2023屆北京市級名校中考數(shù)學(xué)考前最后一卷含解析及點睛_第1頁
2023屆北京市級名校中考數(shù)學(xué)考前最后一卷含解析及點睛_第2頁
2023屆北京市級名校中考數(shù)學(xué)考前最后一卷含解析及點睛_第3頁
2023屆北京市級名校中考數(shù)學(xué)考前最后一卷含解析及點睛_第4頁
2023屆北京市級名校中考數(shù)學(xué)考前最后一卷含解析及點睛_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.老師在微信群發(fā)了這樣一個圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點為F,下列四位同學(xué)的說法不正確的是()A.甲 B.乙 C.丙 D.丁2.觀察下列圖形,則第n個圖形中三角形的個數(shù)是()A.2n+2 B.4n+4 C.4n﹣4 D.4n3.在一個不透明的口袋中裝有4個紅球和若干個白球,他們除顏色外其他完全相同.通過多次摸球?qū)嶒灪蟀l(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%附近,則口袋中白球可能有()A.16個 B.15個 C.13個 D.12個4.如圖所示,數(shù)軸上兩點A,B分別表示實數(shù)a,b,則下列四個數(shù)中最大的一個數(shù)是(

)A.a(chǎn)

B.b

C. D.5.已知直線m∥n,將一塊含30°角的直角三角板ABC,按如圖所示方式放置,其中A、B兩點分別落在直線m、n上,若∠1=25°,則∠2的度數(shù)是()A.25° B.30° C.35° D.55°6.函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣27.若,則括號內(nèi)的數(shù)是A. B. C.2 D.88.如圖,在△ABC中,EF∥BC,AB=3AE,若S四邊形BCFE=16,則S△ABC=()A.16 B.18 C.20 D.249.如圖,小明要測量河內(nèi)小島B到河邊公路l的距離,在A點測得,在C點測得,又測得米,則小島B到公路l的距離為()米.A.25 B. C. D.10.下列計算正確的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在△ABC中,若∠A,∠B滿足|cosA-|+(sinB-)2=0,則∠C=_________.12.已知方程的一個根為1,則的值為__________.13.如圖,一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0),則光線從點A到點B經(jīng)過的路徑長為_____.14.方程=的解是____.15.如圖,反比例函數(shù)(x>0)的圖象與矩形OABC的邊長AB、BC分別交于點E、F且AE=BE,則△OEF的面積的值為.16.為了估計池塘里有多少條魚,從池塘里捕撈了1000條魚做上標(biāo)記,然后放回池塘里,經(jīng)過一段時間,等有標(biāo)記的魚完全混合于魚群中以后,再捕撈200條,若其中有標(biāo)記的魚有10條,則估計池塘里有魚_____條.三、解答題(共8題,共72分)17.(8分)如圖,在的矩形方格紙中,每個小正方形的邊長均為,線段的兩個端點均在小正方形的頂點上.在圖中畫出以線段為底邊的等腰,其面積為,點在小正方形的頂點上;在圖中面出以線段為一邊的,其面積為,點和點均在小正方形的頂點上;連接,并直接寫出線段的長.18.(8分)為改善生態(tài)環(huán)境,防止水土流失,某村計劃在荒坡上種1000棵樹.由于青年志愿者的支援,每天比原計劃多種25%,結(jié)果提前5天完成任務(wù),原計劃每天種多少棵樹?19.(8分)《楊輝算法》中有這么一道題:“直田積八百六十四步,只云長闊共六十步,問長多幾何?”意思是:一塊矩形田地的面積為864平方步,只知道它的長與寬共60步,問它的長比寬多了多少步?20.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=m求反比例函數(shù)和一次函數(shù)的解析式;直接寫出當(dāng)x>0時,kx+b<m21.(8分)已知AC,EC分別是四邊形ABCD和EFCG的對角線,直線AE與直線BF交于點H(1)觀察猜想如圖1,當(dāng)四邊形ABCD和EFCG均為正方形時,線段AE和BF的數(shù)量關(guān)系是;∠AHB=.(2)探究證明如圖2,當(dāng)四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時,(1)中的結(jié)論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點C旋轉(zhuǎn),在整個旋轉(zhuǎn)過程中,當(dāng)A、E、F三點共線時,請直接寫出點B到直線AE的距離.22.(10分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.求反比例函數(shù)和一次函數(shù)的解析式;求直線AB與x軸的交點C的坐標(biāo)及△AOB的面積;直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.23.(12分)在△ABC中,,以邊AB上一點O為圓心,OA為半徑的圈與BC相切于點D,分別交AB,AC于點E,F(xiàn)如圖①,連接AD,若,求∠B的大??;如圖②,若點F為的中點,的半徑為2,求AB的長.24.如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù)的圖象交于C、D兩點.已知點C的坐標(biāo)是(6,-1),D(n,3).求m的值和點D的坐標(biāo).求的值.根據(jù)圖象直接寫出:當(dāng)x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

利用對稱性可知直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,再利用正五邊形、等邊三角形的性質(zhì)一一判斷即可;【詳解】∵五邊形ABCDE是正五邊形,△ABG是等邊三角形,∴直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,∴DG垂直平分線段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正確.故選B.【點睛】本題考查正多邊形的性質(zhì)、等邊三角形的性質(zhì)、軸對稱圖形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.2、D【解析】試題分析:由已知的三個圖可得到一般的規(guī)律,即第n個圖形中三角形的個數(shù)是4n,根據(jù)一般規(guī)律解題即可.解:根據(jù)給出的3個圖形可以知道:第1個圖形中三角形的個數(shù)是4,第2個圖形中三角形的個數(shù)是8,第3個圖形中三角形的個數(shù)是12,從而得出一般的規(guī)律,第n個圖形中三角形的個數(shù)是4n.故選D.考點:規(guī)律型:圖形的變化類.3、D【解析】

由摸到紅球的頻率穩(wěn)定在25%附近得出口袋中得到紅色球的概率,進而求出白球個數(shù)即可.【詳解】解:設(shè)白球個數(shù)為:x個,

∵摸到紅色球的頻率穩(wěn)定在25%左右,

∴口袋中得到紅色球的概率為25%,

∴,

解得:x=12,

經(jīng)檢驗x=12是原方程的根,

故白球的個數(shù)為12個.

故選:D.【點睛】本題考查了利用頻率估計概率,根據(jù)大量反復(fù)試驗下頻率穩(wěn)定值即概率得出是解題的關(guān)鍵.4、D【解析】

∵負數(shù)小于正數(shù),在(0,1)上的實數(shù)的倒數(shù)比實數(shù)本身大.∴<a<b<,故選D.5、C【解析】

根據(jù)平行線的性質(zhì)即可得到∠3的度數(shù),再根據(jù)三角形內(nèi)角和定理,即可得到結(jié)論.【詳解】解:∵直線m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故選C.【點睛】本題考查平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.6、C【解析】

根據(jù)函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,∴當(dāng)m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數(shù)與x軸有一個交點,當(dāng)m≠0時,函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點睛】本題考查拋物線與x軸的交點,解答本題的關(guān)鍵是明確題意,利用分類討論的數(shù)學(xué)思想解答.7、C【解析】

根據(jù)有理數(shù)的減法,減去一個數(shù)等于加上這個數(shù)的相反數(shù),可得答案.【詳解】解:,

故選:C.【點睛】本題考查了有理數(shù)的減法,減去一個數(shù)等于加上這個數(shù)的相反數(shù).8、B【解析】【分析】由EF∥BC,可證明△AEF∽△ABC,利用相似三角形的性質(zhì)即可求出S△ABC的值.【詳解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,設(shè)S△AEF=x,∵S四邊形BCFE=16,∴,解得:x=2,∴S△ABC=18,故選B.【點睛】本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的面積比等于相似比的平方是解本題的關(guān)鍵.9、B【解析】

解:過點B作BE⊥AD于E.設(shè)BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,則,解得即小島B到公路l的距離為,故選B.10、A【解析】

原式各項計算得到結(jié)果,即可做出判斷.【詳解】A、原式=,正確;

B、原式不能合并,錯誤;

C、原式=,錯誤;

D、原式=2,錯誤.

故選A.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、75°【解析】【分析】根據(jù)絕對值及偶次方的非負性,可得出cosA及sinB的值,從而得出∠A及∠B的度數(shù),利用三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案為:75°.【點睛】本題考查了特殊角的三角函數(shù)值及非負數(shù)的性質(zhì),解答本題的關(guān)鍵是得出cosA及sinB的值,另外要求我們熟練掌握一些特殊角的三角函數(shù)值.12、1【解析】

欲求m,可將該方程的已知根1代入兩根之積公式和兩根之和公式列出方程組,解方程組即可求出m值.【詳解】設(shè)方程的另一根為x1,又∵x=1,∴,解得m=1.故答案為1.【點睛】本題的考點是一元二次方程的根的分布與系數(shù)的關(guān)系,主要考查利用韋達定理解題.此題也可將x=1直接代入方程3x2-9x+m=0中求出m的值.13、2【解析】

延長AC交x軸于B′.根據(jù)光的反射原理,點B、B′關(guān)于y軸對稱,CB=CB′.路徑長就是AB′的長度.結(jié)合A點坐標(biāo),運用勾股定理求解.【詳解】解:如圖所示,延長AC交x軸于B′.則點B、B′關(guān)于y軸對稱,CB=CB′.作AD⊥x軸于D點.則AD=3,DB′=3+1=1.由勾股定理AB′=2∴AC+CB=AC+CB′=AB′=2.即光線從點A到點B經(jīng)過的路徑長為2.考點:解直角三角形的應(yīng)用點評:本題考查了直角三角形的有關(guān)知識,同時滲透光學(xué)中反射原理,構(gòu)造直角三角形是解決本題關(guān)鍵14、x=1【解析】

觀察可得方程最簡公分母為x(x?1),去分母,轉(zhuǎn)化為整式方程求解,結(jié)果要檢驗.【詳解】方程兩邊同乘x(x?1)得:3x=1(x?1),整理、解得x=1.檢驗:把x=1代入x(x?1)≠2.∴x=1是原方程的解,故答案為x=1.【點睛】解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程,具體方法是方程兩邊同時乘以最簡公分母,在此過程中有可能會產(chǎn)生增根,增根是轉(zhuǎn)化后整式的根,不是原方程的根,因此要注意檢驗.15、【解析】試題分析:如圖,連接OB.∵E、F是反比例函數(shù)(x>0)的圖象上的點,EA⊥x軸于A,F(xiàn)C⊥y軸于C,∴S△AOE=S△COF=×1=.∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=1.∴S△BOF=S△BOC﹣S△COF=1﹣=.∴F是BC的中點.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.16、20000【解析】試題分析:1000÷=20000(條).考點:用樣本估計總體.三、解答題(共8題,共72分)17、(1)見解析;(2)見解析;(3)見解析,.【解析】

(1)直接利用網(wǎng)格結(jié)合勾股定理得出符合題意的答案;(2)直接利用網(wǎng)格結(jié)合平行四邊形的性質(zhì)以及勾股定理得出符合題意的答案;(3)連接CE,根據(jù)勾股定理求出CE的長寫出即可.【詳解】解:(1)如圖所示;(2)如圖所示;(3)如圖所示;CE=.【點睛】本題主要考查了等腰三角形的性質(zhì)、平行四邊形的性質(zhì)、勾股定理,正確應(yīng)用勾股定理是解題的關(guān)鍵.18、原計劃每天種樹40棵.【解析】

設(shè)原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,根據(jù)實際完成的天數(shù)比計劃少5天為等量關(guān)系建立方程求出其解即可.【詳解】設(shè)原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,由題意,得?=5,解得:x=40,經(jīng)檢驗,x=40是原方程的解.答:原計劃每天種樹40棵.19、12【解析】

設(shè)矩形的長為x步,則寬為(60﹣x)步,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果.【詳解】解:設(shè)矩形的長為x步,則寬為(60﹣x)步,依題意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合題意,舍去),∴60﹣x=60﹣36=24(步),∴36﹣24=12(步),則該矩形的長比寬多12步.【點睛】此題考查了一元二次方程的應(yīng)用,找出題中的等量關(guān)系是解本題的關(guān)鍵.20、(1)y=4x,y=﹣x+5;(2)0<x<1或x>4;(3)P的坐標(biāo)為(【解析】

(1)把A(1,4)代入y=mx,求出m=4,把B(4,n)代入y=4(2)根據(jù)圖像解答即可;(3)作B關(guān)于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,然后用待定系數(shù)法求出直線AB′的解析式即可.【詳解】解:(1)把A(1,4)代入y=mx∴反比例函數(shù)的解析式為y=4x把B(4,n)代入y=4x∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:k+b=44k+b=1解得:k=-1∴一次函數(shù)的解析式為y=﹣x+5;(2)根據(jù)圖象得當(dāng)0<x<1或x>4,一次函數(shù)y=﹣x+5的圖象在反比例函數(shù)y=4x∴當(dāng)x>0時,kx+b<mx(3)如圖,作B關(guān)于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),設(shè)直線AB′的解析式為y=px+q,∴p+q=44p+q=-1解得p=-5∴直線AB′的解析式為y=-5令y=0,得-5解得x=175∴點P的坐標(biāo)為(175【點睛】本題考查了待定系數(shù)法求反比例函數(shù)及一次函數(shù)解析式,利用圖像解不等式,軸對稱最短等知識.熟練掌握待定系數(shù)法是解(1)的關(guān)鍵,正確識圖是解(2)的關(guān)鍵,根據(jù)軸對稱的性質(zhì)確定出點P的位置是解答(3)的關(guān)鍵.21、(1),45°;(2)不成立,理由見解析;(3).【解析】

(1)由正方形的性質(zhì),可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質(zhì)得到,∠CAB==45°,又因為∠CBA=90°,所以∠AHB=45°.(2)由矩形的性質(zhì),及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質(zhì)可得∠CAE=∠CBF,,則∠CAB=60°,又因為∠CBA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因為A、E、F三點共線,及∠AFB=30°,∠AFC=90°,進而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當(dāng)A、E、F三點共線時,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當(dāng)A、E、F三點共線時,同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當(dāng)A、E、F三點共線時,點B到直線AE的距離為.【點睛】本題考察正方形的性質(zhì)和矩形的性質(zhì)以及三點共線,熟練掌握正方形的性質(zhì)和矩形的性質(zhì),知道分類討論三點共線問題是解題的關(guān)鍵.本題屬于中等偏難.22、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】

(1)先把B點坐標(biāo)代入代入y=,求出m得到反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定A點坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式;(2)根據(jù)x軸上點的坐標(biāo)特征確定C點坐標(biāo),然后根據(jù)三角形面積公式和△AOB的面積=S△AOC+S△BOC進行計算;(3)觀察函數(shù)圖象得到當(dāng)﹣4<x<0或x>2時,一次函數(shù)圖象都在反比例函數(shù)圖象下方.【詳解】解:∵B(2,﹣4)在反比例函數(shù)y=的圖象上,∴m=2×(﹣4)=﹣8,∴反比例函數(shù)解析式為:y=﹣,把A(﹣4,n)代入y=﹣,得﹣4n=﹣8,解得n=2,則A點坐標(biāo)為(﹣4,2).把A(﹣4,2),B(2,﹣4)分別代入y=kx+b,得,解得,∴一次函數(shù)的解析式為y=﹣x﹣2;(2)∵y=﹣x﹣2,∴當(dāng)﹣x﹣2=0時,x=﹣2,∴點C的坐標(biāo)為:(﹣2,0),△AOB的面積=△AOC的面積+△COB的面積=×2×2+×2×4=6;(3)由圖象可知,當(dāng)﹣4<x<0或x>2時,一次函數(shù)的值小于反比例函數(shù)的值.【點睛】本題考查的是一次函數(shù)與反比例函數(shù)的交點問題以及待定系數(shù)法的運用,靈活運用待定系數(shù)法是解題的關(guān)鍵,注意數(shù)形結(jié)合思想的正確運用.23、(1)∠B=40°;(2)AB=6.【解析】

(1)連接OD,由在△ABC中,∠C=90°,BC是切線,易得AC∥OD

,即可求得∠CAD=∠ADO

,繼而求得答案;

(2)首先連接OF,OD,由AC∥OD得∠OFA=∠FOD

,由點F

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論