版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖是甲、乙兩位同學(xué)在六次數(shù)學(xué)小測(cè)試(滿分100分)中得分情況的莖葉圖,則下列說(shuō)法錯(cuò)誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等2.已知角的終邊經(jīng)過(guò)點(diǎn),則的值是A.1或 B.或 C.1或 D.或3.設(shè)為自然對(duì)數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.4.對(duì)于定義在上的函數(shù),若下列說(shuō)法中有且僅有一個(gè)是錯(cuò)誤的,則錯(cuò)誤的一個(gè)是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對(duì)于,都有5.從裝有除顏色外完全相同的3個(gè)白球和個(gè)黑球的布袋中隨機(jī)摸取一球,有放回的摸取5次,設(shè)摸得白球數(shù)為,已知,則A. B. C. D.6.設(shè),是雙曲線的左,右焦點(diǎn),是坐標(biāo)原點(diǎn),過(guò)點(diǎn)作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.7.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.49.已知的部分圖象如圖所示,則的表達(dá)式是()A. B.C. D.10.已知向量與的夾角為,定義為與的“向量積”,且是一個(gè)向量,它的長(zhǎng)度,若,,則()A. B.C.6 D.11.下列函數(shù)中既關(guān)于直線對(duì)稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.12.已知函數(shù)在上都存在導(dǎo)函數(shù),對(duì)于任意的實(shí)數(shù)都有,當(dāng)時(shí),,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為矩形的對(duì)角線的交點(diǎn),現(xiàn)從這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),則這3個(gè)點(diǎn)不共線的概率為________.14.函數(shù)的定義域是.15.設(shè)f(x)=etx(t>0),過(guò)點(diǎn)P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點(diǎn)為Q,曲線C過(guò)點(diǎn)Q的切線交x軸于點(diǎn)R,若S(1,f(1)),則△PRS的面積的最小值是_____.16.已知直線被圓截得的弦長(zhǎng)為2,則的值為__三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對(duì)任意,都有恒成立,求實(shí)數(shù)a的取值范圍;(3)證明:對(duì)一切,都有成立.18.(12分)已知直線:(為參數(shù)),曲線(為參數(shù)).(1)設(shè)與相交于,兩點(diǎn),求;(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的倍,縱坐標(biāo)壓縮為原來(lái)的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線距離的最小值.19.(12分)已知橢圓的離心率為,且過(guò)點(diǎn),點(diǎn)在第一象限,為左頂點(diǎn),為下頂點(diǎn),交軸于點(diǎn),交軸于點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若,求點(diǎn)的坐標(biāo).20.(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國(guó)家歷史文化名城.其中著名的景點(diǎn)有黃鶴樓、戶部巷、東湖風(fēng)景區(qū)等等.(1)為了解“五·一”勞動(dòng)節(jié)當(dāng)日江城某旅游景點(diǎn)游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機(jī)抽取了1000人,制成了如圖的頻率分布直方圖:現(xiàn)從年齡在內(nèi)的游客中,采用分層抽樣的方法抽取10人,再?gòu)某槿〉?0人中隨機(jī)抽取4人,記4人中年齡在內(nèi)的人數(shù)為,求;(2)為了給游客提供更舒適的旅游體驗(yàn),該旅游景點(diǎn)游船中心計(jì)劃在2020年勞動(dòng)節(jié)當(dāng)日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數(shù)據(jù)資料顯示每年勞動(dòng)節(jié)當(dāng)日客流量(單位:萬(wàn)人)都大于1.將每年勞動(dòng)節(jié)當(dāng)日客流量數(shù)據(jù)分成3個(gè)區(qū)間整理得表:勞動(dòng)節(jié)當(dāng)日客流量頻數(shù)(年)244以這10年的數(shù)據(jù)資料記錄的3個(gè)區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動(dòng)節(jié)當(dāng)日客流量相互獨(dú)立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動(dòng)節(jié)當(dāng)日型游船最多使用量(單位:艘)要受當(dāng)日客流量(單位:萬(wàn)人)的影響,其關(guān)聯(lián)關(guān)系如下表:勞動(dòng)節(jié)當(dāng)日客流量型游船最多使用量123若某艘型游船在勞動(dòng)節(jié)當(dāng)日被投入且被使用,則游船中心當(dāng)日可獲得利潤(rùn)3萬(wàn)元;若某艘型游船勞動(dòng)節(jié)當(dāng)日被投入?yún)s不被使用,則游船中心當(dāng)日虧損0.5萬(wàn)元.記(單位:萬(wàn)元)表示該游船中心在勞動(dòng)節(jié)當(dāng)日獲得的總利潤(rùn),的數(shù)學(xué)期望越大游船中心在勞動(dòng)節(jié)當(dāng)日獲得的總利潤(rùn)越大,問(wèn)該游船中心在2020年勞動(dòng)節(jié)當(dāng)日應(yīng)投入多少艘型游船才能使其當(dāng)日獲得的總利潤(rùn)最大?21.(12分)已知數(shù)列滿足,,數(shù)列滿足.(Ⅰ)求證數(shù)列是等比數(shù)列;(Ⅱ)求數(shù)列的前項(xiàng)和.22.(10分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點(diǎn)P在棱DF上.(1)若P是DF的中點(diǎn),求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長(zhǎng)度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結(jié)論.【詳解】對(duì)于甲,;對(duì)于乙,,故正確;甲的極差為,乙的極差為,故錯(cuò)誤;對(duì)于甲,方差.5,對(duì)于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點(diǎn)睛】本題考查莖葉圖的應(yīng)用,考查平均數(shù)和方差等概念,培養(yǎng)計(jì)算能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.2、B【解析】
根據(jù)三角函數(shù)的定義求得后可得結(jié)論.【詳解】由題意得點(diǎn)與原點(diǎn)間的距離.①當(dāng)時(shí),,∴,∴.②當(dāng)時(shí),,∴,∴.綜上可得的值是或.故選B.【點(diǎn)睛】利用三角函數(shù)的定義求一個(gè)角的三角函數(shù)值時(shí)需確定三個(gè)量:角的終邊上任意一個(gè)異于原點(diǎn)的點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y,該點(diǎn)到原點(diǎn)的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.3、D【解析】
利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D【點(diǎn)睛】本小題主要考查函數(shù)值的計(jì)算,屬于基礎(chǔ)題.4、B【解析】
根據(jù)函數(shù)對(duì)稱性和單調(diào)性的關(guān)系,進(jìn)行判斷即可.【詳解】由得關(guān)于對(duì)稱,若關(guān)于對(duì)稱,則函數(shù)在上不可能是單調(diào)的,故錯(cuò)誤的可能是或者是,若錯(cuò)誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時(shí)也錯(cuò)誤,不滿足條件.故錯(cuò)誤的是,故選:.【點(diǎn)睛】本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用,結(jié)合對(duì)稱性和單調(diào)性的關(guān)系是解決本題的關(guān)鍵.5、B【解析】
由題意知,,由,知,由此能求出.【詳解】由題意知,,,解得,,.故選:B.【點(diǎn)睛】本題考查離散型隨機(jī)變量的方差的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意二項(xiàng)分布的靈活運(yùn)用.6、B【解析】
設(shè)過(guò)點(diǎn)作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應(yīng)方程,求出離心率.【詳解】解:不妨設(shè)過(guò)點(diǎn)作的垂線,其方程為,由解得,,即,由,所以有,化簡(jiǎn)得,所以離心率.故選:B.【點(diǎn)睛】本題主要考查雙曲線的概念、直線與直線的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解、推理論證能力,屬于中檔題.7、C【解析】
先得出兩直線平行的充要條件,根據(jù)小范圍可推導(dǎo)出大范圍,可得到答案.【詳解】直線,,的充要條件是,當(dāng)a=2時(shí),化簡(jiǎn)后發(fā)現(xiàn)兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點(diǎn)睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰(shuí)大誰(shuí)必要,誰(shuí)小誰(shuí)充分”的原則,判斷命題p與命題q的關(guān)系.8、B【解析】
解出,分別代入選項(xiàng)中的值進(jìn)行驗(yàn)證.【詳解】解:,.當(dāng)時(shí),,此時(shí)不成立.當(dāng)時(shí),,此時(shí)成立,符合題意.故選:B.【點(diǎn)睛】本題考查了不等式的解法,考查了集合的關(guān)系.9、D【解析】
由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點(diǎn)的坐標(biāo)代入函數(shù)的解析式,結(jié)合的取值范圍求出的值,由此可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,.將點(diǎn)代入函數(shù)的解析式得,得,,,則,,因此,.故選:D.【點(diǎn)睛】本題考查利用圖象求三角函數(shù)解析式,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.10、D【解析】
先根據(jù)向量坐標(biāo)運(yùn)算求出和,進(jìn)而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點(diǎn)睛】此題考查向量的坐標(biāo)運(yùn)算,引入新定義,屬于簡(jiǎn)單題目.11、C【解析】
根據(jù)函數(shù)的對(duì)稱性和單調(diào)性的特點(diǎn),利用排除法,即可得出答案.【詳解】A中,當(dāng)時(shí),,所以不關(guān)于直線對(duì)稱,則錯(cuò)誤;B中,,所以在區(qū)間上為減函數(shù),則錯(cuò)誤;D中,,而,則,所以不關(guān)于直線對(duì)稱,則錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對(duì)稱性和單調(diào)性,屬于基礎(chǔ)題.12、B【解析】
先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡(jiǎn)不等式,解得結(jié)果.【詳解】令,則當(dāng)時(shí),,又,所以為偶函數(shù),從而等價(jià)于,因此選B.【點(diǎn)睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,由此能求出這3個(gè)點(diǎn)不共線的概率.【詳解】解:為矩形的對(duì)角線的交點(diǎn),現(xiàn)從,,,,這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,這3個(gè)點(diǎn)不共線的概率為.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查對(duì)立事件概率計(jì)算公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、【解析】解:因?yàn)?,故定義域?yàn)?5、【解析】
計(jì)算R(t,0),PR=t﹣(t),△PRS的面積為S,導(dǎo)數(shù)S′,由S′=0得t=1,根據(jù)函數(shù)的單調(diào)性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導(dǎo)數(shù)f′(x)=tetx,∴過(guò)Q的切線斜率k=t,設(shè)R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導(dǎo)數(shù)S′,由S′=0得t=1,當(dāng)t>1時(shí),S′>0,當(dāng)0<t<1時(shí),S′<0,∴t=1為極小值點(diǎn),也為最小值點(diǎn),∴△PRS的面積的最小值為.故答案為:.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求面積的最值問(wèn)題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.16、1【解析】
根據(jù)弦長(zhǎng)為半徑的兩倍,得直線經(jīng)過(guò)圓心,將圓心坐標(biāo)代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,
因?yàn)橹本€被圓截得的弦長(zhǎng)為2,
所以直線經(jīng)過(guò)圓心(1,1),
,解得.故答案為:1.【點(diǎn)睛】本題考查了直線與圓相交的性質(zhì),屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)((3)見證明【解析】
(1)先求函數(shù)導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律確定函數(shù)單調(diào)性,最后根據(jù)函數(shù)單調(diào)性確定最小值取法;(2)先分離不等式,轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問(wèn)題,利用導(dǎo)數(shù)求對(duì)應(yīng)函數(shù)最值即得結(jié)果;(3)構(gòu)造兩個(gè)函數(shù),再利用兩函數(shù)最值關(guān)系進(jìn)行證明.【詳解】(1)當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,所以函數(shù)f(x)的最小值為f()=;(2)因?yàn)樗詥?wèn)題等價(jià)于在上恒成立,記則,因?yàn)?,令函?shù)f(x)在(0,1)上單調(diào)遞減;函數(shù)f(x)在(1,+)上單調(diào)遞增;即,即實(shí)數(shù)a的取值范圍為(.(3)問(wèn)題等價(jià)于證明由(1)知道,令函數(shù)在(0,1)上單調(diào)遞增;函數(shù)在(1,+)上單調(diào)遞減;所以{,因此,因?yàn)閮蓚€(gè)等號(hào)不能同時(shí)取得,所以即對(duì)一切,都有成立.【點(diǎn)睛】對(duì)于求不等式成立時(shí)的參數(shù)范圍問(wèn)題,在可能的情況下把參數(shù)分離出來(lái),使不等式一端是含有參數(shù)的不等式,另一端是一個(gè)區(qū)間上具體的函數(shù),這樣就把問(wèn)題轉(zhuǎn)化為一端是函數(shù),另一端是參數(shù)的不等式,便于問(wèn)題的解決.但要注意分離參數(shù)法不是萬(wàn)能的,如果分離參數(shù)后,得出的函數(shù)解析式較為復(fù)雜,性質(zhì)很難研究,就不要使用分離參數(shù)法.18、(1);(2).【解析】
(1)將直線和曲線化為普通方程,聯(lián)立直線和曲線,可得交點(diǎn)坐標(biāo),可得的值;(2)可得曲線的參數(shù)方程,利用點(diǎn)到直線的距離公式結(jié)合三角形的最值可得答案.【詳解】解:(1)直線的普通方程為,的普通方程.聯(lián)立方程組,解得與的交點(diǎn)為,,則.(2)曲線的參數(shù)方程為(為參數(shù)),故點(diǎn)的坐標(biāo)為,從而點(diǎn)到直線的距離是,由此當(dāng)時(shí),取得最小值,且最小值為.【點(diǎn)睛】本題主要考查參數(shù)方程與普通方程的轉(zhuǎn)化及參數(shù)方程的基本性質(zhì)、點(diǎn)到直線的距離公式等,屬于中檔題.19、(1);(2)【解析】
(1)由題意得,求出,進(jìn)而可得到橢圓的方程;(2)由(1)知點(diǎn),坐標(biāo),設(shè)直線的方程為,易知,可得點(diǎn)的坐標(biāo)為,聯(lián)立方程,得到關(guān)于的一元二次方程,結(jié)合根與系數(shù)關(guān)系,可用表示的坐標(biāo),進(jìn)而由三點(diǎn)共線,即,可用表示的坐標(biāo),再結(jié)合,可建立方程,從而求出的值,即可求得點(diǎn)的坐標(biāo).【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點(diǎn),,由題意可設(shè)直線的斜率為,則,所以直線的方程為,則點(diǎn)的坐標(biāo)為,聯(lián)立方程,消去得:.設(shè),則,所以,所以,所以.設(shè)點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)三點(diǎn)共線,所以,即,所以,所以.因?yàn)?,所以,即,所以,解得,又,所以符合題意,計(jì)算可得,,故點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查平行線的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于難題.20、(1);(2)投入3艘型游船使其當(dāng)日獲得的總利潤(rùn)最大【解析】
(1)首先計(jì)算出在,內(nèi)抽取的人數(shù),然后利用超幾何分布概率計(jì)算公式,計(jì)算出.(2)分別計(jì)算出投入艘游艇時(shí),總利潤(rùn)的期望值,由此確定當(dāng)日游艇投放量.【詳解】(1)年齡在內(nèi)的游客人數(shù)為150,年齡在內(nèi)的游客人數(shù)為100;若采用分層抽樣的方法抽取10人,則年齡在內(nèi)的人數(shù)為6人,年齡在內(nèi)的人數(shù)為4人.可得.(2)①當(dāng)投入1艘型游船時(shí),因客流量總大于1,則(萬(wàn)元).②當(dāng)投入2艘型游船時(shí),若,則,此時(shí);若,則,此時(shí);此時(shí)的分布列如下表:2.56此時(shí)(萬(wàn)元).③當(dāng)投入3艘型游船時(shí),若,則,此時(shí);若,則,此時(shí);若,則,此時(shí);此時(shí)的分布列如下表:25.59此時(shí)(萬(wàn)元).由于,則該游船中心在2020年勞動(dòng)節(jié)當(dāng)日應(yīng)投入3艘型游船使其當(dāng)日獲得的總利潤(rùn)最大.【點(diǎn)睛】本小題主要考查分層抽樣,考查超幾何分布概率計(jì)算公式,考查隨機(jī)變量分布列和期望的求法,考查分析與思考問(wèn)題的能力,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.21、(Ⅰ)見證明;(Ⅱ)【解析】
(Ⅰ)利用等比數(shù)列的定義結(jié)合得出數(shù)列是等比數(shù)列(Ⅱ)數(shù)列是“等比-等差”的類型,利用分組求和即可得出前項(xiàng)和.【詳解】解:(Ⅰ)當(dāng)時(shí),,故.當(dāng)時(shí),,則,,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.(Ⅱ)由(Ⅰ)得,,,.【點(diǎn)睛】(Ⅰ)證明數(shù)列是等比數(shù)列可利用定
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 吊車協(xié)議書參考
- 個(gè)人汽車買賣協(xié)議模板
- 闌尾切除術(shù)病因介紹
- 中考政治拓展提升篇知識(shí)梳理
- (2024)某鎮(zhèn)解決污染水項(xiàng)目可行性研究報(bào)告(一)
- 重慶2020-2024年中考英語(yǔ)5年真題回-學(xué)生版-專題10 書面表達(dá)
- 典型設(shè)備管理舉例- 隋向30課件講解
- 云南省保山市智源初級(jí)中學(xué)2024-2025學(xué)年九年級(jí)上學(xué)期12月月考?xì)v史試卷-A4
- 山東省東營(yíng)市廣饒縣樂(lè)安中學(xué)2024-2025學(xué)年八年級(jí)上學(xué)期12月月考化學(xué)試題-A4
- 2023年藥品包裝機(jī)械項(xiàng)目籌資方案
- 卡通繪本愚公移山成語(yǔ)故事寓意故事PPT
- 營(yíng)胡西山隧道出口二襯臺(tái)車拆卸方案
- 電工材料公司年經(jīng)營(yíng)優(yōu)質(zhì)企劃書
- 醫(yī)囑執(zhí)行查對(duì)記錄本
- 道家符圖地結(jié)構(gòu)與原理
- 零星修繕工程合同范本3篇 維修零星工程合同范本
- 新人教版三年級(jí)上冊(cè)數(shù)學(xué) 總復(fù)習(xí) 教學(xué)課件
- 耳鼻咽喉科臨床診療指南
- (二)防觸電技術(shù)
- 實(shí)訓(xùn)報(bào)告---配置-Hyper-V-服務(wù)實(shí)訓(xùn)
- 場(chǎng)發(fā)射掃描電鏡介紹
評(píng)論
0/150
提交評(píng)論