB于D,連接OB,如圖所示:
∵OC=OB=10,CD=5∴OD=5∵OC⊥AB∴∴故答案為:.【點睛】此題主要考查垂徑定理的實際應用,熟練掌握,即可解題.15、【分析】先降次,再利用韋達定理計算即可得出答案.【詳解】∵的一元二次方程的二根為∴∴又,代入得解得:m=故答案為.【點睛】本題考查的是一元二次方程根與系數(shù)的關系,若的一元二次方程的二根為,則,.16、(4039,4039)【分析】根據(jù)拋物線的解析式結合整數(shù)點的定義,找出點An的坐標為(n,n2),設點Mn的坐標為(a,a),則以點Mn為頂點的拋物線解析式為y=(x-a)2+a,由點An的坐標利用待定系數(shù)法,即可求出a值,將其代入點Mn的坐標即可得出結論.【詳解】∵拋物線y=x2在第一象限內經(jīng)過的整數(shù)點(橫坐標、縱坐標都為整數(shù)的點)依次為A1,A2,A3,…,An,…,∴點An的坐標為(n,n2).設點Mn的坐標為(a,a),則以點Mn為頂點的拋物線解析式為y=(x﹣a)2+a,∵點An(n,n2)在拋物線y=(x﹣a)2+a上,∴n2=(n﹣a)2+a,解得:a=2n﹣1或a=0(舍去),∴Mn的坐標為(2n﹣1,2n﹣1),∴M2020的坐標為(4039,4039).故答案為:(4039,4039).【點睛】本題考查了二次函數(shù)圖象與幾何變換、一次函數(shù)圖象上點的坐標特征以及待定系數(shù)法求二次函數(shù)解析式,根據(jù)點An的坐標利用待定系數(shù)法求出a值是解題的關鍵.17、3【解析】試題解析:由旋轉的性質可得:AD=AB,∴△ABD是等邊三角形,∴BD=AB,∵AB=4,BC=7,∴CD=BC?BD=7?4=3.故答案為3.18、【分析】在三角形中由同底等高,同底倍高求出,根據(jù)平行線分線段成比例定理,求出,最后由三角形的面積的和差法求得.【詳解】連接DC,設平行線間的距離為h,AD=2a,如圖所示:∵,,∴S△DEF=S△DEA,又∵S△DEF=1,∴S△DEA=1,同理可得:,又∵S△ADC=S△ADE+S△DEC,∴,又∵平行線是一組等距的,AD=2a,∴,∴BD=3a,設C到AB的距離為k,∴ak,,∴,又∵S△ABC=S△ADC+S△BDC,∴.故答案為:.【點睛】本題綜合考查了平行線分線段成比例定理,平行線間的距離相等,三角形的面積求法等知識,重點掌握平行線分線段成比例定理,難點是作輔助線求三角形的面積.三、解答題(共78分)19、(1);(2);(3)【分析】(1)根據(jù)對稱軸公式及點A坐標建立方程組求解即可;(2)根據(jù)直線表達式求出點E坐標,再聯(lián)立直線與拋物線的表達式求交點C、D的坐標,利用坐標即可求出的面積;(3)根據(jù)點Q在拋物線上設出點Q坐標,再根據(jù)P、Q之間的關系表示出點P的坐標,然后利用平行四邊形的性質得到BE=PQ,從而建立方程求解即可.【詳解】解:(1)由題可得,解得,∴拋物線解析式為;(2)在中,令,得,∴,由,解得或,∴,∴;(3)在中,令,得,解得或,∴,∴BE=1,設,則,∵四邊形為平行四邊形,∴,∴,整理得:,解得:或,當時,點Q與點B重合,故舍去,∴.【點睛】本題為二次函數(shù)綜合題,熟練掌握對稱軸公式、待定系數(shù)法求表達式、交點坐標的求法以及平行四邊形的性質是解題的關鍵.20、(1)(2)點P的坐標;(3)M【分析】(1)待定系數(shù)法即可得到結論;(2)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等,可得M在對稱軸上,根據(jù)兩點之間線段最短,可得M點在線段AB上,根據(jù)自變量與函數(shù)值的對應關系,可得答案;(3)設M(a,a2-2a-3),N(1,n),①以AB為邊,則AB∥MN,AB=MN,如圖2,過M作ME⊥對稱軸于E,AF⊥x軸于F,于是得到△ABF≌△NME,證得NE=AF=3,ME=BF=3,得到M(4,5)或(-2,5);②以AB為對角線,BN=AM,BN∥AM,如圖3,則N在x軸上,M與C重合,于是得到結論.【詳解】(1)由得,把代入,得,,拋物線的解析式為;(2)連接AB與對稱軸直線x=1的交點即為P點的坐標(對稱取最值),設直線AB的解析式為,將A(2,-3),B(-1,0)代入,得y=-x-1,將x=1代入,得x=-2,所以點P的坐標為(1,-2);(3)設M()①以AB為邊,則AB∥MN,如圖2,過M作對稱軸y于E,AF軸于F,則或,或∥AM,如圖3,則N在x軸上,M與C重合,綜上所述,存在以點ABMN為頂點的四邊形是平行四邊形,或或【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,全等三角形的判定和性質,平行四邊形的判定和性質,正確的作出圖形是解題的關鍵.21、(1)證明見解析;(2)證明見解析;(3)【分析】(1)由平行線的性質和公共角即可得出結論;(2)先證明四邊形ABED是平行四邊形,再證出AD=AB,即可得出四邊形ABED為菱形;(3)連接AE交BD于O,由菱形的性質得出BD⊥AE,OB=OD,由相似三角形的性質得出AB=3DF=5,求出OB=3,由勾股定理求出OA=4,AE=8,由菱形面積公式即可得出結果.【詳解】(1)證明:∵,∴;又∵,∴;(2)證明:∵,,∴四邊形是平行四邊形,∵,∴,∵,∴,∴,∵,∴,∴四邊形為菱形;(3)解:連接交于,如圖所示:∵四邊形為菱形,∴,,∴,∵,∴,∴,∵,∴,,∴,由勾股定理得:∴,∴四邊形的面積.【點睛】本題考查了相似三角形的判定與性質、菱形的判定和性質、平行四邊形的判定、勾股定理、菱形的面積公式,熟練掌握相似三角形的判定與性質,證明四邊形是菱形是解題的關鍵.22、(1)垃圾投放正確的概率為;(2)該城市生活垃圾中的“廚余垃圾”每月(按30天)沒有按要求投放的數(shù)量為3000(噸).【分析】(1)列表得出所有等可能的情況數(shù),找出垃圾投放正確的情況數(shù),即可求出所求的概率.(2)用樣本中投放不正確的數(shù)量除以廚余垃圾的總質量,再乘以每月的廚余垃圾的總噸數(shù)即可得.【詳解】解:(1)列表如下:abcA(a,A)(b,A)(c,A)B(a,B)(b,B)(c,B)C(a,C)(b,C)(c,C)所有等可能的情況數(shù)有9種,其中垃圾投放正確的有(a,A);(b,B);(c,C)3種,∴垃圾投放正確的概率為=;(2)該城市生活垃圾中的“廚余垃圾”每月(按30天)沒有按要求投放的數(shù)量為500×30××=3000(噸).【點睛】考核知識點:概率.運用列舉法求概率是關鍵.23、(1)見解析;(2)BD長為1.【分析】(1)連接OD,AD,根據(jù)等腰三角形三線合一得BD=CD,根據(jù)三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結論;
(2)根據(jù)等腰三角形三線合一的性質證得∠BAD=∠BAC=30°,由30°的直角三角形的性質即可求得BD.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△BAC的中位線,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,∴BD=AB=×10=1,即BD長為1.【點睛】本題主要考查的是圓的綜合應用,解答本題主要應用了圓周角定理、等腰三角形的性質,圓的切線的判定,30°的直角三角形的性質,掌握本題的輔助線的作法是解題的關鍵.24、(1)一次函數(shù)為,反比例函數(shù)為;(2)△AHO的周長為12【解析】分析:(1)根據(jù)正切函數(shù)可得AH=4,根據(jù)反比例函數(shù)的特點k=xy為定值,列出方程,求出k的值,便可求出反比例函數(shù)的解析式;根據(jù)k的值求出B兩點的坐標,用待定系數(shù)法便可求出一次函數(shù)的解析式.(2)由(1)知AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案.詳解:(1)∵tan∠AOH==∴AH=OH=4∴A(-4,3),代入,得k=-4×3=-12∴反比例函數(shù)為∴∴m=6∴B(6,-2)∴∴=,b
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第5單元 走向近代【考題猜想】(純試題)-2023-2024學年九年級歷史上學期期中考點大串講(部編版)
- 課題申報參考:面向最后一公里配送的無人機集貨中心選址及任務分配研究
- 二零二五年度米廠水稻種植與農(nóng)村電商合作項目合同4篇
- 2025年度餐飲店承包經(jīng)營與食品安全責任合同
- 2025年度個人虛擬形象設計制作合同樣本4篇
- 2025年度二零二五年度木材加工廢棄物處理合同規(guī)范4篇
- 二零二五版木制托盤庫存管理與采購合同4篇
- 2025年度個人貨運車輛保險合同范本大全3篇
- 二零二五年度玻璃瓶罐生產(chǎn)與銷售采購合同3篇
- 2025年度文化旅游項目承包商擔保合同范本4篇
- GB/T 10739-2023紙、紙板和紙漿試樣處理和試驗的標準大氣條件
- 《心態(tài)與思維模式》課件
- 物流服務項目的投標書
- C語言程序設計(慕課版 第2版)PPT完整全套教學課件
- 行業(yè)會計比較(第三版)PPT完整全套教學課件
- 值機業(yè)務與行李運輸實務(第3版)高職PPT完整全套教學課件
- 高考英語語法填空專項訓練(含解析)
- 危險化學品企業(yè)安全生產(chǎn)標準化課件
- 巨鹿二中骨干教師個人工作業(yè)績材料
- 《美的歷程》導讀課件
- 心電圖 (史上最完美)課件
評論
0/150
提交評論