版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一個半徑為24的扇形的弧長等于20π,則這個扇形的圓心角是()A.120° B.135° C.150° D.165°2.在實數(shù)π,0,,﹣4中,最大的是()A.π B.0 C. D.﹣43.如圖,△ABC是等邊三角形,點P是三角形內(nèi)的任意一點,PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為12,則PD+PE+PF=()A.12 B.8 C.4 D.34.某車間需加工一批零件,車間20名工人每天加工零件數(shù)如表所示:每天加工零件數(shù)45678人數(shù)36542每天加工零件數(shù)的中位數(shù)和眾數(shù)為()A.6,5 B.6,6 C.5,5 D.5,65.將拋物線y=﹣(x+1)2+4平移,使平移后所得拋物線經(jīng)過原點,那么平移的過程為()A.向下平移3個單位 B.向上平移3個單位C.向左平移4個單位 D.向右平移4個單位6.某公園里鮮花的擺放如圖所示,第①個圖形中有3盆鮮花,第②個圖形中有6盆鮮花,第③個圖形中有11盆鮮花,……,按此規(guī)律,則第⑦個圖形中的鮮花盆數(shù)為()A.37 B.38 C.50 D.517.如圖是小明在物理實驗課上用量筒和水測量鐵塊A的體積實驗,小明在勻速向上將鐵塊提起,直至鐵塊完全露出水面一定高度的過程中,則下圖能反映液面高度h與鐵塊被提起的時間t之間的函數(shù)關(guān)系的大致圖象是()A. B. C. D.8.二次函數(shù)y=x2+bx–1的圖象如圖,對稱軸為直線x=1,若關(guān)于x的一元二次方程x2–2x–1–t=0(t為實數(shù))在–1<x<4的范圍內(nèi)有實數(shù)解,則t的取值范圍是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<79.如圖是二次函數(shù)的圖象,有下面四個結(jié)論:;;;,其中正確的結(jié)論是
A. B. C. D.10.函數(shù)y=中自變量x的取值范圍是A.x≥0 B.x≥4 C.x≤4 D.x>4二、填空題(共7小題,每小題3分,滿分21分)11.如圖,?ABCD中,AC⊥CD,以C為圓心,CA為半徑作圓弧交BC于E,交CD的延長線于點F,以AC上一點O為圓心OA為半徑的圓與BC相切于點M,交AD于點N.若AC=9cm,OA=3cm,則圖中陰影部分的面積為_____cm1.12.如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號都填上)13.如圖,在平面直角坐標(biāo)系中,已知點A(1,1),以點O為旋轉(zhuǎn)中心,將點A逆時針旋轉(zhuǎn)到點B的位置,則的長為_____.14.如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,點M,N分別是邊BC,AB上的動點,沿MN所在的直線折疊∠B,使點B的對應(yīng)點B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長為_____.15.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE=_____°.16.若代數(shù)式的值不小于代數(shù)式的值,則x的取值范圍是_____.17.如圖,在平面直角坐標(biāo)系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(shù)(k≠0,x>0)的圖象過點B,E.若AB=2,則k的值為________.三、解答題(共7小題,滿分69分)18.(10分)已知a+b=3,ab=2,求代數(shù)式a3b+2a2b2+ab3的值.19.(5分)如圖,圓O是的外接圓,AE平分交圓O于點E,交BC于點D,過點E作直線.(1)判斷直線l與圓O的關(guān)系,并說明理由;(2)若的平分線BF交AD于點F,求證:;(3)在(2)的條件下,若,,求AF的長.20.(8分)(問題情境)張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣的一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:[結(jié)論運用]如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.21.(10分)如圖,在△ABC中,AB=AC=1,BC=5-1(1)通過計算,判斷AD2與AC?CD的大小關(guān)系;(2)求∠ABD的度數(shù).22.(10分)先化簡,再求值:,其中a是方程a2+a﹣6=0的解.23.(12分)鐵嶺市某商貿(mào)公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量y(千克)與每千克降價x(元)(0<x<20)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示:求y與x之間的函數(shù)關(guān)系式;商貿(mào)公司要想獲利2090元,則這種干果每千克應(yīng)降價多少元?該干果每千克降價多少元時,商貿(mào)公司獲利最大?最大利潤是多少元?24.(14分)如圖,拋物線y=-x2+bx+c的頂點為C,對稱軸為直線x=1,且經(jīng)過點A(3,-1),與y軸交于點B.求拋物線的解析式;判斷△ABC的形狀,并說明理由;經(jīng)過點A的直線交拋物線于點P,交x軸于點Q,若S△OPA=2S△OQA,試求出點P的坐標(biāo).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
這個扇形的圓心角的度數(shù)為n°,根據(jù)弧長公式得到20π=,然后解方程即可.【詳解】解:設(shè)這個扇形的圓心角的度數(shù)為n°,根據(jù)題意得20π=,解得n=150,即這個扇形的圓心角為150°.故選C.【點睛】本題考查了弧長公式:L=(n為扇形的圓心角的度數(shù),R為扇形所在圓的半徑).2、C【解析】
根據(jù)實數(shù)的大小比較即可得到答案.【詳解】解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案選C.【點睛】本題主要考查了實數(shù)的大小比較,解本題的要點在于統(tǒng)一根據(jù)二次根式的性質(zhì),把根號外的移到根號內(nèi),只需比較被開方數(shù)的大小.3、C【解析】
過點P作平行四邊形PGBD,EPHC,進而利用平行四邊形的性質(zhì)及等邊三角形的性質(zhì)即可.【詳解】延長EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【點睛】本題主要考查了平行四邊形的判定及性質(zhì)以及等邊三角形的判定及性質(zhì),等邊三角形的性質(zhì):等邊三角形的三個內(nèi)角都相等,且都等于60°.4、A【解析】
根據(jù)眾數(shù)、中位數(shù)的定義分別進行解答即可.【詳解】由表知數(shù)據(jù)5出現(xiàn)了6次,次數(shù)最多,所以眾數(shù)為5;因為共有20個數(shù)據(jù),所以中位數(shù)為第10、11個數(shù)據(jù)的平均數(shù),即中位數(shù)為=6,故選A.【點睛】本題考查了眾數(shù)和中位數(shù)的定義.用到的知識點:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).5、A【解析】將拋物線平移,使平移后所得拋物線經(jīng)過原點,若左右平移n個單位得到,則平移后的解析式為:,將(0,0)代入后解得:n=-3或n=1,所以向左平移1個單位或向右平移3個單位后拋物線經(jīng)過原點;若上下平移m個單位得到,則平移后的解析式為:,將(0,0)代入后解得:m=-3,所以向下平移3個單位后拋物線經(jīng)過原點,故選A.6、D【解析】試題解析:第①個圖形中有盆鮮花,第②個圖形中有盆鮮花,第③個圖形中有盆鮮花,…第n個圖形中的鮮花盆數(shù)為則第⑥個圖形中的鮮花盆數(shù)為故選C.7、B【解析】根據(jù)題意,在實驗中有3個階段,①、鐵塊在液面以下,液面得高度不變;②、鐵塊的一部分露出液面,但未完全露出時,液面高度降低;③、鐵塊在液面以上,完全露出時,液面高度又維持不變;分析可得,B符合描述;故選B.8、B【解析】
利用對稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點坐標(biāo)為(1,﹣2),再計算當(dāng)﹣1<x<4時對應(yīng)的函數(shù)值的范圍為﹣2≤y<7,由于關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數(shù))在﹣1<x<4的范圍內(nèi)有實數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點,然后利用函數(shù)圖象可得到t的范圍.【詳解】拋物線的對稱軸為直線x=﹣=1,解得b=﹣2,∴拋物線解析式為y=x2﹣2x﹣1,則頂點坐標(biāo)為(1,﹣2),當(dāng)x=﹣1時,y=x2﹣2x﹣1=2;當(dāng)x=4時,y=x2﹣2x﹣1=7,當(dāng)﹣1<x<4時,﹣2≤y<7,而關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數(shù))在﹣1<x<4的范圍內(nèi)有實數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點,∴﹣2≤t<7,故選B.【點睛】本題考查了二次函數(shù)的性質(zhì)、拋物線與x軸的交點、二次函數(shù)與一元二次方程,把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程是解題的關(guān)鍵.9、D【解析】
根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以;時,由圖像可知此時,所以;由對稱軸,可得;當(dāng)時,由圖像可知此時,即,將代入可得.【詳解】①根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以,故①正確.②時,由圖像可知此時,即,故②正確.③由對稱軸,可得,所以錯誤,故③錯誤;④當(dāng)時,由圖像可知此時,即,將③中變形為,代入可得,故④正確.故答案選D.【點睛】本題考查了二次函數(shù)的圖像與系數(shù)的關(guān)系,注意用數(shù)形結(jié)合的思想解決問題。10、B【解析】
根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0,列不等式求解.【詳解】根據(jù)題意得:x﹣1≥0,解得x≥1,則自變量x的取值范圍是x≥1.故選B.【點睛】本題主要考查函數(shù)自變量的取值范圍的知識點,注意:二次根式的被開方數(shù)是非負(fù)數(shù).二、填空題(共7小題,每小題3分,滿分21分)11、11π﹣.【解析】
陰影部分的面積=扇形ECF的面積-△ACD的面積-△OCM的面積-扇形AOM的面積-弓形AN的面積.【詳解】解:連接OM,ON.∴OM=3,OC=6,∴∴∴扇形ECF的面積△ACD的面積扇形AOM的面積弓形AN的面積△OCM的面積∴陰影部分的面積=扇形ECF的面積?△ACD的面積?△OCM的面積?扇形AOM的面積?弓形AN的面積故答案為.【點睛】考查不規(guī)則圖形的面積的計算,掌握扇形的面積公式是解題的關(guān)鍵.12、①②④【解析】
①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對等弧得到,可以判斷①;
②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,,
∴△BOE≌△COF,
∴BE=CF,
∴,①正確;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正確.③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設(shè)BG=x,則BH=4-x,
則GH==,
∴其最小值為4+2,④正確.
故答案為:①②④【點睛】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強.13、.【解析】
由點A(1,1),可得OA的長,點A在第一象限的角平分線上,可得∠AOB=45°,,再根據(jù)弧長公式計算即可.【詳解】∵A(1,1),∴OA=,點A在第一象限的角平分線上,∵以點O為旋轉(zhuǎn)中心,將點A逆時針旋轉(zhuǎn)到點B的位置,∴∠AOB=45°,∴的長為=,故答案為:.【點睛】本題考查坐標(biāo)與圖形變化——旋轉(zhuǎn),弧長公式,熟練掌握旋轉(zhuǎn)的性質(zhì)以及弧長公式是解題的關(guān)鍵.本題中求出OA=以及∠AOB=45°也是解題的關(guān)鍵.14、或1【解析】
圖1,∠B’MC=90°,B’與點A重合,M是BC的中點,所以BM=,圖2,當(dāng)∠MB’C=90°,∠A=90°,AB=AC,∠C=45°,所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,所以BM=1.【詳解】請在此輸入詳解!15、1【解析】
根據(jù)△ABC中DE垂直平分AC,可求出AE=CE,再根據(jù)等腰三角形的性質(zhì)求出∠ACE=∠A=30°,再根據(jù)∠ACB=80°即可解答.【詳解】∵DE垂直平分AC,∠A=30°,∴AE=CE,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案為:1.16、x≥【解析】
根據(jù)題意列出不等式,依據(jù)解不等式得基本步驟求解可得.【詳解】解:根據(jù)題意,得:,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥,故答案為x≥.【點睛】本題主要考查解不等式得基本技能,熟練掌握解一元一次不等式的基本步驟是解題的關(guān)鍵.17、【解析】
解:設(shè)E(x,x),∴B(2,x+2),∵反比例函數(shù)(k≠0,x>0)的圖象過點B.E.∴x2=2(x+2),,(舍去),,故答案為三、解答題(共7小題,滿分69分)18、1【解析】
先提取公因式ab,再根據(jù)完全平方公式進行二次分解,然后代入數(shù)據(jù)進行計算即可得解.【詳解】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,將a+b=3,ab=2代入得,ab(a+b)2=2×32=1.故代數(shù)式a3b+2a2b2+ab3的值是1.19、(1)直線l與相切,見解析;(2)見解析;(3)AF=.【解析】
連接由題意可證明,于是得到,由等腰三角形三線合一的性質(zhì)可證明,于是可證明,故此可證明直線l與相切;先由角平分線的定義可知,然后再證明,于是可得到,最后依據(jù)等角對等邊證明即可;先求得BE的長,然后證明∽,由相似三角形的性質(zhì)可求得AE的長,于是可得到AF的長.【詳解】直線l與相切.理由:如圖1所示:連接OE.平分,.,.,.直線l與相切.平分,.又,.又,..由得.,,∽.,即,解得;..故答案為:(1)直線l與相切,見解析;(2)見解析;(3)AF=.【點睛】本題主要考查的是圓的性質(zhì)、相似三角形的性質(zhì)和判定、等腰三角形的性質(zhì)、三角形外角的性質(zhì)、切線的判定,證得是解題的關(guān)鍵.20、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結(jié)論運用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】
小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運用]過點E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長AD,BC交于點F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過點P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過點C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結(jié)論運用]如圖④過點E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問題情景中的結(jié)論可得:PG+PH=EQ,∴PG+PH=1.∴PG+PH的值為1.[遷移拓展]延長AD,BC交于點F,作BH⊥AF,如圖⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE=90°,∴△ADE∽△BCE,∴∠A=∠CBE,∴FA=FB,由問題情景中的結(jié)論可得:ED+EC=BH,設(shè)DH=x,∴AH=AD+DH=3+x,∵BH⊥AF,∴∠BHA=90°,∴BH2=BD2﹣DH2=AB2﹣AH2,∵AB=2,AD=3,BD=,∴()2﹣x2=(2)2﹣(3+x)2,∴x=1,∴BH2=BD2﹣DH2=37﹣1=36,∴BH=6,∴ED+EC=6,∵∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點,∴DM=EM=AE,CN=EN=BE,∴△DEM與△CEN的周長之和=DE+DM+EM+CN+EN+EC=DE+AE+BE+EC=DE+AB+EC=DE+EC+AB=6+2,∴△DEM與△CEN的周長之和(6+2)dm.【點睛】此題是一道綜合題,考查三角形全等的判定及性質(zhì),勾股定理,矩形的性質(zhì)定理,三角形的相似的判定及性質(zhì)定理,翻折的性質(zhì),根據(jù)題中小軍和小俊的思路進行證明,故正確理解題意由此進行后面的證明是解題的關(guān)鍵.21、(1)AD2=AC?CD.(2)36°.【解析】試題分析:(1)通過計算得到AD2=(2)由AD2=AC?CD,得到BC2設(shè)∠A=∠ABD=x,則∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形內(nèi)角和等于180°,解得:x=36°,從而得到結(jié)論.試題解析:(1)∵AD=BC=,∴AD2=(5-1∵AC=1,∴CD=1-5-12=3-(2)∵AD2=AC?CD,∴BC2設(shè)∠A=∠ABD=x,則∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考點:相似三角形的判定與性質(zhì).22、.【解析】
先計算括號里面的,再利用除法化簡原式,【詳解】,=,=,=,=,由a2+a﹣6=0,得a=﹣3或a=2,∵a﹣2≠0,∴a≠2,∴a=﹣3,當(dāng)a=﹣3時,原式=.【點睛】本題考查了分式的化簡求值及一元二次方程的解,解題的關(guān)鍵是熟練掌握分式的混合運算.23、(1)y=10x+100;(2)這種干果每千克應(yīng)降價9元;(3)該干果每千克降價5元時,商貿(mào)公司獲利最大,最大利潤是2250元.【解析】
(1)由待定系數(shù)法即可得到函數(shù)的解析式;(2)根據(jù)銷售量×每千克利潤=總利潤列出方程求解即可;(3)根據(jù)銷售量×每千克利潤=總利潤列出函數(shù)解析式求解即可.【詳解】(1)設(shè)y與x之間的函數(shù)關(guān)系式為:y=kx+b,把(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版股權(quán)激勵與員工福利相結(jié)合合同范本3篇
- 2025年度合同管理軟件智能分析與報告系統(tǒng)合同2篇
- 2025年煉油、化工生產(chǎn)專用設(shè)備合作協(xié)議書
- 2024年酒店客房出租合同
- 2024年車展展商服務(wù)協(xié)議3篇
- 2024年版:云計算服務(wù)合同
- 2025年度板材市場拓展與銷售渠道共建合同3篇
- 二零二五年度養(yǎng)殖羊場科研合作合同3篇
- 二零二五年度健身房場地租賃合同附帶健身服飾租賃服務(wù)3篇
- 2025年中國牛仔服行業(yè)市場全景評估及發(fā)展戰(zhàn)略研究報告
- 小型企業(yè)通用物資入庫單
- 直升機彈性軸承性能優(yōu)化專題研究
- 微型頂管施工方案
- 湘教文藝版小學(xué)五年級音樂上冊期末測試題
- 老化箱點檢表A4版本
- 略說魯迅全集的五種版本
- 2022年110接警員業(yè)務(wù)測試題庫及答案
- DB44∕T 115-2000 中央空調(diào)循環(huán)水及循環(huán)冷卻水水質(zhì)標(biāo)準(zhǔn)
- 嵌入式軟件架構(gòu)設(shè)計
- 《石油天然氣地質(zhì)與勘探》第3章儲集層和蓋層
- 航道整治課程設(shè)計--
評論
0/150
提交評論