版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter6DatabaseDesignCh6DatabaseqLogicalDatabase?alsoknown§Database§Database DatabasePrinciples& Ch6DatabaseqDatabasedesignistheprocessofproducingadetaileddatamodelofadatabase.qThislogicaldatamodelcontainsalltheneededlogicalandphysicaldesignchoicesandphysicalstorageparametersneededtogenerateadesigninaDataDefinitionLanguage,whichcanthenbeusedtocreateadatabase.qAfullyattributeddatamodelcontainsdetailedattributesforeachentity. DatabasePrinciples& Ch6Databaseqhowdoyzeanlistthedataitemsforadecidehowtoplacethesedataitemscolumnsinrelationaltables DatabasePrinciples& Ch6DatabaseqForexample:student-coursedatabase?attributesofstudent:sno,sname,dept,sage?attributesofcourse:cno,cname?attributeofstudent&course:qwecanputthemallinthesameR(sno,sname,dept,sage,cno,cname,qconsidertheSCGdatabase(nextslide),seeanyproblemswiththat? DatabasePrinciples& TheSCGWang5Wang5Wang4Wang3Wang4Chen3Chen3Zhang4 Ch6Databaseqredundency(數(shù)據(jù)冗余 DatabasePrinciples& redundency(數(shù)據(jù)冗余?wasteofdiskSnoSnameDeptSageCnoCnameGradeS0001WangC101ABC5S0001WangC102ACD5S0001WangC103BBC4S0001WangC105AEF3S0001WangBCF433S0002S0002ChenChenMAMAC103C105AEFS0003ZhangYimouC107BHD4Relation DatabasePrinciples& ?wasteof?usermightgetitSnSnamDepSagCnCnamGradS0001WangJianC17C101AB5S0001WangJianC17C102AC5S0001WangJianC17C103BB4S0001WangJianC17C105AE3S0001WangJianC17C110BC4S0002ChenYinM19C103BB3S0002ChenYinM19C105AE3S0003ZhangYimouC17C107BH4Relation 行上的時間開銷,也可能因為修改不徹底而導(dǎo)致數(shù)據(jù)不一致性?mightlosesomeSnoSnameDeptSageCnoCnameGradeS0001WangJianCS17C101ABC5S0001WangJianCS17C102ACD5S0001WangJianCS17C103BBC4S0001WangJianCS17C105AEF3S0001WangJianCS17C110BCF4S0002S0002ChenYingChenYingMM1919C103C105BBCAEF33S0003ZhangYimCS17C107BHD4 執(zhí)執(zhí)行元組刪除操作,可能連帶刪除掉一些本不該被刪除3)abnormityof?mightlosesomeSno Sname Dept Sage
Cno
Cname
GradeS0001S0001S0001S0001S0001S0002S0002
WangJian CS 17WangJian CS 17WangJian CS 17WangJian CS 17WangJian CS 17ChenYing M 19ChenYing M 19
C101C102C103C105C110C103C105
ABC ACD BBC AEF BCF BBC AEF S0003 ZhangYim CS 17Relation
C107R
BHD 假設(shè)需要刪除學(xué)生元組:“S0003,ZhangYimou,CS,3)abnormityof?mightlosesomeSnoSnameDeptSageCnoCnameGradeS0001WangJianCS17C101ABC5S0001WangJianCS17C102ACD5S0001WangJianCS17C103BBC4S0001WangJianCS17C105AEF3S0001WangJianCS17C110BCF4S0002S0002ChenYingChenYingMM1919C103C105BBCAEF33S0003 ngYim CS17C107BHD477 abnormityof?mightlosesomeSnoSnameDeptSageCnoCnameGradeS0001WangJianCS17C101ABC5S0001WangJianCS17C102ACD5S0001WangJianCS17C103BBC4S0001WangJianCS17C105AEF3S0001WangJianCS17C110BCF4S0002S0002ChenYingChenYingMM1919C103C105BBCAEF33Relation (刪除后的結(jié)果關(guān)系2017-4- DatabasePrinciples& ?unsuccessfulSnoSnameDeptSageCnoCnameGradeS0001WangJianCSC101ABC5S0001WangJianCSC102ACD5S0001WangJianCSC103BBC4S0001WangJianCSC105AEF3S0001WangJianCSC110BCF4S0002S0002ChenYingChenYingMMC103C105BBCAEF33S0003ZhangYimouCSC107BHD4Relation 可能因 實體完整性約束而導(dǎo)致元組插入失敗 例如:“插入一條沒有選課信息的學(xué)生元組”將執(zhí) CnCnCnamC10ABC10ACC10BBC10AEC10BHC11BC
SnoCnoGradeS0001SnoCnoGradeS0001C1015S0001C1025S0001C1034S0001C1053S00014S0002C1033S0002C1053S0003C1074
Relatio TheSCGDatabase IntroductiontoE-RFurtherDetailsofE-RAdditionalE-RCase Normal DatabasePrinciples& 6.1IntroductiontoE-RqAnEntity-Relationship(ER)modelisanwaytodescribeadatabase.qAdesignapproach,calledEntity-Relationshipmodelling,ismoreintuitive,lessmechanical,butbasicallyleadstothesameenddesign. DatabasePrinciples& 6.1IntroductiontoE-RqEntity-Relationship?ProposedbyPeterChenTheEntity-RelationshipModel:TowardaUnifiedViewofDataqPeterChen(Pin-shan DatabasePrinciples& 6.1IntroductiontoE-RqE-R?threefundamentaldataclassificationqthecontentsofthis?Entities,Attributes,andSimpleE-R?TransformingEntitiesandAttributesto?Relationshipsamong DatabasePrinciples& 6.1IntroductiontoE-RqEntities,Attributes,andSimpleE-R?Def6.1.1Entity(實體§Anentityisacollectionofdistinguishablereal-worldobjectswithcommonproperties.–E.g.,collegeregistration§§§§§?differentofferingsofasinglecourse,generallyatdifferenttimesbydifferentinstructors DatabasePrinciples& 6.1IntroductiontoE-RqNormally?anentitysuchismappedtoarelationaltable§representsasetof?eachrowisanentityoccurrence,orentityinstance§representsaparticular DatabasePrinciples& 6.16.1IntroductiontoE-RqDef.6.1.2Attribute(屬性?Anattributeisadataitemthatdescribesapropertyofanentityorarelationship(definedbelow).Figure6.2ExampleofE-RDiagramswithEntitiesand DatabasePrinciples&
Attributesof
AttributesofFigure6.2ExampleofE-RDiagramswithEntitiesand
'hobbies'is'hobbies'isamulti-valuedattribute,andothersaresingle-valuedattributes threeattributesofFigure6.2ExampleofE-RDiagramswithEntitiesand(Figureqspecialterminologyforspecialkindsof?identifier:Students.sid,??single-valued:sid,eid,?compositeattribute:student_name,?multi-valuedattribute: DatabasePrinciples& 6.1IntroductiontoE-R ?Anidentifierisanattributeorsetofattributesthatuniquelyidentifiesanentity?Theremightbemorethanoneidentifierforagivenentity primaryidentifier(主鍵 asinglekeyidentifiedby DatabasePrinciples& IntroductiontoE-RPrimary DatabasePrinciples& IntroductiontoE-RPrimaryPrimary DatabasePrinciples& IntroductiontoE-Rqdescriptor?Adescriptorisanon-keyattribute,§§qcomposite?agroupofsimpleattributesthattogetherdescribeaproperty.§§qmulti-valued?cantakeonmultiplevaluesforasingleentity DatabasePrinciples& IntroductiontoE-R
student_nameisacompositeattribute
DatabasePrinciples& IntroductiontoE-R emp_addressisacompositeattribute DatabasePrinciples& IntroductiontoE-R hobbiesisamulti-valuedattribute DatabasePrinciples& Review1:Entity&E-Rqa?representingasaqasingle-valued?representingasa?attachedbyastraightlinetotheqacomposite?isalsoinanovalattacheddirectlytothe?thesimpleattributesthatmakeupthecompositeareattachedtothecompositeoval.qamulti-valued?isattachedbyadoublelinetotheentityit DatabasePrinciples& IntroductiontoE-RqTransformingEntitiesandAttributestoRelations-TransformationRule1§Anentityismappedtoasingletable.Thesingle-valuedattributesoftheEntityaremappedtocolumns(compositeattributesaremappedtomultiplesimplecolumns).§Entityoccurrences erowsofthe?Example6.1.1,Fig. DatabasePrinciples& TransformationRuleFigure6.2ExampleofE-RDiagramswithEntitiesandStudents(sid,lname,fname,midiaitia)Employees(eid,staddress,city,state,zipcode)IntroductiontoE-RqTransformingEntitiesandAttributestoRelations-TransformationRule2?Amulti-valuedattributemustbemappedtoitsowntable.Employees(eid,staddress,city,state,zipcode)hobbies(hobby,eid)IntroductiontoE-RqRelationships(聯(lián)系)among?Def.6.1.3.Relationship(pg.§Givenanorderedlistofmentities,E1,E2,...,Em,(wherethesameentitymayoccurmorethanonceinthelist)§arelationshipRdefinesaruleofcorrespondencebetweentheinstancesoftheseentities.§Specifically,Rrepresentsasetofm-tuples,asubsetoftheCartesianproductofentity DatabasePrinciples& qFigure6.3:ExamplesofRelationshipsInstructorsteachesCourse_sections DatabasePrinciples& qFigure6.3:ExamplesofRelationshipsEmployeesworks_onProjects(percentoftime) DatabasePrinciples& qFigure6.3:ExamplesofEmployeesmanages
§ring,orrecursive DatabasePrinciples& qFigure6.3:ExamplesofRelationshipsInstructorsteachesCourse_sectionsEmployeesworks_onProjects(percentoftime)EmployeesmanagesEmployeesFigure6.3:ExamplesofE-RDiagramswithworks_onworks_onhastheconnectedattribute§percentisavaluewitheachrelationship§TherelationshipinstancerepresentsaspecificpairingofanEmployeesinstancewithaProjectsinstance;§percentrepresentsthepercentoftimeanemployeeinstanceworksonthat2017-4-2017-4- DatabasePrinciples&qdatabasedesign/databaseqEntity&qTransformationRule1&?fromEntity&AttributestorelationqRelationship?relationshipbetween?connectedFurtherDetailsofE-RqCardinalityofEntityParticipationina?LookatFigure§EntitiesEandF,relationship§LinesbetweenDotsareentityLinesarerelationship DatabasePrinciples& FurtherDetailsofE-R?IfalldotsintheentityEhaveATMOSTonelinecomingout,wesay:§max-card(E,R)=?Ifmorethanonelineoutispossible,we§max-card(E,R)=?IfalldotsintheentityEhaveATLEASTonelinecomingout,wesay:§min-card(E,R)=?Ifsomedotsmightnothavealinecomingout,wesay:§min-card(E,R)= DatabasePrinciples& 6.2FurtherDetailsofE-Rmax-card(E,R)=min-card(E,R)=
DatabasePrinciples& 6.2FurtherDetailsofE-Rmax-card(E,R)= max-card(F,R)=min-card(E,R)= DatabasePrinciples& 6.26.2FurtherDetailsofE-RqDef.6.2.1Card(E,?Wecombinethese,bysayingcard(E,R)=(x,y)if:min-card(E,R)=xandmax-card(E,R)=§xiseither0or1,andyiseither1orcard(E,R)=(0,card(F,R)=(1, (0, (1,(0,(1, (0,(0,Figure6.7:AnE-RDiagramswithLabels(x,y)onEntity-RelationshipConnections6.26.2FurtherDetailsofE-R(0,reports-(0,qEmployee1inEmps_OneisamanagerofEmployee2inEmps_Two.2017-4- DatabasePrinciples& 6.26.2FurtherDetailsofE-RqDef?ifmax-card(X,R)=1thenXissaidtohavesingle-valuedparticipation()intherelationshipR.?Ifmax-card(XRNthenXissaidtobemulti-participatio2017-4-(0, (1,(0,(1, (0,(0,2017-4- DatabasePrinciples& 6.26.2FurtherDetailsofE-RqDef?Ifmin-card(X,R)=1,Xissaidtohavemandatoryparticipatio)intherelationshipR?ifmin-card(X,R)=0,thenoptional2017-4-(0, (1,(0,(1, (0,(0,mandatoryoptional2017-4- DatabasePrinciples& FurtherDetailsofE-RqOne-to-One,Many-to-Many,andMany-to-OneRelationship(Figure6.6)?One-to-One(1-1)§bothentitiesaresingle-valuedintherelationship(max-cardconceptonly)ERFERFFurtherDetailsofE-RqOne-to-One,Many-to-Many,andMany-to-OneRelationship(Figure6.6)§oneentityismulti-valuedandoneissingle FurtherDetailsofE-RqOne-to-One,Many-to-Many,andMany-to-OneRelationship(Figure6.6)§bothentitiesaremulti-ERFERF(0, (1,(0,(1, (0,(0, DatabasePrinciples& FurtherDetailsofE-RqTransformingBinaryRelationships(二元聯(lián)系)toRelations?TransformationRule3.N-N§WhentwoentitiesEandFtakepartinamany-to-manybinaryrelationshipR,therelationshipismappedtoarepresentativetableTintherelatedrelationaldatabase DatabasePrinciples& 6.2FurtherDetailsofE-RqTransformationRule3.?ThetableTcontainscolumnsforallattributesintheprimarykeysofbothtablestransformedfromentitiesEandF.§thissetofcolumnsformstheprimarykeyforthetableT.?Talsocontainscolumnsforallattributesattachedtotherelationship. DatabasePrinciples& FurtherDetailsofE-R?Example§Projects(prid,proj_name,§works_on(eid,prid,(1,N)works_on(0, DatabasePrinciples& FurtherDetailsofE-RqTransformationRule4.N-1?representwithforeignkeyinentitywithsinglevaluedparticipation(theManyside).§Sincemax-card(F,R)=1,eachrowofTisrelatedbyaforeignkeyvaluetoatmostoneinstanceoftheentityE.?Example6.2.3:§Instructors(insid,lname,§Course_sections(secid,insid,course, DatabasePrinciples& FurtherDetailsofE-RqTransformationRule5&6.1-1?Optionalonone§Representastwotables,foreignkeycolumninonewithmandatoryparticipation:columndefinedtobeNOT?Mandatoryonboth§nevercanbreakapart.It'sappropriatetothinkofthisastwoentitiesinasingle DatabasePrinciples& AdditionalE-RqCardinalityof?Def6.3.1(Figure6.10,pg.347§(0,?)meansdon'thavetosaynotnull§(1,?)meansdo sid,student_name,lname,fname,city,......§(?,1)singlevaluedsid,§(?,N)multi- DatabasePrinciples& 6.3AdditionalE-R(1,(1,(1,(1,(0,Figure6.10(1) DatabasePrinciples& 6.3AdditionalE-R(1,(0,
(1,(1,
(1,1)(1,
(1,Figure6.10(2) DatabasePrinciples& AdditionalE-RqWeak?Def§Aweakentityisanentitywhoseoccurrencesaredependentfortheirexistence,througharelationshipR,ontheoccurrenceofanother(strong)entity.§Figure6.11,pg. DatabasePrinciples& qFigure DatabasePrinciples& AdditionalE-RqGeneralization?Figure6.12,pg.ss DatabasePrinciples& CaseqFigure6.13&?E-RDesignforaSimpleAirlineReservationDatabase
Travels_On(Passengers,FlightsHas_Seat(Flights,SeatsSeat_Assign(Passengers,SeatsMarshals(Flights,Gates DatabasePrinciples& Caseq6.4.1 q6.4.2籃球聯(lián)賽信息管理q6.4.3聊天 q6.4.4郵件信息管理CaseStudy(例設(shè)有一個 閱理據(jù)知: 的屬性書號(有一)書;者屬借書證具唯每讀只有書證)、 、 、 ; 的屬性有 稱具唯性、址聯(lián)電話。 DatabasePrinciples& 6.4CaseStudy(例§每個球員的球衣號碼、 §每個球隊的名§每場比賽的比賽日期和比分§每個球員只能效§比賽采用主客 DatabasePrinciples& 6.4CaseStudy(例q假設(shè)需要設(shè)計一個用于網(wǎng)絡(luò) 用戶的用戶名 ,聯(lián)系地§帖子的帖子ID,標題,內(nèi) DatabasePrinciples& CaseStudy(例q有一個§聯(lián)系人:用戶名, §郵件:郵件ID,郵件標題,郵件內(nèi)容,收信人集§郵件之間的回復(fù)關(guān) DatabasePrinciples& Normalization(規(guī)范化):qNormalFormNF,范式qARunning?Figure6.15(pg.?Def.6.5.1Update?Def.6.5.2DeleteAnomaly,Insert DatabasePrinciples& qFunctionalDependencyFD函數(shù)依賴? 函數(shù)依賴來自于現(xiàn)實世界中數(shù)據(jù)qArmstrong’sAxiomsArmstrong公理?基本規(guī)則:自反規(guī)則,傳遞規(guī)則,增廣規(guī)?擴充規(guī)則:合并規(guī)則,分解規(guī) DatabasePrinciples& 6.66.6FunctionalqFunctionalDependencyqDef.6.6.1A→B(AfunctionallydeterminesB,orBisfunctionallydependentonA)?Foranyrowsr1andr2inifr1(A)=r2(A)thenr1(B)=qExample DatabasePrinciples& uTheSCGuWang5Wang5Wang4Wang34Chen334TheTheSCG55434334SnoSno→Sname DatabasePrinciples& TheTheSCG55434334Sno→DeptSno→Dept DatabasePrinciples& TheTheSCG55434334Sno→CnoSno→SnameSno→Cno DatabasePrinciples& TheTheSCG55434334Sno→Sname Sno→Dept Sno→Cno×Cno→Cname DatabasePrinciplesCno→Cname55434334Sno→ Cno→
Sno→ Sno→Cno×TheSCGCno→Sno2017-4- TheSCGCno→Sno55434334TheTheSCGSnoSno→Cno→ 2017-4-
Sno→ DatabasePrinciples&
Sno→CnoCnoSno→CnoEachEachvalueofAcorrespondstoonlyonevalueofB.Figure6.18(a)GraphicalDepictionofFunctionalSomeSomevaluesofAcorrespondtomorethanonevalueofB.AdoesnotfunctionallydetermineFigure6.18(b)GraphicalDepictionofFunctionalFigure6.18GraphicalDepictionofFunctionalFigure6.18GraphicalDepictionofFunctional
AdoesnotfunctionallydetermineB.SomevaluesofAcorrespondtomorethanonevalueofB.E→F→
F→ FunctionalqExampleABA→B?B→A
A→ DatabasePrinciples& 6.6FunctionalqExampleABA→B?B→A
X1X1 A→B→ DatabasePrinciples& 6.6FunctionalqExampleABA→B?B→A
X1X1 B→ DatabasePrinciples& 6.6FunctionalqExampleABA→B?B→A
X1X1 DatabasePrinciples& 6.6FunctionalqExample ABA→BB→A
ABA→BB→A
ABA→BB→A
ABA→BB→A DatabasePrinciples&
B→
B→
DatabasePrinciples&6.6FunctionalqArmstrong’sW.W.Armstrong的 被稱作“Armstrong公理” DatabasePrinciples& 6.6FunctionalqArmstrong’s?Rule1(自反規(guī)則):Inclusion§IfYX,thenX→§IfX→YandY→Z,thenX→?Rule3(增廣規(guī)則)Augmentation§IfX→Y,thenXZ→qFigure6.19(pg.qFigure6.19(pg.1.1.InclusionXYTransitivityY YXXYZ6.6FunctionalqRule1:InclusionRuleIfYX,thenX→Y§設(shè)t1,t2是關(guān)系R中的任意兩個元組(t1R,且它們在屬性集X上的值相等(t1[X]=§由于Y是X的子集,即X§因此必有t1[Y] DatabasePrinciples& 6.6FunctionalqRule2:TransitivityIfX→YandY→Z,thenX→§設(shè)t1R,t2R,如果t1[X]= §由(2)及Y→Z得:t1[Z] DatabasePrinciples& 6.6FunctionalqRule3:AugmentationruleIfX→Y,thenXZ→YZ§設(shè)t1Rt2Rt1[XZt2[XZt1[X]= t1[Z]= §由(2)及(3)得:t1[YZ DatabasePrinciples& 6.6FunctionalqTheorem6.6.8SomeImplicationsofArmstrong’s(pg.363)?Rule4UnionRule(合并規(guī)則IfX→YandX→Z,thenX→?Rule positionRule(分解規(guī)則IfX→YZ,thenX→Y,andX→?Rule6PseudotransitivityRule(偽傳遞規(guī)則IfX→Y,andWY→Z,thenXW→?Rule7Setaccumulationrule(聚積規(guī)則IfX→YZandZ→W,thenX→ DatabasePrinciples&6.6FunctionalqRule4:UnionIfX→YandX→Z,thenX→ Wehave(a)X→Yand(b)ByArmstrong'sAugmentationruleand(a),wehave(c)XX→XY.ButXXisXUNIONX=X,so(c)canberewritten(d)X→XY.Nowby(b)andaugmentation,wehave(e)Andby(d)and(e)andtransitivity,wehaveX→YZ,thedesiredresult. DatabasePrinciples& 6.6FunctionalqRule positionIfX→YZ,thenX→Y,and Wehave(a)ByArmstrong'sInclusionRule,wehave(b)YZ→Yand(c)YZ→Z.By(a)and(b)andArmstrong’sTransitivityRule,wehaveX→Y.By(a)and(c)andArmstrong’sTransitivityRule,wehaveX→Z. DatabasePrinciples& 6.6FunctionalqRule6:PseudotransitivityIfX→Y,andWY→Z,then Wehave(a)X→Yand(b)ByArmstrong'sAugmentationRuleand(a),wehave(c)WX→WY.By(c)and(b)andArmstrong’sTransitivityRule,wehave(d)WX→Z.ButWX=XW,so(d)canberewrittenXW→Z,thedesiredresult. DatabasePrinciples& 6.6FunctionalqRule7:SetAccumulationIfX→YZandZ→W,thenX→ Wehave(a)X→YZand(b)ByArmstrong'sAugmentationRuleand(b),wehave(c)YZZ→YZW.ButYZZ=(YZ)Z=Y(ZZ)=Y=YZ,so(c)canberewritten(d)By(a)and(d)andArmstrong’sTransitivityRule,wehaveX→YZW,thedesired DatabasePrinciples& 6.6FunctionalqExample6.6.4:relationABCDqFindFDsinrelation DatabasePrinciples& 6.6FunctionalABCDq首先考慮決定因素和依賴因素都是單個屬性的情A→BA→BA→CA→DB→AB→CB→DC→AC→B√C→DD→A√D→BD→C DatabasePrinciples& 6.6FunctionalABCDq也可以按照如下順序考慮可能存在的函數(shù)依賴情A→B√AA→B√A→CA→DB→AB→CB→DC→AC→B√C→DD→A√D→B√D→C DatabasePrinciples& ABCDA→ C→ D→其次,再考慮決定因素是多個屬性在FD的左邊不需要考慮含有屬性D的情況,why在FD的左邊不需要考慮含有屬性B的情況,why因此只需要考慮下述的FD是否成AC→B AC→DABCDA→C→D→AC→BD→AC→DD→q在上述的FD關(guān)系中,我們不用ACB,whyq因此,最后只需要考慮下面的一個FD是否可能成 AC→D√ABCDA→D→ABCAC→D
C→6.66.6Functional2017-4- DatabasePrinciples& q該關(guān)系上可能存在的函數(shù)依A→B C→BD→ABC 思考問題:
AC→左邊含有屬性D的其它的那些可能的右邊為單個屬性B的其它的那些可能的右邊為多個屬性的那些可能的ContentofqClosureofaSetofFDs(函數(shù)依賴集F的閉包)qFDSetCover(函數(shù)依賴集的覆蓋)qEquivalenceoftwosetsofFDS(函數(shù)依賴集的等價qClosureofaSetofAttributes(屬性集的閉包?AlgorithmqMinimalCover(最小覆蓋?Algorithm DatabasePrinciples& 6.6FunctionalqDef.6.6.9ClosureofaSetofFDs(函數(shù)依賴集F的閉包,記為F+)?GivenasetFofFDsonattributesofatableT,wedefinetheCLOSUREofF,symbolizedbyF+,tobethesetofallFDsimpliedbyF.F+根據(jù)F中已有的函數(shù)依賴,利用Armstrong公理系統(tǒng)能夠推導(dǎo)得到的所有函數(shù)依賴} DatabasePrinciples& 6.6Functional ExampleF={A→B,B→C,C→D,D→E,E→F,F→G,G→HallFDsinFareelementofbyArmstrong’sinclusionrule,A→A,AB→B......areelementofbyArmstrong’stransitivityrule,A→C,A→D,areelementofbyArmstrong’saugmentationrule,AD→BD,ABD→BCD,......areelementofF+byArmstrong’sunionrule,A→AB,A→BC,A→ABC,...,A→ABCDEFGH,......areelementofF+AnotherAnother DatabasePrinciples& 6.6FunctionalqDef.6.6.10FDSetCover(函數(shù)依賴集的覆蓋?AsetFofFDsonatableTissaidtoCOVERanothersetGofFDsonTifthesetGcanbederivedbyimplicationrulesfromthesetF,i.e.,ifGF+.q函數(shù)依?IfFcoversGandGcoversF,wesaythetwosetsofFDsareequivalent,FG. DatabasePrinciples& 6.6Functional–Example6.6.6:ConsiderthetwosetsofFDsonthesetofattributesF={B→CD,AD→E,B→AG={B→CDE,B→ABC,AD→E?FcoversG?GcoversF DatabasePrinciples& FunctionalqEx.F:(f1)B→CDG:(g1)B→CDEFcoversG
(f2)AD→E(g2)B→ABC
(f3)B→A(g3)AD→E}?g1canbederivedfromthesetFbyf1andf3andunionrule,wehavebyf2andaugmentationrule,we②CDAD→CDE,andcanberewrittenby①and③andtransitivityrule,wehave DatabasePrinciples& FunctionalqEx.F:(f1)B→CDG:(g1)B→CDEFcoversG
(f2)AD→E(g2)B→ABC
(f3)B→A(g3)AD→E}?g2canbederivedfromthesetFbyf1 positionrule,wehaveby①andf3andunionrule,wehaveby②andaugmentationrule,wehaveg2 DatabasePrinciples& FunctionalqEx.F:(f1)B→CDG:(g1)B→CDE
(f2)AD→E(g2)B→ABC
(f3)B→A(g3)AD→E}FFcoversG?g3isanelementoftheset DatabasePrinciples& qEx.F:(f1)B→CDG:(g1)B→CDE GcoversF
(f2)AD→E(g2)B→ABC
(f3)B→A(g3)AD→E}6.6Functional?f1canbederivedfromthesetG6.6Functional1)byg1and positionrule,wehavef1?f2isanelementoftheset?f3canbederivedfromthesetG1)byg2and positionrule,wehavef3 qDef.6.6.11ClosureofaSetof(屬性集的閉包?GivenasetXofattributesinatableTandasetFofFDsonT,wedefinetheCLOSUREofthesetX(underF),denotedbyX+orX+F,asthelargestsetofattributesYsuchthatX→YisinX+F={A|X→A∈F+ DatabasePrinciples& FunctionalalgorithmX+:=repeatoldX+:=foreachYZinFifYX+thenX+:=X+}}until(oldX+=X+ DatabasePrinciples& Exp6.6.7:computeF={(f1) (f2) (f3)B→AqsetX={B}+={Bqfirsttheleftsideoff1isasubsetof{B}+,then{B}+={B}+union{C,D}={B,C,D}theleftsideoff2isn’tasubsetof{B}+,thenf2doesnotapplyatthistimetheleftsideoff3isasubsetof{B}+,then{B}+={B}+union{A}={A,B,C,D}X{B}+,gotostep qsecondX={B}+={A,B,C,DskiptheFDsthathavebeentheleftsideoff2isasubsetof{B}+,{B}+={B}+union{E}=X{B}+,gotostepqthirdX={B}+=loopthroughFDsinFendwithX= q F+={X→A|X→AcanF+={X→A|X→AcanbederivedfromFFcoverGiff"eachFcoverGiff"eachX→AofGcanderivedfromF"FcoversGandGFcoversGandGcoversqDef.6.6.11ClosureofaSetofXXF+={A|X→AcanbederivedfromF(X→A∈F+)} DatabasePrinciples& qAlgorithm6.6.13MinimalCover最小覆蓋沒有冗余(inessential)的函數(shù)依每一個函數(shù)依賴的左邊都沒有多余的屬?a沒有冗余(inessential)的函數(shù)依每一個函數(shù)依賴的左邊都沒有多余的屬 DatabasePrinciples& pstep1:FromthesetFofFDs,wecreateanequivalentsetHofFDs,withonlysingleattributesontherightside.pstep2:FromthesetHofFDs,successivelyremoveindividualFDsthatareinessentialinH.pstep3:FromthesetHofFDs,successivelyreplaceindividualFDswithFDsthathaveasmallernumberofattributesontheleft-handside,aslongastheresultdoesnotchangeH+.pstep4:FromtheremainingsetofFDs,gatherallFDswithequalleft-handsidesandusetheunionruletocreateanequivalentsetofFDsMwhereallleft-handsidesareunique.BCADBCADEFFigure6.20ExampleofanInessentialFD:qstep2:FromthesetHofFDs,successivelyremoveindividualFDsthatareinessentialinH.?AnFDX→YisinessentialinasetHofFDs,ifX→YcanberemovedfromH,withresultsothatH+=J+,or?Thatis,removaloftheFDfromHhasnoeffectonH+.BCABCADEFFigure6.20ExampleofanInessentialFD:F={B→D,D→E,C→F,BC→A,EF→AqremoveBC→AfromH={B→D,D→E, EF→AqBC→AisinessentialinFbecauseof DatabasePrinciples& XBCDAEFigure6.21ExampleofanFD:X→AwhereBXBCDAEqstep3:FromthesetHofFDs,successivelyreplaceindividualFDswithFDsthathaveasmallernumberofattributesontheleft-handside,aslongastheresultdoesnotchangeH+. DatabasePrinciples& XBCDAEFigure6.21ExampleofanFD:X→AwhereBXBCDAEqLet:F={C→E,E→B,qWesayBcanberemovedfromBCD→ABCDACDA)?Let:H={C→E,E→B,CD→A}?Wehave:F+= DatabasePrinciples& ?step4:FromtheremainingsetofFDs,gatherallFDswithequalleft-handsidesandusetheunionruletocreateanequivalentsetofFDsMwhereallleft-handsidesareunique. DatabasePrinciples& Functional計算過計算過?SupposeX={a,b,c,d}F={a→ bc→ ac→d?GivetheminimalcoverMforthesetFqExample?SupposeY={a,b,c,d}G={a→a b→ab d→abc?GivetheminimalcoverNforthesetG DatabasePrinciples& FunctionalqExample6.6.8ConstructtheminimalcovercoverMforthesetFofFDs.?ABD→AC→BAD→BB→計計算 DatabasePrinciples& ContentofqTheprocessof positionsofqLossless position&Lossyposition(無損分解)?Theorem6.7.3&qFD (依賴保持 DatabasePrinciples& qTheprocessof poseatableintotwoormoresmall§projectingontotwoormoresubsetsofcolumnsthatcoverallcolumnsandhavesomecolumnsincommon.?butitdoesn'talwaysworkwhenjoinbackthatkeepallinformationoforiginaltable.§AlwaysgetALLrowsback,§mightget–seeexample6.7.1(pg.374,next DatabasePrinciples& 6.7 qexample
ABC≠ABjoinABCABCABCABCABABBC DatabasePrinciples& Def.6.7.1Lossless position(無損性分解) ForanytableTwithanassociatedsetoffunctionaldependenciesF,a ofTintoktablesisasetoftables{T1,T2,...,Tk},withtwoproperties:foreverytableTiintheset,Head(Ti)isapropersubsetofHead(T);Head(T)= DatabasePrinciples& qDef.6.7.1?GivenanyspecificcontentofT,therowsofTareprojectedontothecolumnsofeachTiasaresultofthe positionofatableTwithanassociatedsetFofFDsissaidtobea positionif,foranypossiblefuturecontentofT,theFDsinFguaranteethatthefollowingrelationshipwillhold:TT1joinT2join...joinTk DatabasePrinciples& qLossy positionofTis{T1,T2,...,?Wejointhetablesofthe wemightgetbackotherrowsthatwerenotoriginallypresent,soTT1joinT2join...join DatabasePrinciples& qEx6.7.1A ABCABCABC ABABBC DatabasePrinciples& ABC=ABjoinqEx6.7.2ADifferentContentABC=ABjoinABCABCABABC ABABBC DatabasePrinciples& qDef.6.7.2Adatabaseschemaisthesetofheadingsofalltablesinadatabase,togetherwiththesetofallFDsthatthedesignerwishestoholdonthejoinofthosetables.qEx6.7.3TableABCwithaFD:–Assumethetablecontentofis
ABCABC qEx6.7.3TableABCwithaFD:ABC–Ifwetriedtoinsertarow(a4,200,c4),thisinsertwouldfail.Why? DatabasePrinciples& qEx6.7.3TableABCwithaFD:ABC–but,wecaninsertarow(a4,200,c2)tothistable. DatabasePrinciples& qEx6.7.3TableABCwithaFD:ABCABCAB
ABCBCABCABjoinBC,DatabasePrinciples& qTheorem6.7.4.GivenatableTwithasetFofFDsvalidonT,thena positionofTintotwotables{T1,T2}isalossless ifoneofthefollowingfunctionaldependenciesisimpliedbyF:Head(T1)Head(T2)Head(T1)Head(T2) DatabasePrinciples& qEx6.7.4:InExampleABCABCABC ABABBC DatabasePrinciples& qEx6.7.5qEx6.7.6LosslessJoin withMultipleTables:T{T1,T2,...,Tk}?wecandemonstratelosslessnessbyusingthetwo-tableresultinarecursive(((T1joinT2)joinT3)...join DatabasePrinciples& qEx.Givea positionoftableT(A,B,C)withasetFofFDs:={T1,T2}Isitaposition1)F={ABT1(A,T2(A,2)F={AC,BCT1(A,T2(A,3)F={ABT1(A,T2(B,4)F={AB,BCT1(A,T2(B, DatabasePrinciples& qEx.Givea positionoftableT(A,B,C,D)withasetFofFDs{AB,BC,AD,DC}:T1 T2 T3?Isita position–§T1andT2isa position§(T1T2)andT3isa DatabasePrinciples& Normalqemp_info(emp_id,emp_name,emp_phone,dept_name,dept_phone,dept_mgrname,skill_id,skill_name,skill_date,skill_lvl)dept_name{dept_phone,dept_mgrname}Figure6.22& DatabasePrinciples& 6.8Normalemps(emp_id,emp_name,emp_phone,dept_name,dept_phone,dept_mgrname)emp_id{emp_name,emp_phone,dept_name}dept_name{dept_phone,dept_mgrname}{emp_id,skill_id}{skill_date,Figure DatabasePrinciples& 6.8NormalqProposition?Thekeyfortheemp_infotableistheattributeset(emp_id,skill_id)§Thisisalsothekeyfortheskills§theempstablehasakeyconsistingofthesingleattributeemp_idq?ByTheorem DatabasePrinciples& 6.8NormalqProposition?Thefactorizationoftheemp_infotableintotheempstableandskillstableisatrue q?Bythetheorem DatabasePrinciples& NormalqFigure?emps(emp_id,emp_name,emp_phone,?depts(dept_name,dept_phone,dept_mgrname)?emp_skills(emp_id,skill_id,skill_date,skill_lvl)?skills(skill_id,skill_name)qEx?Figure?Figure?Figure DatabasePrinciples& NormalqDef.6.8.3FD (依賴保持性?GivenadatabaseschemawithauniversaltableTandasetoffunctionaldependenciesF,let{T1,T2,......,Tk}bealosslesspositionof?ThenanFDXYofFissaidtobeinthe positionofT,oralternativelythepositionofTp theFDXY,ifforsometableTiofthe ?Whenthisisthecase,wealsosaythattheFDXYisp inTiorthatitliesinTiorisinTi. DatabasePrinciples& 6.8NormalqDef.6.8.3依賴保持R分解為{T1,T2,......,Tk這k個子關(guān)系模式,從所存在的函數(shù)依賴集為Fii=1,2,…,k)等價的,即F+F1F2…Fk)+,則我們稱該 DatabasePrinciples& ContentofqSuperkey&?AlgorithmtoFindCandidate?PRIMEATTRIBUTE(主屬性?NON-PRIMEATTRIBUTE(非主屬性qNormal?2NF,3NF,qAlgorithm DatabasePrinciples& 6.8NormalqTheorem6.7.3.GivenatableTwithasetofFDsFandasetofattributesXinHead(T)Xisasuperkeyof Xfunctionallydeterminesallattributesin( F
=Head(T) DatabasePrinciples& 6.8NormalqAnAlgorithmtoFindCandidate?GivenatableTwithasetFofsetK:=Head(T)foreachattributeAinK{compute(K-A)F +if(K- contais+thensetK:=K-{A}}} DatabasePrinciples& 6.8NormalqFindcandidatekeyforthistableR(A,B,C,D),F(xiàn):{BD,ABCR(A,B, F:{AB,BA,ACR(A,B,C,D),F(xiàn):{AC,CDB DatabasePrinciples& 6.8NormalR(A,B,C,D),F(xiàn):{BD,ABC解:KA,BCD∵{K–A}+={B,C,D}+={B,C,D}∵{K–B}+={A,C,D}+={A,C,D}∵{K–C}+={A,B,D}+={A,B,D,C}=∴K=K–C=∵{K–D}+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貼片設(shè)備柔性化設(shè)計-洞察分析
- 2025屆上海市奉賢區(qū)高三上學(xué)期一模練習(xí)物理試題(解析版)
- 2024-2025學(xué)年福建省部分學(xué)校教學(xué)聯(lián)盟高二上學(xué)期期中質(zhì)量檢測生物試題(解析版)
- 云計算在紡織產(chǎn)業(yè)升級中的作用-洞察分析
- 新型盾構(gòu)刀具材料研究-洞察分析
- 2023-2024學(xué)年山東省臨沂市莒南縣高三1月期末考試生物試題(解析版)
- 2023年-2024年項目部安全管理人員安全培訓(xùn)考試題帶答案可下載
- 2024年安全管理人員安全教育培訓(xùn)試題及一套答案
- 2023年-2024年新入職員工安全教育培訓(xùn)試題附參考答案【奪分金卷】
- 2024-2025學(xué)年江蘇省常州市高一上學(xué)期11月期中考試物理試題(解析版)
- 用人單位職業(yè)病危害現(xiàn)狀評價技術(shù)導(dǎo)則
- 中建一局質(zhì)量考核評價辦法
- 民辦非企業(yè)單位會計報表(會民非表010203)
- 口腔頜面系統(tǒng)解剖骨
- 川骨香-川古香手撕鴨配方及制作方法
- 深圳市排水管網(wǎng)維護管理質(zhì)量
- 變電站二次設(shè)計規(guī)范
- 能見度不良時船舶航行須知
- 軟膠囊的制備
- 實習(xí)證明、實習(xí)證明表(模板)2頁
- 目視化管理實施計劃方案
評論
0/150
提交評論