版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023中考數(shù)學模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知拋物線y=ax2+bx+c(a<0)與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標為(1,n),則下列結(jié)論:①4a+2b<0;②﹣1≤a≤;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關于x的方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個2.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±203.圖1是邊長為1的六個小正方形組成的圖形,它可以圍成圖2的正方體,則圖1中正方形頂點A,B在圍成的正方體中的距離是()A.0 B.1 C. D.4.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A. B. C. D.5.若圓錐的軸截面為等邊三角形,則稱此圓錐為正圓錐,則正圓錐側(cè)面展開圖的圓心角是()A.90°B.120°C.150°D.180°6.如圖,在菱形ABCD中,AB=BD,點E,F(xiàn)分別在AB,AD上,且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H,下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF,其中正確的結(jié)論A.只有①②. B.只有①③. C.只有②③. D.①②③.7.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點C順時針旋轉(zhuǎn)11°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為()A. B. C. D.48.如圖,直線y=kx+b與y軸交于點(0,3)、與x軸交于點(a,0),當a滿足-3≤a<0時,k的取值范圍是()A.-1≤k<0 B.1≤k≤3 C.k≥1 D.k≥39.的相反數(shù)是()A. B. C.3 D.-310.如圖是用八塊相同的小正方體搭建的幾何體,它的左視圖是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.數(shù)學綜合實踐課,老師要求同學們利用直徑為的圓形紙片剪出一個如圖所示的展開圖,再將它沿虛線折疊成一個無蓋的正方體形盒子(接縫處忽略不計).若要求折出的盒子體積最大,則正方體的棱長等于________.12.將一個底面半徑為2,高為4的圓柱形紙筒沿一條母線剪開,所得到的側(cè)面展開圖形面積為_____.13.對于函數(shù),我們定義(m、n為常數(shù)).例如,則.已知:.若方程有兩個相等實數(shù)根,則m的值為__________.14.如圖,在等邊△ABC中,AB=4,D是BC的中點,將△ABD繞點A旋轉(zhuǎn)后得到△ACE,連接DE交AC于點F,則△AEF的面積為_______.15.如圖是矗立在高速公路水平地面上的交通警示牌,經(jīng)測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_米.(結(jié)果精確到0.1米,參考數(shù)據(jù):2≈1.41,3≈1.73)16.計算:.17.若式子有意義,則x的取值范圍是_____________.三、解答題(共7小題,滿分69分)18.(10分)如圖,某校教學樓AB的后面有一建筑物CD,當光線與地面的夾角是22o時,教學樓在建筑物的墻上留下高2m的影子CE;而當光線與地面的夾角是45o時,教學樓頂A在地面上的影子F與墻角C有13m的距離(B、F、C在一條直線上).求教學樓AB的高度;學校要在A、E之間掛一些彩旗,請你求出A、E之間的距離(結(jié)果保留整數(shù)).19.(5分)已知:如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(點A在點B左側(cè)),根據(jù)對稱性△AMB恒為等腰三角形,我們規(guī)定:當△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長;②拋物線與的“完美三角形”的斜邊長的數(shù)量關系是;(2)若拋物線的“完美三角形”的斜邊長為4,求a的值;(3)若拋物線的“完美三角形”斜邊長為n,且的最大值為-1,求m,n的值.20.(8分)將一個等邊三角形紙片AOB放置在平面直角坐標系中,點O(0,0),點B(6,0).點C、D分別在OB、AB邊上,DC∥OA,CB=2.(I)如圖①,將△DCB沿射線CB方向平移,得到△D′C′B′.當點C平移到OB的中點時,求點D′的坐標;(II)如圖②,若邊D′C′與AB的交點為M,邊D′B′與∠ABB′的角平分線交于點N,當BB′多大時,四邊形MBND′為菱形?并說明理由.(III)若將△DCB繞點B順時針旋轉(zhuǎn),得到△D′C′B,連接AD′,邊D′C′的中點為P,連接AP,當AP最大時,求點P的坐標及AD′的值.(直接寫出結(jié)果即可).21.(10分)如圖1,已知直線y=kx與拋物線y=交于點A(3,6).(1)求直線y=kx的解析式和線段OA的長度;(2)點P為拋物線第一象限內(nèi)的動點,過點P作直線PM,交x軸于點M(點M、O不重合),交直線OA于點Q,再過點Q作直線PM的垂線,交y軸于點N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個定值;如果不是,說明理由;(3)如圖2,若點B為拋物線上對稱軸右側(cè)的點,點E在線段OA上(與點O、A不重合),點D(m,0)是x軸正半軸上的動點,且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時,符合條件的E點的個數(shù)分別是1個、2個?22.(10分)先化簡,后求值:a2?a4﹣a8÷a2+(a3)2,其中a=﹣1.23.(12分)某校為了解本校九年級男生體育測試中跳繩成績的情況,隨機抽取該校九年級若干名男生,調(diào)查他們的跳繩成績(次/分),按成績分成,,,,五個等級.將所得數(shù)據(jù)繪制成如下統(tǒng)計圖.根據(jù)圖中信息,解答下列問題:該校被抽取的男生跳繩成績頻數(shù)分布直方圖(1)本次調(diào)查中,男生的跳繩成績的中位數(shù)在________等級;(2)若該校九年級共有男生400人,估計該校九年級男生跳繩成績是等級的人數(shù).24.(14分)襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質(zhì)水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y元/千克,y關于x的函數(shù)解析式為且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).m=,n=;求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
①由拋物線的頂點橫坐標可得出b=-2a,進而可得出4a+2b=0,結(jié)論①錯誤;
②利用一次函數(shù)圖象上點的坐標特征結(jié)合b=-2a可得出a=-,再結(jié)合拋物線與y軸交點的位置即可得出-1≤a≤-,結(jié)論②正確;
③由拋物線的頂點坐標及a<0,可得出n=a+b+c,且n≥ax2+bx+c,進而可得出對于任意實數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;
④由拋物線的頂點坐標可得出拋物線y=ax2+bx+c與直線y=n只有一個交點,將直線下移可得出拋物線y=ax2+bx+c與直線y=n-1有兩個交點,進而可得出關于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根,結(jié)合④正確.【詳解】:①∵拋物線y=ax2+bx+c的頂點坐標為(1,n),
∴-=1,
∴b=-2a,
∴4a+2b=0,結(jié)論①錯誤;
②∵拋物線y=ax2+bx+c與x軸交于點A(-1,0),
∴a-b+c=3a+c=0,
∴a=-.
又∵拋物線y=ax2+bx+c與y軸的交點在(0,2),(0,3)之間(包含端點),
∴2≤c≤3,
∴-1≤a≤-,結(jié)論②正確;
③∵a<0,頂點坐標為(1,n),
∴n=a+b+c,且n≥ax2+bx+c,
∴對于任意實數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;
④∵拋物線y=ax2+bx+c的頂點坐標為(1,n),
∴拋物線y=ax2+bx+c與直線y=n只有一個交點,
又∵a<0,
∴拋物線開口向下,
∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,
∴關于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根,結(jié)合④正確.
故選C.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系、拋物線與x軸的交點以及二次函數(shù)的性質(zhì),觀察函數(shù)圖象,逐一分析四個結(jié)論的正誤是解題的關鍵.2、B【解析】
根據(jù)完全平方式的特點求解:a2±2ab+b2.【詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【點睛】本題考查了完全平方公式:a2±2ab+b2,其特點是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項是x和1的平方,那么中間項為加上或減去x和1的乘積的2倍.3、C【解析】試題分析:本題考查了勾股定理、展開圖折疊成幾何體、正方形的性質(zhì);熟練掌握正方形的性質(zhì)和勾股定理,并能進行推理計算是解決問題的關鍵.由正方形的性質(zhì)和勾股定理求出AB的長,即可得出結(jié)果.解:連接AB,如圖所示:根據(jù)題意得:∠ACB=90°,由勾股定理得:AB==;故選C.考點:1.勾股定理;2.展開圖折疊成幾何體.4、A【解析】
∵Rt△ABC中,∠C=90°,sinA=,∴cosA=,∴∠A+∠B=90°,∴sinB=cosA=.故選A.5、D【解析】試題分析:設正圓錐的底面半徑是r,則母線長是2r,底面周長是2πr,設正圓錐的側(cè)面展開圖的圓心角是n°,則2r·πr180考點:圓錐的計算.6、D【解析】
解:①∵ABCD為菱形,∴AB=AD.∵AB=BD,∴△ABD為等邊三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.過點C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,則△CBM≌△CDN,(HL)∴S四邊形BCDG=S四邊形CMGN.S四邊形CMGN=1S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四邊形CMGN=1S△CMG=1××CG×CG=CG1.③過點F作FP∥AE于P點.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故選D.7、A【解析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉(zhuǎn)角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點:1.旋轉(zhuǎn);2.勾股定理.8、C【解析】
解:把點(0,2)(a,0)代入y=kx+b,得b=2.則a=-3∵-3≤a<0,∴-3≤-3解得:k≥2.故選C.【點睛】本題考查一次函數(shù)與一元一次不等式,屬于綜合題,難度不大.9、B【解析】先求的絕對值,再求其相反數(shù):根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點到原點的距離是,所以的絕對值是;相反數(shù)的定義是:如果兩個數(shù)只有符號不同,我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),特別地,1的相反數(shù)還是1.因此的相反數(shù)是.故選B.10、B【解析】
根據(jù)幾何體的左視圖是從物體的左面看得到的視圖,對各個選項中的圖形進行分析,即可得出答案.【詳解】左視圖是從左往右看,左側(cè)一列有2層,右側(cè)一列有1層1,選項B中的圖形符合題意,故選B.【點睛】本題考查了簡單組合體的三視圖,理解掌握三視圖的概念是解答本題的關鍵.主視圖是從物體的正面看得到的視圖,左視圖是從物體的左面看得到的視圖,俯視圖是從物體的上面看得到的視圖.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
根據(jù)題意作圖,可得AB=6cm,設正方體的棱長為xcm,則AC=x,BC=3x,根據(jù)勾股定理對稱62=x2+(3x)2,解方程即可求得.【詳解】解:如圖示,根據(jù)題意可得AB=6cm,
設正方體的棱長為xcm,則AC=x,BC=3x,
根據(jù)勾股定理,AB2=AC2+BC2,即,
解得故答案為:.【點睛】本題考查了勾股定理的應用,正確理解題意是解題的關鍵.12、【解析】試題分析:先根據(jù)勾股定理求得圓錐的母線長,再根據(jù)圓錐的側(cè)面積公式求解即可.由題意得圓錐的母線長則所得到的側(cè)面展開圖形面積.考點:勾股定理,圓錐的側(cè)面積公式點評:解題的關鍵是熟記圓錐的側(cè)面積公式:圓錐的側(cè)面積底面半徑母線.13、【解析】分析:根據(jù)題目中所給定義先求,再利用根與系數(shù)關系求m值.詳解:由所給定義知,,若=0,解得m=.點睛:一元二次方程的根的判別式是,△=b2-4ac,a,b,c分別是一元二次方程中二次項系數(shù)、一次項系數(shù)和常數(shù)項.
△>0說明方程有兩個不同實數(shù)解,△=0說明方程有兩個相等實數(shù)解,△<0說明方程無實數(shù)解.實際應用中,有兩種題型(1)證明方程實數(shù)根問題,需要對△的正負進行判斷,可能是具體的數(shù)直接可以判斷,也可能是含字母的式子,一般需要配方等技巧.14、【解析】
首先,利用等邊三角形的性質(zhì)求得AD=2;然后根據(jù)旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)推知△ADE為等邊三角形,則DE=AD,便可求出EF和AF,從而得到△AEF的面積.【詳解】解:∵在等邊△ABC中,∠B=60o,AB=4,D是BC的中點,∴AD⊥BC,∠BAD=∠CAD=30o,∴AD=ABcos30o=4×=2,根據(jù)旋轉(zhuǎn)的性質(zhì)知,∠EAC=∠DAB=30o,AD=AE,∴∠DAE=∠EAC+∠CAD=60o,∴△ADE的等邊三角形,∴DE=AD=2,∠AEF=60o,∵∠EAC=∠CAD∴EF=DF=,AF⊥DE∴AF=EFtan60o=×=3,∴S△AEF=EF×AF=××3=.故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定與性質(zhì),熟記各性質(zhì)并求出△ADE是等邊三角形是解題的關鍵.15、2.9【解析】試題分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考點:解直角三角形.16、【解析】
此題涉及特殊角的三角函數(shù)值、零指數(shù)冪、二次根式化簡,絕對值的性質(zhì).在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.【詳解】原式.【點睛】此題考查特殊角的三角函數(shù)值,實數(shù)的運算,零指數(shù)冪,絕對值,解題關鍵在于掌握運算法則.17、x<【解析】由題意得:1﹣2x>0,解得:,故答案為.三、解答題(共7小題,滿分69分)18、(1)2m(2)27m【解析】
(1)首先構(gòu)造直角三角形△AEM,利用,求出即可.(2)利用Rt△AME中,,求出AE即可.【詳解】解:(1)過點E作EM⊥AB,垂足為M.設AB為x.在Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+1.在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,又∵,∴,解得:x≈2.∴教學樓的高2m.(2)由(1)可得ME=BC=x+1≈2+1=3.在Rt△AME中,,∴AE=MEcos22°≈.∴A、E之間的距離約為27m.19、(1)AB=2;相等;(2)a=±;(3),.【解析】
(1)①過點B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,設出點B的坐標為(n,-n),根據(jù)二次函數(shù)得出n的值,然后得出AB的值,②因為拋物線y=x2+1與y=x2的形狀相同,所以拋物線y=x2+1與y=x2的“完美三角形”的斜邊長的數(shù)量關系是相等;(2)根據(jù)拋物線的性質(zhì)相同得出拋物線的完美三角形全等,從而得出點B的坐標,得出a的值;根據(jù)最大值得出mn-4m-1=0,根據(jù)拋物線的完美三角形的斜邊長為n得出點B的坐標,然后代入拋物線求出m和n的值.(3)根據(jù)的最大值為-1,得到化簡得mn-4m-1=0,拋物線的“完美三角形”斜邊長為n,所以拋物線2的“完美三角形”斜邊長為n,得出B點坐標,代入可得mn關系式,即可求出m、n的值.【詳解】(1)①過點B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,AB∥x軸,易證MN=BN,設B點坐標為(n,-n),代入拋物線,得,∴,(舍去),∴拋物線的“完美三角形”的斜邊②相等;(2)∵拋物線與拋物線的形狀相同,∴拋物線與拋物線的“完美三角形”全等,∵拋物線的“完美三角形”斜邊的長為4,∴拋物線的“完美三角形”斜邊的長為4,∴B點坐標為(2,2)或(2,-2),∴.(3)∵的最大值為-1,∴,∴,∵拋物線的“完美三角形”斜邊長為n,∴拋物線的“完美三角形”斜邊長為n,∴B點坐標為,∴代入拋物線,得,∴(不合題意舍去),∴,∴20、(Ⅰ)D′(3+,3);(Ⅱ)當BB'=時,四邊形MBND'是菱形,理由見解析;(Ⅲ)P().【解析】
(Ⅰ)如圖①中,作DH⊥BC于H.首先求出點D坐標,再求出CC′的長即可解決問題;(Ⅱ)當BB'=時,四邊形MBND'是菱形.首先證明四邊形MBND′是平行四邊形,再證明BB′=BC′即可解決問題;(Ⅲ)在△ABP中,由三角形三邊關系得,AP<AB+BP,推出當點A,B,P三點共線時,AP最大.【詳解】(Ⅰ)如圖①中,作DH⊥BC于H,∵△AOB是等邊三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等邊三角形,∵CB=2,DH⊥CB,∴CH=HB=,DH=3,∴D(6﹣,3),∵C′B=3,∴CC′=2﹣3,∴DD′=CC′=2﹣3,∴D′(3+,3).(Ⅱ)當BB'=時,四邊形MBND'是菱形,理由:如圖②中,∵△ABC是等邊三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分線,∴∠NBB′'=∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四邊形MBND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等邊三角形,∴MC=CE',NC=CC',∵B'C'=2,∵四邊形MBND'是菱形,∴BN=BM,∴BB'=B'C'=;(Ⅲ)如圖連接BP,在△ABP中,由三角形三邊關系得,AP<AB+BP,∴當點A,B,P三點共線時,AP最大,如圖③中,在△D'BE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'==2.此時P(,﹣).【點睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質(zhì),菱形的性質(zhì),平移和旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,解(2)的關鍵是四邊形MCND'是平行四邊形,解(3)的關鍵是判斷出點A,C,P三點共線時,AP最大.21、(1)y=2x,OA=,(2)是一個定值,,(3)當時,E點只有1個,當時,E點有2個?!窘馕觥浚?)把點A(3,6)代入y=kx得;∵6=3k,∴k=2,∴y=2x.OA=.(2)是一個定值,理由如下:如答圖1,過點Q作QG⊥y軸于點G,QH⊥x軸于點H.①當QH與QM重合時,顯然QG與QN重合,此時;②當QH與QM不重合時,∵QN⊥QM,QG⊥QH不妨設點H,G分別在x、y軸的正半軸上,∴∠MQH=∠GQN,又∵∠QHM=∠QGN=90°∴△QHM∽△QGN…(5分),∴,當點P、Q在拋物線和直線上不同位置時,同理可得.①①如答圖2,延長AB交x軸于點F,過點F作FC⊥OA于點C,過點A作AR⊥x軸于點R∵∠AOD=∠BAE,∴AF=OF,∴OC=AC=OA=∵∠ARO=∠FCO=90°,∠AOR=∠FOC,∴△AOR∽△FOC,∴,∴OF=,∴點F(,0),設點B(x,),過點B作BK⊥AR于點K,則△AKB∽△ARF,∴,即,解得x1=6,x2=3(舍去),∴點B(6,2),∴BK=6﹣3=3,AK=6﹣2=4,∴AB=5(求AB也可采用下面的方法)設直線AF為y=kx+b(k≠0)把點A(3,6),點F(,0)代入得k=,b=10,∴,∴,∴(舍去),,∴B(6,2),∴AB=5在△ABE與△OED中∵∠BAE=∠BED,∴∠ABE+∠AEB=∠DEO+∠AEB,∴∠ABE=∠DEO,∵∠BAE=∠EOD,∴△ABE∽△OED.設OE=x,則AE=﹣x(),由△ABE∽△OED得,∴∴()∴頂點為(,)如答圖3,當時,OE=x=,此時E點有1個;當時,任取一個m的值都對應著兩個x值,此時E點有2個.∴當時,E點只有1個當時,E點有2個22、1【解析】
先進行同底數(shù)冪的乘除以及冪的乘方運算
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025標準蔬菜買賣合同范本
- 2025施工現(xiàn)場環(huán)境職業(yè)健康安全管理合同書
- 2025年度教育機構(gòu)辦學許可證轉(zhuǎn)讓及人才培養(yǎng)合作合同3篇
- 2025年度農(nóng)村小型水庫防洪減災能力提升承包合同
- 2025年度國土綠化行動-鄉(xiāng)土樹苗采購與生態(tài)修復合同
- 二零二五年度排水溝清理與排水設施智能化改造協(xié)議3篇
- 二零二五年度創(chuàng)意辦公場地租賃與設計合同3篇
- 二零二五年度農(nóng)機租賃與農(nóng)業(yè)廢棄物綜合利用合作合同2篇
- 2025工廠生產(chǎn)承包合同樣本
- 2025年度公廁節(jié)能照明系統(tǒng)承包施工合同范本3篇
- 陳赫賈玲小品《歡喜密探》臺詞劇本
- 測角儀規(guī)范要求
- 腦出血入院病歷
- 數(shù)字孿生智慧水利建設方案
- 焊接工藝流程圖
- 風機基礎大體積混凝土澆筑專項施工方案
- 2023-2024學年北京市海淀區(qū)六年級數(shù)學第一學期期末達標檢測試題含答案
- 中國古代文學史PPT完整PPT完整全套教學課件
- (完整版)人教版高中物理新舊教材知識對比
- 最好用高速公路機電維修手冊
- 土默特右旗高源礦業(yè)有限責任公司高源煤礦2022年度礦山地質(zhì)環(huán)境年度治理計劃
評論
0/150
提交評論