版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2017年秋人教版九年級數(shù)學(xué)上冊《圓》單元測試題一、選擇題:LISTNUMOutlineDefault\l3已知☉O的半徑為6,A為線段PO的中點(diǎn),當(dāng)OP=10時(shí),點(diǎn)A與☉O的位置關(guān)系為()A.在圓上B.在圓外C.在圓內(nèi) D.不確定2、如圖所示,AB是⊙O的直徑.C,D為圓上兩點(diǎn),若∠D=30°,則∠AOC等于(
)A.60°
B.90°
C.120°
D.150°3、如圖,點(diǎn)A、B、C是圓O上的三點(diǎn),且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點(diǎn)F,則∠BAF等于()A.°B.15°C.20°D.°4、如圖,AB是⊙O的弦,AC是⊙O的切線,A為切點(diǎn),BC經(jīng)過圓心O.若∠B=25°,則∠C=(
)
°
°
°
°
5、如圖,AB為⊙O的直徑,AB=6,AB⊥弦CD,垂足為G,EF切⊙O于點(diǎn)B,∠A=30°,連接AD、OC、BC,下列結(jié)論不正確的是()∥CDB.△COB是等邊三角形=DGD.的長為π6、如圖,正五邊形ABCDE內(nèi)接于⊙O,點(diǎn)M為BC中點(diǎn),點(diǎn)N為DE中點(diǎn),則∠MON的大小為()A.108°
B.144°
C.150°
D.166°7、如圖,PA、PB、AB都與⊙O相切,∠P=60°,則∠AOB等于()° ° ° °8、如圖,⊙O過點(diǎn)B、C,圓心O在等腰直角三角形ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為()A.6
B.13
C.D.29、⊙O的半徑為5cm,弦AB16、如圖,點(diǎn)A、B、C是圓O上的三點(diǎn),且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點(diǎn)F,則∠BAF=
.17、如圖,AB是半圓O的直徑,D是弧AB上一點(diǎn),C是弧AD的中點(diǎn),過點(diǎn)C作AB的垂線,交AB于E,與過點(diǎn)D的切線交于點(diǎn)G,連接AD,分別交CE、CB于點(diǎn)P、Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心.其中正確結(jié)論是(填序號).18、如圖,在半徑為2的⊙O中,兩個(gè)頂點(diǎn)重合的內(nèi)接正四邊形與正六邊形,則陰影部分的面積為.三、解答題:19、如圖,已知A是⊙O上一點(diǎn),半徑OC的延長線與過點(diǎn)A的直線交于B點(diǎn),OC=BC,2AC=OB.(1)求證:AB是⊙O的切線;(2)若∠ACD=45°,OC=2,求弦CD的長.20、已知⊙O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.(Ⅰ)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長;(Ⅱ)如圖②,若∠CAB=60°,求BD的長.21、如圖,已知⊙O是△ABC的外接圓,=,點(diǎn)D在邊BC上,AE∥BC,AE=BD.(1)求證:AD=CE;(2)如果點(diǎn)G在線段DC上(不與點(diǎn)D重合),且AG=AD,求證:四邊形AGCE是平行四邊形.22、如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn),BP的延長線交⊙O于Q,過Q的⊙O的切線交OA的延長線于R.求證:RP=RQ.23、已知:如圖,點(diǎn)E是正方形ABCD中AD邊上的一動(dòng)點(diǎn),連結(jié)BE,作∠BEG=∠BEA交CD于G,再以B為圓心作,連結(jié)BG.(1)求證:EG與相切.(2)求∠EBG的度數(shù).24、如圖,將圓心角都是90°的扇形OAB和扇形OCD疊放在一起,連接AC、BD.(1)將△AOC經(jīng)過怎樣的圖形變換可以得到△BOD?(2)若的長為πcm,OD=3cm,求圖中陰影部分的面積是多少?參考答案1、C2、C3、A4、C
5、D6、B7、C8、C9、C10、A11、C12、A13、圓心坐標(biāo)為:(5,2).14、415、5.16、15°.17、②③.18、答案為:6﹣2.19、答案:.20、解:(Ⅰ)如圖①,∵BC是⊙O的直徑,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如圖②,連接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等邊三角形,∴BD=OB=OD.∵⊙O的直徑為10,則OB=5,∴BD=5.21.解:(1)如圖,連接OD,∵AB為⊙O的直徑,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD與⊙O相切于點(diǎn)D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.22、證明:連接OQ,∵RQ是⊙O的切線,∴OQ⊥QR,∴∠OQB+∠BQR=90°.∵OA⊥OB,∴∠OPB+∠B=90°.又∵OB=OQ,∴∠OQB=∠B.∴∠PQR=∠BPO=∠RPQ.∴RP=RQ.23、(1)證明:過點(diǎn)B作BF⊥EG,垂足為F,∴∠BFE=90°∵四邊形ABCD是正方形∴∠A=90°,∴∠BFE=∠A,在△ABE和△FBE中∴△ABE≌△FBE(AAS),∴BF=BA,∵BA為的半徑,∴BF為的半徑,∴EG與相切;
(2)解:由(1)可得△ABE≌△FBE,∴∠FBE=∠ABE=∠ABF,∵四邊形ABCD是正方形,∴∠C=∠ABC=90°,∴CD是⊙O切線,由(1)可得EG與相切,∴GF=GC,∵BF⊥EG,BC⊥CD,∴∠FBG=∠CBG=∠FBC,∴∠EBG=∠FBE+∠FBG=(∠ABF+∠FBC)=∠ABC=45°.24、解:(1)∵扇形OAB和扇形OCD的圓心角都是90°,∴OA=OB,OC=OD,∠AOB=∠COD=90°,∴將△AOC繞點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)于夫妻雙方離婚協(xié)議書
- 土地租賃合同雙方協(xié)議書七篇
- 2025無財(cái)產(chǎn)離婚協(xié)議書
- 面神經(jīng)炎病因介紹
- 錯(cuò)構(gòu)瘤病因介紹
- 蕁麻疹病因介紹
- 11化學(xué)中考真題匯編《氧氣的性質(zhì)》及答案
- (2024)乳制品加工項(xiàng)目可行性研究報(bào)告寫作范本(一)
- 2024-2025學(xué)年人教版八年級英語上學(xué)期期末真題 專題01 單項(xiàng)選擇(安徽專用)
- 2023年耐磨劑項(xiàng)目融資計(jì)劃書
- 機(jī)場物流園弱電系統(tǒng)前端設(shè)備維保外包項(xiàng)目維護(hù)方案
- 竣工驗(yàn)收程序流程圖
- 資產(chǎn)處置拆除施工現(xiàn)場消防、安全保障協(xié)議書
- Q∕GDW 10799.6-2018 國家電網(wǎng)有限公司電力安全工作規(guī)程 第6部分:光伏電站部分
- 口腔科診斷證明書模板
- 商業(yè)銀行授權(quán)管理辦法
- 蘇州小吃學(xué)習(xí)教案
- 婦科5個(gè)病種臨床路徑
- 精華網(wǎng)校高東輝一二三講講義
- 2021年全國中等職業(yè)學(xué)校學(xué)生服裝設(shè)計(jì)與工藝技能大賽理論題庫
- 五方單位評估報(bào)告
評論
0/150
提交評論