版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.一個(gè)圓的內(nèi)接正六邊形的邊長(zhǎng)為2,則該圓的內(nèi)接正方形的邊長(zhǎng)為()A. B.2 C.2 D.42.如圖,若a∥b,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.120° D.150°3.如圖,AD是半圓O的直徑,AD=12,B,C是半圓O上兩點(diǎn).若,則圖中陰影部分的面積是()A.6π B.12π C.18π D.24π4.已知點(diǎn)A、B、C是直徑為6cm的⊙O上的點(diǎn),且AB=3cm,AC=3cm,則∠BAC的度數(shù)為()A.15°
B.75°或15°
C.105°或15°
D.75°或105°5.下列運(yùn)算正確的是()A.5a+2b=5(a+b) B.a(chǎn)+a2=a3C.2a3?3a2=6a5 D.(a3)2=a56.如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是()A.1 B.2 C.3 D.47.實(shí)數(shù)a,b在數(shù)軸上對(duì)應(yīng)的點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.8.若在同一直角坐標(biāo)系中,正比例函數(shù)y=k1x與反比例函數(shù)y=的圖象無交點(diǎn),則有()A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<09.如圖,在△ABC中,∠C=90°,M是AB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC方向勻速運(yùn)動(dòng)到終點(diǎn)C,動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速運(yùn)動(dòng)到終點(diǎn)B.已知P,Q兩點(diǎn)同時(shí)出發(fā),并同時(shí)到達(dá)終點(diǎn).連結(jié)MP,MQ,PQ.在整個(gè)運(yùn)動(dòng)過程中,△MPQ的面積大小變化情況是()A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小10.實(shí)數(shù)a,b,c在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置大致如圖所示,O為原點(diǎn),則下列關(guān)系式正確的是()A.a(chǎn)﹣c<b﹣c B.|a﹣b|=a﹣b C.a(chǎn)c>bc D.﹣b<﹣c11.甲、乙兩人分別以4m/s和5m/s的速度,同時(shí)從100m直線型跑道的起點(diǎn)向同一方向起跑,設(shè)乙的奔跑時(shí)間為t(s),甲乙兩人的距離為S(m),則S關(guān)于t的函數(shù)圖象為()A. B. C. D.12.如圖,在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,下列四個(gè)判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.甲、乙兩個(gè)搬運(yùn)工搬運(yùn)某種貨物.已知乙比甲每小時(shí)多搬運(yùn)600kg,甲搬運(yùn)5000kg所用的時(shí)間與乙搬運(yùn)8000kg所用的時(shí)間相等.設(shè)甲每小時(shí)搬運(yùn)xkg貨物,則可列方程為_____.14.如圖,AB是半圓O的直徑,點(diǎn)C、D是半圓O的三等分點(diǎn),若弦CD=2,則圖中陰影部分的面積為.15.如圖,在5×5的正方形(每個(gè)小正方形的邊長(zhǎng)為1)網(wǎng)格中,格點(diǎn)上有A、B、C、D、E五個(gè)點(diǎn),如果要求連接兩個(gè)點(diǎn)之后線段的長(zhǎng)度大于3且小于4,則可以連接_____.(寫出一個(gè)答案即可)16.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.17.如圖,已知⊙P的半徑為2,圓心P在拋物線y=x2﹣1上運(yùn)動(dòng),當(dāng)⊙P與x軸相切時(shí),圓心P的坐標(biāo)為_____.18.解不等式組請(qǐng)結(jié)合題意填空,完成本題的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:(Ⅳ)原不等式組的解集為.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,直線AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度數(shù).20.(6分)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為P(2,9),與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C(0,5).(Ⅰ)求二次函數(shù)的解析式及點(diǎn)A,B的坐標(biāo);(Ⅱ)設(shè)點(diǎn)Q在第一象限的拋物線上,若其關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q′也在拋物線上,求點(diǎn)Q的坐標(biāo);(Ⅲ)若點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對(duì)稱軸上,使得以A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,且AC為其一邊,求點(diǎn)M,N的坐標(biāo).21.(6分)已知:關(guān)于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求k的值.22.(8分)如圖1,在圓中,垂直于弦,為垂足,作,與的延長(zhǎng)線交于.(1)求證:是圓的切線;(2)如圖2,延長(zhǎng),交圓于點(diǎn),點(diǎn)是劣弧的中點(diǎn),,,求的長(zhǎng).23.(8分)如圖1,在等邊三角形中,為中線,點(diǎn)在線段上運(yùn)動(dòng),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),使得點(diǎn)的對(duì)應(yīng)點(diǎn)落在射線上,連接,設(shè)(且).(1)當(dāng)時(shí),①在圖1中依題意畫出圖形,并求(用含的式子表示);②探究線段,,之間的數(shù)量關(guān)系,并加以證明;(2)當(dāng)時(shí),直接寫出線段,,之間的數(shù)量關(guān)系.24.(10分)如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:(3)拓展與運(yùn)用:正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長(zhǎng)CG交AD于點(diǎn)H.若AG=6,GH=2,則BC=.25.(10分)為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進(jìn)校園”活動(dòng),某校團(tuán)委組織八年級(jí)100名學(xué)生進(jìn)行“經(jīng)典誦讀”選拔賽,賽后對(duì)全體參賽學(xué)生的成績(jī)進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表.組別分?jǐn)?shù)段頻次頻率A60≤x<70170.17B
70≤x<80
30
aC
80≤x<90
b
0.45D
90≤x<100
8
0.08請(qǐng)根據(jù)所給信息,解答以下問題:表中a=______,b=______;請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中B組對(duì)應(yīng)扇形的圓心角的度數(shù);已知有四名同學(xué)均取得98分的最好成績(jī),其中包括來自同一班級(jí)的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機(jī)選出兩名參加市級(jí)比賽,請(qǐng)用列表法或畫樹狀圖法求甲、乙兩名同學(xué)都被選中的概率.26.(12分)解不等式組并在數(shù)軸上表示解集.27.(12分)(1)解不等式組:;(2)解方程:.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】
圓內(nèi)接正六邊形的邊長(zhǎng)是1,即圓的半徑是1,則圓的內(nèi)接正方形的對(duì)角線長(zhǎng)是2,進(jìn)而就可求解.【詳解】解:∵圓內(nèi)接正六邊形的邊長(zhǎng)是1,∴圓的半徑為1.那么直徑為2.圓的內(nèi)接正方形的對(duì)角線長(zhǎng)為圓的直徑,等于2.∴圓的內(nèi)接正方形的邊長(zhǎng)是1.故選B.【點(diǎn)睛】本題考查正多邊形與圓,關(guān)鍵是利用知識(shí)點(diǎn):圓內(nèi)接正六邊形的邊長(zhǎng)和圓的半徑相等;圓的內(nèi)接正方形的對(duì)角線長(zhǎng)為圓的直徑解答.2、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點(diǎn)睛:本題考查了平行線的性質(zhì),對(duì)頂角相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.平行線的性質(zhì)定理:兩直線平行,同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ),兩條平行線之間的距離處處相等.3、A【解析】
根據(jù)圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°,根據(jù)扇形面積公式計(jì)算即可.【詳解】∵,∴∠AOB=∠BOC=∠COD=60°.∴陰影部分面積=.故答案為:A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是扇形面積的計(jì)算,解題關(guān)鍵是利用圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°.4、C【解析】解:如圖1.∵AD為直徑,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,則∠BAC=105°;如圖2,.∵AD為直徑,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,則∠BAC=15°.故選C.點(diǎn)睛:本題考查的是圓周角定理和銳角三角函數(shù)的知識(shí),掌握直徑所對(duì)的圓周角是直徑和熟記特殊角的三角函數(shù)值是解題的關(guān)鍵,注意分情況討論思想的運(yùn)用.5、C【解析】
直接利用合并同類項(xiàng)法則以及單項(xiàng)式乘以單項(xiàng)式、冪的乘方運(yùn)算法則分別化簡(jiǎn)得出答案.【詳解】A、5a+2b,無法計(jì)算,故此選項(xiàng)錯(cuò)誤;B、a+a2,無法計(jì)算,故此選項(xiàng)錯(cuò)誤;C、2a3?3a2=6a5,故此選項(xiàng)正確;D、(a3)2=a6,故此選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】此題主要考查了合并同類項(xiàng)以及單項(xiàng)式乘以單項(xiàng)式、冪的乘方運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.6、B【解析】分析:直接利用二次函數(shù)圖象的開口方向以及圖象與x軸的交點(diǎn),進(jìn)而分別分析得出答案.詳解:①∵二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,且開口向下,∴x=1時(shí),y=a+b+c,即二次函數(shù)的最大值為a+b+c,故①正確;②當(dāng)x=﹣1時(shí),a﹣b+c=0,故②錯(cuò)誤;③圖象與x軸有2個(gè)交點(diǎn),故b2﹣4ac>0,故③錯(cuò)誤;④∵圖象的對(duì)稱軸為x=1,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),∴A(3,0),故當(dāng)y>0時(shí),﹣1<x<3,故④正確.故選B.點(diǎn)睛:此題主要考查了二次函數(shù)的性質(zhì)以及二次函數(shù)最值等知識(shí),正確得出A點(diǎn)坐標(biāo)是解題關(guān)鍵.7、D【解析】
根據(jù)數(shù)軸上點(diǎn)的位置,可得a,b,根據(jù)有理數(shù)的運(yùn)算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸,利用有理數(shù)的運(yùn)算是解題關(guān)鍵.8、D【解析】當(dāng)k1,k2同號(hào)時(shí),正比例函數(shù)y=k1x與反比例函數(shù)y=的圖象有交點(diǎn);當(dāng)k1,k2異號(hào)時(shí),正比例函數(shù)y=k1x與反比例函數(shù)y=的圖象無交點(diǎn),即可得當(dāng)k1k2<0時(shí),正比例函數(shù)y=k1x與反比例函數(shù)y=的圖象無交點(diǎn),故選D.9、C【解析】如圖所示,連接CM,∵M(jìn)是AB的中點(diǎn),∴S△ACM=S△BCM=S△ABC,開始時(shí),S△MPQ=S△ACM=S△ABC;由于P,Q兩點(diǎn)同時(shí)出發(fā),并同時(shí)到達(dá)終點(diǎn),從而點(diǎn)P到達(dá)AC的中點(diǎn)時(shí),點(diǎn)Q也到達(dá)BC的中點(diǎn),此時(shí),S△MPQ=S△ABC;結(jié)束時(shí),S△MPQ=S△BCM=S△ABC.△MPQ的面積大小變化情況是:先減小后增大.故選C.10、A【解析】
根據(jù)數(shù)軸上點(diǎn)的位置確定出a,b,c的范圍,判斷即可.【詳解】由數(shù)軸上點(diǎn)的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故選A.【點(diǎn)睛】考查了實(shí)數(shù)與數(shù)軸,弄清數(shù)軸上點(diǎn)表示的數(shù)是解本題的關(guān)鍵.11、B【解析】
勻速直線運(yùn)動(dòng)的路程s與運(yùn)動(dòng)時(shí)間t成正比,s-t圖象是一條傾斜的直線解答.【詳解】∵甲、乙兩人分別以4m/s和5m/s的速度,∴兩人的相對(duì)速度為1m/s,設(shè)乙的奔跑時(shí)間為t(s),所需時(shí)間為20s,兩人距離20s×1m/s=20m,故選B.【點(diǎn)睛】此題考查函數(shù)圖象問題,關(guān)鍵是根據(jù)勻速直線運(yùn)動(dòng)的路程s與運(yùn)動(dòng)時(shí)間t成正比解答.12、C【解析】A選項(xiàng),∵在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項(xiàng),∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項(xiàng),因?yàn)樘砑訔l件“AD平分∠BAC”結(jié)合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯(cuò)誤;D選項(xiàng),因?yàn)橛商砑拥臈l件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結(jié)合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、=【解析】
設(shè)甲每小時(shí)搬運(yùn)x千克,則乙每小時(shí)搬運(yùn)(x+600)千克,根據(jù)甲搬運(yùn)5000kg所用時(shí)間與乙搬運(yùn)8000kg所用時(shí)間相等建立方程求出其解就可以得出結(jié)論.【詳解】解:設(shè)甲每小時(shí)搬運(yùn)x千克,則乙每小時(shí)搬運(yùn)(x+600)千克,由題意得:=.故答案是:=.【點(diǎn)睛】本題考查了由實(shí)際問題抽象出分式方程,根據(jù)題意找到等量關(guān)系是關(guān)鍵.14、.【解析】試題分析:連結(jié)OC、OD,因?yàn)镃、D是半圓O的三等分點(diǎn),所以,∠BOD=∠COD=60°,所以,三角形OCD為等邊三角形,所以,半圓O的半徑為OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以陰影部分的面積為為S=--()=.考點(diǎn):扇形的面積計(jì)算.15、答案不唯一,如:AD【解析】
根據(jù)勾股定理求出,根據(jù)無理數(shù)的估算方法解答即可.【詳解】由勾股定理得:,.故答案為答案不唯一,如:AD.【點(diǎn)睛】本題考查了無理數(shù)的估算和勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是,,斜邊長(zhǎng)為,那么.16、【解析】
連接BD,易證△DAB是等邊三角形,即可求得△ABD的高為,再證明△ABG≌△DBH,即可得四邊形GBHD的面積等于△ABD的面積,由圖中陰影部分的面積為S扇形EBF﹣S△ABD即可求解.【詳解】如圖,連接BD.∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點(diǎn)G,設(shè)BF、DC相交于點(diǎn)H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=﹣×2×=.故答案是:.【點(diǎn)睛】本題考查了扇形的面積計(jì)算以及全等三角形的判定與性質(zhì)等知識(shí),根據(jù)已知得出四邊形GBHD的面積等于△ABD的面積是解題關(guān)鍵.17、(,1)或(﹣,1)【解析】
根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點(diǎn)P的縱坐標(biāo)是1或-1.將P的縱坐標(biāo)代入函數(shù)解析式,求P點(diǎn)坐標(biāo)即可【詳解】根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點(diǎn)P的縱坐標(biāo)是1或-1.當(dāng)y=1時(shí),x1-1=1,解得x=±當(dāng)y=-1時(shí),x1-1=-1,方程無解故P點(diǎn)的坐標(biāo)為()或(-)【點(diǎn)睛】此題注意應(yīng)考慮兩種情況.熟悉直線和圓的位置關(guān)系應(yīng)滿足的數(shù)量關(guān)系是解題的關(guān)鍵.18、詳見解析.【解析】
先根據(jù)不等式的性質(zhì)求出每個(gè)不等式的解集,再在數(shù)軸上表示出來,根據(jù)數(shù)軸找出不等式組公共部分即可.【詳解】(Ⅰ)解不等式①,得:x<1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:(Ⅳ)原不等式組的解集為:﹣1≤x<1,故答案為:x<1、x≥﹣1、﹣1≤x<1.【點(diǎn)睛】本題考查了解一元一次不等式組的概念.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、50°.【解析】
試題分析:由平行線的性質(zhì)得到∠ABC=∠1=65°,∠ABD+∠BDE=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到結(jié)論.解:∵AB∥CD,∴∠ABC=∠1=65°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDE=180°﹣∠ABD=50°,∴∠2=∠BDE=50°.【點(diǎn)評(píng)】本題考查了平行線的性質(zhì)和角平分線定義等知識(shí)點(diǎn),解此題的關(guān)鍵是求出∠ABD的度數(shù),題目較好,難度不大.20、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解析】
(1)設(shè)頂點(diǎn)式,再代入C點(diǎn)坐標(biāo)即可求解解析式,再令y=0可求解A和B點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)Q(m,﹣m2+4m+5),則其關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q′(﹣m,m2﹣4m﹣5),再將Q′坐標(biāo)代入拋物線解析式即可求解m的值,同時(shí)注意題干條件“Q在第一象限的拋物線上”;(3)利用平移AC的思路,作MK⊥對(duì)稱軸x=2于K,使MK=OC,分M點(diǎn)在對(duì)稱軸左邊和右邊兩種情況分類討論即可.【詳解】(Ⅰ)設(shè)二次函數(shù)的解析式為y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)設(shè)點(diǎn)Q(m,﹣m2+4m+5),則Q′(﹣m,m2﹣4m﹣5).把點(diǎn)Q′坐標(biāo)代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴m=或(舍棄),∴Q(,).(Ⅲ)如圖,作MK⊥對(duì)稱軸x=2于K.①當(dāng)MK=OA,NK=OC=5時(shí),四邊形ACNM是平行四邊形.∵此時(shí)點(diǎn)M的橫坐標(biāo)為1,∴y=8,∴M(1,8),N(2,13),②當(dāng)M′K=OA=1,KN′=OC=5時(shí),四邊形ACM′N′是平行四邊形,此時(shí)M′的橫坐標(biāo)為3,可得M′(3,8),N′(2,3).【點(diǎn)睛】本題主要考查了二次函數(shù)的應(yīng)用,第3問中理解通過平移AC可應(yīng)用“一組對(duì)邊平行且相等”得到平行四邊形.21、(3)證明見解析(3)3或﹣3【解析】
(3)根據(jù)一元二次方程的定義得k≠2,再計(jì)算判別式得到△=(3k-3)3,然后根據(jù)非負(fù)數(shù)的性質(zhì),即k的取值得到△>2,則可根據(jù)判別式的意義得到結(jié)論;(3)根據(jù)求根公式求出方程的根,方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求出k的值.【詳解】證明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.∵k為整數(shù),∴(3k﹣3)3>2,即△>2.∴方程有兩個(gè)不相等的實(shí)數(shù)根.(3)解:∵方程kx3﹣(4k+3)x+3k+3=2為一元二次方程,∴k≠2.∵kx3﹣(4k+3)x+3k+3=2,即[kx﹣(k+3)](x﹣3)=2,∴x3=3,.∵方程的兩個(gè)實(shí)數(shù)根都是整數(shù),且k為整數(shù),∴k=3或﹣3.【點(diǎn)睛】本題主要考查了根的判別式的知識(shí),熟知一元二次方程的根與△的關(guān)系是解答此題的關(guān)鍵.22、(1)詳見解析;(2)【解析】
(1)連接OA,利用切線的判定證明即可;
(2)分別連結(jié)OP、PE、AE,OP交AE于F點(diǎn),根據(jù)勾股定理解答即可.【詳解】解:(1)如圖,連結(jié)OA,
∵OA=OB,OC⊥AB,
∴∠AOC=∠BOC,
又∠BAD=∠BOC,
∴∠BAD=∠AOC
∵∠AOC+∠OAC=90°,
∴∠BAD+∠OAC=90°,
∴OA⊥AD,
即:直線AD是⊙O的切線;
(2)分別連結(jié)OP、PE、AE,OP交AE于F點(diǎn),
∵BE是直徑,
∴∠EAB=90°,
∴OC∥AE,
∵OB=,
∴BE=13
∵AB=5,在直角△ABE中,AE=12,EF=6,F(xiàn)P=OP-OF=-=4
在直角△PEF中,F(xiàn)P=4,EF=6,PE2=16+36=52,
在直角△PEB中,BE=13,PB2=BE2-PE2,
PB==3.【點(diǎn)睛】本題考查了切線的判定,勾股定理,正確的作出輔助線是解題的關(guān)鍵.23、(1)①;②;(2)【解析】
(1)①先根據(jù)等邊三角形的性質(zhì)的,進(jìn)而得出,最后用三角形的內(nèi)角和定理即可得出結(jié)論;②先判斷出,得出,再判斷出是底角為30度的等腰三角形,再構(gòu)造出直角三角形即可得出結(jié)論;(2)同②的方法即可得出結(jié)論.【詳解】(1)當(dāng)時(shí),①畫出的圖形如圖1所示,∵為等邊三角形,∴.∵為等邊三角形的中線∴是的垂直平分線,∵為線段上的點(diǎn),∴.∵,∴,.∵線段為線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)所得,∴.∴.∴,∴;②;如圖2,延長(zhǎng)到點(diǎn),使得,連接,作于點(diǎn).∵,點(diǎn)在上,∴.∵點(diǎn)在的延長(zhǎng)線上,,∴.∴.又∵,,∴.∴.∵于點(diǎn),∴,.∵在等邊三角形中,為中線,點(diǎn)在上,∴,即為底角為的等腰三角形.∴.∴.(2)如圖3,當(dāng)時(shí),在上取一點(diǎn)使,∵為等邊三角形,∴.∵為等邊三角形的中線,∵為線段上的點(diǎn),∴是的垂直平分線,∴.∵,∴,.∵線段為線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)所得,∴.∴.∴,又∵,,∴.∴.∵于點(diǎn),∴,.∵在等邊三角形中,為中線,點(diǎn)在上,∴,∴.∴.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了等邊三角形的性質(zhì),三角形的內(nèi)角和定理,全等三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì),銳角三角函數(shù),作出輔助線構(gòu)造出全等三角形是解本題的關(guān)鍵.24、(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)3【解析】
(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設(shè),知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)∵∠CEF=45°,點(diǎn)B、E、F三點(diǎn)共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設(shè)BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- (2024版)關(guān)于城市舊改項(xiàng)目開發(fā)的股權(quán)投資協(xié)議
- 2024年辦公樓物業(yè)管理服務(wù)協(xié)議
- 2(2024版)含有2024年房地產(chǎn)稅收政策調(diào)整條款的合同
- (2024版)新能源汽車生產(chǎn)與銷售代理合同
- 2024年歷史遺跡防水維修合同
- 2024年保險(xiǎn)合同服務(wù)內(nèi)容詳解及標(biāo)的物
- 2024年XX礦產(chǎn)資源開發(fā)利用合同
- (2024版)虛擬現(xiàn)實(shí)技術(shù)開發(fā)合同
- 2024 虛擬現(xiàn)實(shí)技術(shù)開發(fā)與應(yīng)用合同
- 高支模現(xiàn)場(chǎng)監(jiān)測(cè)方案
- 醫(yī)院胸痛中心獎(jiǎng)懲辦法(完整版)
- 行政管理存在的問題與對(duì)策
- 腦出血大病歷.doc
- 煤礦聯(lián)合試運(yùn)轉(zhuǎn)方案
- CJJ101-2016埋地塑料給水管道工程技術(shù)規(guī)程
- 文化廣場(chǎng)規(guī)劃設(shè)計(jì)方案說明書
- 2012年數(shù)學(xué)建模機(jī)器人避障問題
- 燃?xì)饨?jīng)營(yíng)企業(yè)安全生產(chǎn)主體責(zé)任清單
- 規(guī)模化養(yǎng)豬場(chǎng)的科學(xué)用水管理
- 日本泡沫經(jīng)濟(jì)專題講座PPT
- 電梯故障狀態(tài)救援操作規(guī)程
評(píng)論
0/150
提交評(píng)論