精確的GPS定位:前景與挑戰(zhàn)_第1頁
精確的GPS定位:前景與挑戰(zhàn)_第2頁
精確的GPS定位:前景與挑戰(zhàn)_第3頁
精確的GPS定位:前景與挑戰(zhàn)_第4頁
精確的GPS定位:前景與挑戰(zhàn)_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

精確的GPS定位:前景與挑戰(zhàn)精確的GPS定位:前景與挑戰(zhàn)摘要現(xiàn)在,基于GPS載波相位定位是一個不可缺少的工具,廣泛應(yīng)用于精確的導(dǎo)航、測量、大地測量。為了解決這樣的各種應(yīng)用,精確的GPS定位技術(shù)的許多技術(shù)已經(jīng)被開發(fā)。幾乎所有的技術(shù)都涉及“相對”定位--GPS接收器/天線的坐標(biāo)確定,借助于在一個固定的堿或參考接收機的測量。從本質(zhì)上講,所有這些技術(shù)可以根據(jù)一個小數(shù)量的屬性分類。技術(shù)實施是在后處理,還是實時模式?該方案是否涉及靜態(tài)或動態(tài)的定位?接收器間的距離比較短(說<10公里的),還是很長的(例如>千公里)?是一個單一的基站參與,還是接收器的參考網(wǎng)絡(luò)?等。這些屬性也決定了數(shù)據(jù)處理策略,應(yīng)保證精確和可靠的定位結(jié)果。超過過去二十年的精確的GPS定位起到了作用,類似F1賽車。也就是說,基于載波相位GPS定位正研究新的硬件上的挑戰(zhàn),新的數(shù)據(jù)處理算法和新的運作程序,然后納入主流的測量和導(dǎo)航的“產(chǎn)品”。在本文中,對高精度GPS定位的挑戰(zhàn),進展和前景進行討論,特別強調(diào)確定的限制和為解決這些問題的近期和中期的前景發(fā)表評論。1簡介全球定位系統(tǒng)(GPS),是由美國國防部研發(fā)的全天候的,全球性的,基于衛(wèi)星的、精密時鐘的定位系統(tǒng),在20世紀(jì)80年代初,服務(wù)于普通測量和導(dǎo)航。高精度的差分定位的標(biāo)準(zhǔn)模式需要一個位于“基站”參考GPS接收機,基站坐標(biāo)是已知的,而所述第二用戶的GPS接收器同時跟蹤同一個衛(wèi)星信號。對兩個接收機的載波相位數(shù)據(jù)的組合和處理,相對于參考接收器用戶接收機的坐標(biāo)確定。然而,由于使用的載波相位數(shù)據(jù)在整個系統(tǒng)的復(fù)雜性,而測量是模糊的,在軟件處理數(shù)據(jù)時,需要納入“整周模糊度”(AR)算法。GPS用戶接收機硬件的發(fā)展已經(jīng)走了由明顯的方式向提高性能的AR(HanRizos,1997b)。從用戶接收到距離最近的參考接收機可從幾公里到幾百公里不等。由于接收器分離的增加,距離依賴偏見的問題,因此,整周模糊度可靠性的解決將成為一個更大的挑戰(zhàn)。另一方面,在過去的15年,“GPS大地測量學(xué)”的發(fā)展如此成功,即使沒有AR,“十億分之幾”的相對精度現(xiàn)在是可以實現(xiàn)的。但是,對于所謂的“高生產(chǎn)率”,基于GPS技術(shù)載波相位,當(dāng)使用少量數(shù)據(jù)時,AR是至關(guān)重要的(不像“GPS大地測量”技術(shù))。因此,基于載波相位定位是進步的研發(fā)創(chuàng)新的結(jié)果。除了在AR技術(shù)的進展(HanRizos,1997b),在過去的十年左右的幾個重要的發(fā)展導(dǎo)致了這種高精度性能也可在實時–說,在外地,后立即測量的制作,并在從參考接收機的數(shù)據(jù)傳輸完畢(二)來處理場接收器。精確的實時定位甚至可能在GPS接收器在運動。這些系統(tǒng)通常被稱作RTK系統(tǒng)(“實時運動”),并制定切實可行的許多時間關(guān)鍵型應(yīng)用程序,如機器控制GPS-RTK使用GPS導(dǎo)航,土方工程和基坑,自動拖運卡車業(yè)務(wù),和其他的自主機器人導(dǎo)航中的應(yīng)用。創(chuàng)新是關(guān)鍵:實時操作通過參考和用戶接收機之間的通信鏈路的規(guī)定(蘭利,1993;Talbot,1996),和移動計算功能內(nèi)置到用戶接收設(shè)備進行必要的計算。有效的整周模糊度算法能利用改進的GPS接收機硬件(允許雙頻率,高品質(zhì)的測量)(HanRizos,1997b)。AR是即使用戶接收機是運動的執(zhí)行(所謂的“對飛”,AR,或otf-ar),和后AR定位能力的靜態(tài)和動態(tài)定位同樣適用(Landau&Euler,1992;Han&Rizos,1997b)。不幸的是,這樣的進步是“脆弱的”,因為仍有不可靠和高效的許多應(yīng)用要求。如果GPS信號沒有進行跟蹤和鎖定損失,在調(diào)查開始整周模糊度的解決可以保持整個GPS動態(tài)定位的跨度。然而,GPS衛(wèi)星信號偶爾陰影(例如,由于建筑在城市峽谷環(huán)境),或暫時阻斷(例如,當(dāng)接收器通過一座橋或隧道),在大多數(shù)情況下,整周模糊度值是“丟失”,必須重新確定。與現(xiàn)有的商用GPS系統(tǒng)的短距離應(yīng)用不同,這個過程可以從幾秒到幾分鐘。在這個“重新初始化”時期的GPS載波范圍的數(shù)據(jù)無法獲得,因此有“無效”的時間,直到已收集到足夠的數(shù)據(jù)解決歧義。如果中斷GPS信號出現(xiàn)反復(fù),模糊“重新初始化”,至少是一個刺激,和糟糕的商業(yè)RTK定位系統(tǒng)一樣的一個顯著的弱點。所有的GPS制造商的目標(biāo)是發(fā)展理想的實時精確的GPS定位系統(tǒng),可以很容易的方式提供需要定位結(jié)果,在目前使用基于差分GPS偽距(DGPS)技術(shù)的情況下,通常將是1-5米級定位精度。另一個發(fā)展,也來自于“GPS”,GPS用戶需要購買和操作一個載波相位跟蹤GPS接收機的觀念創(chuàng)新,但依賴于一個參考接收器由第三方經(jīng)營的網(wǎng)絡(luò)。(這可以歸因于的全球網(wǎng)絡(luò)操作主持下的國際GPS服務(wù)成功的連續(xù)運行,以及越來越多各種目的的地方或區(qū)域的永久GPS網(wǎng)絡(luò)的建立–Rizosetal.1999.)。這樣的網(wǎng)絡(luò)可以讓“服務(wù)提供者”提供用戶–通過參考接收器所需的數(shù)據(jù)傳輸?shù)膶崟r服務(wù),也可以通過Web處理服務(wù)。如頂級的GPS接收機的成本問題,時間AR,從參考接收器的距離(S),可見衛(wèi)星數(shù),最小化的多路徑干擾,參考接收器等操作,可以考慮為約束的高精度GPS定位(Han&Rizos,1996c)。在過去的幾年中,通過處理一些主要的約束,已經(jīng)有了幾個重要的發(fā)展,并顯著提高了商業(yè)GPS產(chǎn)品和服務(wù):(a)一定的條件下,分米級定位精度是可能實現(xiàn)的,即使當(dāng)基線長度已達數(shù)百公里的長度。例如,通過網(wǎng)絡(luò)基于GPS載波相位定位技術(shù)的實現(xiàn)。(b)可靠的otf-ar在短時間內(nèi),即使只是一次測量的時段,是可能實現(xiàn)的。給出了很短的時間AR的周跳的概念,或有“重新初始化”的歧義,毫無意義,因為所謂的“瞬間”的光學(xué)傳遞函數(shù)(IOTF)是為所有時代的動態(tài)定位的正常模式(Rizos&Han,1998)。(c)第三代雙頻GPS接收機能夠在兩個波段頻率載波相位和偽距測量是非??焖俚?,是otf-ar或iotf-ar.的必要前提。(d)在GPS接收器/天線本身改進多路徑限制。(e)連續(xù)運行參考接收器網(wǎng)絡(luò)或基于Web支持實時的精確的GPS導(dǎo)航和測量。這些都是在許多國家/城市建立和發(fā)展的創(chuàng)新服務(wù),為廣泛的用戶提供了機會。此外,全球跟蹤網(wǎng)絡(luò)的IGS“骨干”的功能為精確的靜態(tài)和動態(tài)GPS定位。(f)使用集成GPS,GLONASS接收器-他們沒有任何作用及GPS只接收?必須強調(diào)的是,大學(xué)研究所為創(chuàng)新的GPS動態(tài)定位技術(shù)的發(fā)展做出了重要貢獻。在幾乎所有的情況下,大學(xué)的研究人員已經(jīng)開發(fā)出了必要的算法,并證明了新技術(shù)的可行性。商業(yè)產(chǎn)品和業(yè)務(wù)的實現(xiàn)也將隨之而來。本文的重點是基于載波相位動態(tài)GPS定位的現(xiàn)狀、前景和挑戰(zhàn)。盡管在超精密GPS靜態(tài)定位技術(shù)(GPS大地測量技術(shù),主要解決地球動力學(xué),大地測量和地球科學(xué)的應(yīng)用)的發(fā)展已經(jīng)取得了巨大的進步,克服移動用戶接收機厘米級定位精度的挑戰(zhàn)將最終有利于一個更廣泛的用戶群體。此外,目前許多大學(xué)的R&D的研究人員在儀器制造商支持下正在開發(fā)該項目。事實上,從精確的導(dǎo)航和定位的角度,靜態(tài)模式測量可以被認為是運動模式定位的一種特殊情況。2基于載波相位GPS動態(tài)定位在上世紀(jì)90年代,現(xiàn)在的GPS精密定位技術(shù)是大學(xué)進行的研究的結(jié)果,隨后已經(jīng)由GPS制造商演變?yōu)橐暂d波相位為基礎(chǔ)的“GPS”產(chǎn)品。特別是在過去的十年左右,一些發(fā)展已經(jīng)實現(xiàn),提供高精度的實時定位--這就是,在外地實時測量的操作,并把參考接收器的數(shù)據(jù)發(fā)送到用戶接收機的計算機進行處理。實時定位甚至可能在GPS接收器在運動(AR用OTF算法進行)的情況下實現(xiàn)。這些系統(tǒng)通常被稱作RTK系統(tǒng)(“實時運動”),并制定切實可行的關(guān)鍵實時應(yīng)用,如機器控制使用的GPS、GPS引導(dǎo)的發(fā)掘、集裝箱港口作業(yè)等。參考文獻Chen,X.,S.Han,C.Rizos&P.C.Goh,2000,Improvingreal-timepositioningefficiencyusingtheSingaporeIntegratedMultipleReferenceStationNetwork(SIMRSN),13thInt.Tech.MeetingoftheSatelliteDivisionoftheU.S.Inst.ofNavigation,SaltLakeCity,Utah,19-22September,9-18.Colombo,O.L.&C.Rizos,1996,TestinghighaccuracylongrangecarrierphaseDGPSinAustralasia,IAGSymp.115,"GPSTrendsinPreciseTerrestrial,Airborne,andSpaceborneApplications",pub.Springer,226-230.Dai,L.,J.Wang,C.Rizos&S.Han,2001,Real-timecarrierphaseambiguityresolutionforGPS/GLONASSreferencestationnetworks,tobepres.Int.Symp.onKinematicSystemsinGeodesy,Geomatics&Navigation(KIS2001),Banff,Canada,5-8June.Han,S.,1995,AmbiguityrecoveryforGPSlongrangekinematicpositioning,8thInt.Tech.MeetingoftheSat.Div.oftheU.S.Inst.ofNavigation,PalmSprings,California,12-15Sept.,349-360.Han,S.,1997a,Carrierphase-basedlong-rangeGPSkinematicpositioning,PhDDissertation,UNISURVrept.no.S-49,SchoolofGeomaticEngineering,TheUniversityofNewSouthWales,185pp.Han,S.,1997b,Qualitycontrolissuesrelatingtoambiguityresolutionforreal-timeGPSkinematicpositioning,J.ofGeodesy,71(6),351-361.Han,S.&E.Mok,1997,Validationcriteriaandaccuracyestimationoftheambiguityfunctionmethod,GeomaticsResearchAustralasia.67,67-82.Han,S.&C.Rizos,1995a,Asuggestedprocedureforon-the-flyambiguityresolutionforlongrangekinematicpositioning,4thInt.Conf.onDifferentialSatelliteNavigationSystems,Bergen,Norway,24-28April,PaperNo.67,8pp.Han,S.&C.Rizos,1995b,Anewmethodofconstructingmulti-satelliteambiguitycombinationsforimprovedambiguityresolution,8thInt.Tech.MeetingoftheSat.Div.oftheU.S.Inst.ofNavigation,PalmSprings,California,12-15Sept.,1145-1153.Han,S.&C.Rizos,1996a,Validationandrejectioncriteriaforintegerleastsquaresestimation,SurveyReview,33(260),375-382.Han,S.&C.Rizos,1996b,IntegratedmethodforinstantaneousambiguityresolutionusingnewgenerationGPSreceivers,IEEEPositionLocation&NavigationSymp.,Atlanta,Georgia,22-26April,254-261.Han,S.&C.Rizos,1996c,Progressandconstraintsofreal-timecarrierphase-basedmarineGPSpositioning,IAGSymp.117,"Gravity,Geoid&MarineGeodesy",Tokyo,Japan,30September-5October,712-719.Han,S.&C.Rizos,1996d,GPSnetworkdesignanderrormitigationforreal-timecontinuousarraymonitoringsystems,9thInt.Tech.MeetingoftheSat.Div.oftheU.S.Inst.ofNavigation,KansasCity,Missouri,17-20Sept.,1827-1836.Han,S.&C.Rizos,1997a,AninstantaneousambiguityresolutiontechniqueformediumrangeGPSkinematicpositioning,10thInt.Tech.MeetingoftheSat.Div.oftheU.S.Inst.ofNavigation,KansasCity,Missouri,16-19Sept.,1789-1800.Han,S.,&C.Rizos,1997b,ComparingGPSambiguityresolutiontechniques,GPSWorld,8(10),54-61.Han,S.&C.Rizos,1999,TheimpactoftwoadditionalcivilianGPSfrequenciesonambiguityresolutionstrategies,55thNationalMeetingU.S.InstituteofNavigation,"NavigationalTechnologyforthe21stCentury",Cambridge,Massachusetts,28-30June,315-321.Han,S.,C.Rizos&R.Abbot,1999,Seasurfacedeterminationusinglong-rangekinematicGPSpositioningandLaserAirborneDepthSoundertechniques,MarineGeodesy,22(3),195-203.Hatch,R.R.,J.Jung,P.Enge&B.Pervan,2000,CivilianGPS:Thebenefitsofthreefrequencies,GPSSolutions,3(4),1-9.Higgins,M.B.&N.C.Talbot,2001,Centimetresforeveryone:InitialresultsfromanAustralianVirtualReferenceStationnetworkpilotproject,tobepres.5thInt.Symp.onSatelliteNavigationTechnology&Applications,Canberra,Australia,24-27July.Hudnut,K.W.&J.A.Behr,1998,ContinuousGPSmonitoringofstructuraldeformationatPacoimaDam,California,SeismologicalRes.Letters,69(4),299-308.Kleusberg,A.,1990,ComparingGPSandGLONASS,GPSWorld,1(6),52-54.Landau,H.&H.J.Euler,1992,On-the-flyambiguityresolutionforprecisiondifferentialpositioning,5thInt.Tech.MeetingoftheSat.Div.oftheU.S.Inst.ofNavigation,Albuquerque,NewMexico,22-24Sept.,607-613.Landau,H.&U.Vollath,1996,CarrierphaseambiguityresolutionusingGPSandGLONASSsignals,9thInt.Tech.MeetingoftheSat.Div.oftheU.S.Inst.ofNavigation,KansasCity,Missouri,17-20Sept.,917-923.Langley,R.B.,1993,CommunicationlinksforDGPS,GPSWorld,4(5),47-51.Langley,R.B.,1994,RTCMSC-104DGPSstandards,GPSWorld,5(5),48-53.Leick,A.,J.Li,J.Beser&G.Mader,1995,ProcessingGLONASScarrierphaseobservations-theoryandfirstexperience,8thInt.Tech.MeetingoftheSat.Div.oftheU.S.Inst.ofNavigation,PalmSprings,California,12-15Sept.,1041-1047.Mok,E.,1999,ReliablesingleepochGPSprocessingalgorithmforstaticdeformationmonitoring,GeomaticsResearchAustralasia,70,95-117Raquet,J.&G.Lachapelle,2001,RTKpositioningwithMultipleReferenceStations,GPSWorld,12(4),48-53.Rizos,C.&S.Han,1998,PrecisekinematicapplicationsofGPS:Prospectsandchallenges,BoletimCi.Geodesicas,Curitibo,Brazil,3,3-33.Rizos,C.,S.Han&C.Roberts,1997,Permanentautomaticlow-costGPSdeformationmonitoringsystems:errormitigationstrategiesandsystemarchitecture,10thInt.Tech.MeetingoftheSat.Div.oftheU.S.Inst.ofNavigation,KansasCity,Missouri,16-19Sept.,909-917.Rizos,C.,S.Han,H.Y.Chen&P.C.Goh,1999,ContinuouslyoperatingGPSreferencestationnetworks:newalgorithmsandapplicationsofcarrierphase-based,medium-range,staticandkinematicpositioning,in"Quovadisgeodesia…?",specialpublicationtocelebrateProf.ErikW.Grafarend's60thbirthday,Dept.ofGeodesy&Geoinformatics,UniversityofStuttgart,ISSN0933-2839,367-378.Talbot,N.C.,1996,Compactdatatransmissionstandardforhigh-precisionGPS,9thInt.Tech.MeetingoftheSat.Div.oftheU.S.Inst.ofNavigation,KansasCity,Missouri,17-20Sept.,861-871.Talbot,N.C.,K.Zhang,M.Hale&J.Millner,2001,GPSNet:AVictorianpermanentGPStrackingnetwork,tobepres.5thInt.Symp.onSatelliteNavigationTechnology&Applications,Canberra,Australia,24-27July.Teunissen,P.J.G.,1994,Anewmethodforfastcarrierphaseambiguityestimation,IEEEPositionLocation&NavigationSymp.,LasVegas,Nevada,11-15April,562-573.Wang,J.,C.Rizos,M.P.Stewart&A.Leick,2001,GPSandGLONASSintegration:Modellingandambiguityresolutionissues,GPSSolutions,5(1),inprint.Wanninger,L.,1995,Improvedambiguityresolutionbyregionaldifferentialmodellingoftheionosphere,8thInt.Tech.MeetingoftheSat.Div.oftheU.S.Inst.ofNavigation,PalmSprings,California,12-15Sept.,55-62.Wübbena,G.,A.Bagge,G.Seeber,V.B?der&P.Hankemeier,1996,Reducingdistancedependenterrorsforreal-timepreciseDGPSapplicationsbyestablishingreferencestationnetworks,9thInt.Tech.MeetingoftheSat.Div.oftheU.S.Inst.ofNavigation,KansasCity,Missouri,17-20Sept.,1845-1852.PreciseGPSPositioning:ProspectsandChallengesChrisRizosSchoolofGeomaticEngineeringTheUniversityofNewSouthWalesSydneyNSW2052,AUSTRALIABIOGRAPHYChrisRizos,B.Surv.(UNSW)Ph.D.(UNSW)isprofessorandleaderoftheSatelliteNavigationandPositioning(SNAP)GroupatUNSW.HeisSecretaryofSection1,"Positioning",oftheInternationalAssociationofGeodesy(IAG),aFellowoftheIAG,andaFellowoftheAustralianInstituteofNavigation.ABSTRACTCarrierphase-basedGPSpositioningisnowanindispensabletoolforawiderangeofpreciseapplicationsinnavigation,surveyingandgeodesy.Toaddresssuchavarietyofapplications,manyimplementationsofpreciseGPStechniqueshavebeendeveloped.Almostalltechniquesinvolve'relative'positioning,inwhichoneGPSreceiver/antenna'scoordinatesaredeterminedwiththeaidofmeasurementsalsomadeatastationarybaseorreferencereceiver.Inessenceallofthesetechniquesmaybecategorisedaccordingtoasmallnumberofattributes.Isthetechniqueimplementedinthepost-processedorreal-timemode?Doesthescenarioinvolvestaticorkinematicpositioning?Istheinter-receiverdistancecomparativelyshort(say<10km)orverylong(e.g.>1000km)?Isasinglebasestationinvolvedorareferencenetworkofreceivers?andsoon.Eachoftheseattributesalsodeterminesthedataprocessingstrategiesthatshouldbeemployedtoensureaccurateandreliablepositioningresults.Overthelasttwodecades'preciseGPSpositioning'hasplayedarolesimilartoF1motorracing.Thatis,challengestocarrierphase-basedGPSpositioningspurresearchonnewhardware,newdataprocessingalgorithmsandnewoperationalprocedures,whicharethenincorporatedintomainstreamsurveyingandnavigation'products'.Inthispaper,thechallenges,progressandoutlookforhighprecisionGPSpositioningwillbediscussed,withparticularemphasisonidentifyingtheconstraintsandcommentingontheprospectsforaddressingtheminthenearandmediumterm.1.INTRODUCTIONTheGlobalPositioningSystem(GPS)isanall-weather,global,satellite-based,round-theclockpositioningsystemdevelopedbytheU.S.DepartmentofDefense,thatbecameavailabletotheciviliansurveyingandnavigationcommunityintheearly1980s.ThestandardmodeofhighaccuracydifferentialpositioningrequiresonereferenceGPSreceivertobelocatedata"basestation"whosecoordinatesareknown,whiletheseconduserGPSreceiversimultaneouslytracksthesamesatellitesignals.Whenthecarrierphasedatafromthetworeceiversiscombinedandprocessed,theuserreceiver'scoordinatesaredeterminedrelativetothereferencereceiver.However,theuseofcarrierphasedatacomesatacostintermsofoverallsystemcomplexitybecausethemeasurementsareambiguous,requiringtheincorporationofan"ambiguityresolution"(AR)algorithmwithinthedataprocessingsoftware.DevelopmentsinGPSuserreceiverhardwarehavegoneasignificantwaytowardsimprovingtheperformanceofAR(Han&Rizos,1997a).Thedistancefromtheuserreceivertothenearestreferencereceivermayrangefromafewkilometrestohundredsofkilometres.Asthereceiverseparationincreases,theproblemsofaccountingfordistance-dependentbiasesgrowsand,asaconsequence,reliableambiguityresolutionbecomesanevengreaterchallenge.Ontheotherhand,developmentsin"GPSGeodesy"havebeensosuccessfulinthelast15years,thatrelativeaccuraciesof"afewpartsperbillion"arenowpossibleevenwithoutAR.However,forso-called"highproductivity"carrierphase-basedGPStechniques,ARiscrucialwhensmallamountsofdataareused(unlikethecasefor"GPSGeodesy"techniques).Hencecarrierphase-basedpositioningistheresultofprogressiveR&Dinnovations.InadditiontoadvancesinARtechniques(Han&Rizos,1997b),overthelastdecadeorsoseveralsignificantdevelopmentshaveresultedinthishighaccuracyperformancealsobeingavailablein'real-time'–thatis,inthefield,immediatelyfollowingthemakingofmeasurements,andafterthedatafromthereferencereceiverhasbeentransmittedtothe(second)fieldreceiverforprocessing.Precisereal-timepositioningisevenpossiblewhentheGPSreceiverisinmotion.ThesesystemsarecommonlyreferredtoasRTKsystems("realtime-kinematic"),andmakefeasibletheuseofGPS-RTKformanytime-criticalapplicationssuchasmachinecontrol,GPS-guidedearthworks/excavations,automatedhaultruckoperations,andotherautonomousroboticnavigationapplications.Thecrucialinnovationsthereforeare:Real-timeoperationthroughtheprovisionofcommunicationlinksbetweenreferenceanduserreceivers(Langley,1993;Talbot,1996),andmobilecomputingcapabilitiesbuiltintotheuserreceiverequipmenttocarryoutthenecessarycalculations.EfficientambiguityresolutionalgorithmsabletotakeadvantageofimprovementsinGPSreceiverhardware(thatallowdual-frequency,highqualitymeasurementstobemade)(Han&Rizos,1997a).ARbeingimplementedevenastheuserreceiverisinmotion(so-called"on-the-fly"AR,orOTF-AR),andthepost-ARpositioningcapabilitybeingequallyapplicabletostaticandkinematicpositioning(Landau&Euler,1992;Han&Rizos,1997b).Unfortunately,suchadvancesare'fragile'becausetherearestillnotyetasreliableandefficientasdemandedbymanyapplications.IftheGPSsignalsweretrackedandloss-of-lockneveroccurred,theintegerambiguitiesresolvedatthebeginningofasurveycouldbekeptforthewholeGPSkinematicpositioningspan.However,theGPSsatellitesignalsareoccasionallyshaded(forexample,duetobuildingsin"urbancanyon"environments),ormomentarilyblocked(forexample,whenthereceiverpassesunderabridgeorthroughatunnel),andinmostcasestheintegerambiguityvaluesare'lost'andmustberedetermined.ThisprocesscantakefromafewsecondsuptoseveralminuteswithpresentcommercialGPSsystemsforshort-rangeapplications.Duringthis"re-initialisation"periodtheGPScarrier-rangedatacannotbeobtained,andhencethereis'dead'timeuntilsufficientdatahasbeencollectedtoresolvetheambiguities.IfinterruptionstotheGPSsignalsoccurrepeatedly,ambiguity"reinitialisation"is,attheveryleast,anirritation,andatworseasignificantweaknessofcommercialGPS-RTKpositioningsystems.ThegoalofallGPSmanufacturersistodeveloptheidealreal-timepreciseGPSpositioningsystem,abletodeliverpositioningresults,ondemand,inaseasyamannerasispresentlythecaseusingpseudo-range-baseddifferentialGPS(DGPS)techniques,whichtypicallydeliverpositioningaccuraciesoftheorderof1-5metres.Anotherdevelopmentthatalsoresultsfrominnovationsin"GPSGeodesy"istheconceptofGPSusersneedingtoonlypurchaseandoperateonecarrierphase-trackingGPSreceiver,butthenrelyonanetworkofreferencereceiversoperatedbyathirdparty.(Thiscanbeattributedtothespectacularsuccessofthecontinuously-operatingglobalGPSnetworkoperatedundertheauspicesoftheInternationalGPSService,aswellastheincreasingnumberoflocalorregionalpermanentGPSnetworksestablishedforavarietyofpurposes–Rizosetal.,1999.)Suchnetworkscouldallow"serviceproviders"toofferreal-timeservicestousers–throughthenecessarytransmissionofreferencereceiverdata,orpost-processingservicesviatheWeb.Issuessuchasthecostoftop-of-the-lineGPSreceivers,time-to-AR,distancefromreferencereceiver(s),numberofvisiblesatellites,minimisiationofmultipathdisturbance,operationofreferencereceivers,etc.,canbeconsideredconstraintstohighpreciseGPSpositioning(Han&Rizos,1996c).Overthelastfewyearsseveralimportantdevelopmentshaveoccurredthataddresssomeofthemainconstraints,andofferhopeforsignificantlyimprovedcommercialGPSproductsandservices:(a)Undercertainconditionsdecimetre-levelpositioningaccuracyhasbeenpossibleevenwhenthebaselinelengthshavebeenuptohundredsofkilometresinlengthvia,e.g.,theimplementationofnetworkGPScarrierphase-basedpositioningtechniques.(b)ReliableOTF-ARintheshortestperiodoftimepossible,evenwithjustonemeasurementepoch,ispossible.Givenveryshort'time-to-AR'thenotionofcycleslips,orhavingto"re-initialise"theambiguities,hasnomeaningbecauseso-called'instantaneous'OTF(IOTF)isthenthenormalmodeofkinematicpositioningforallepochs(Rizos&Han,1998).(c)Thirdgenerationdual-frequencyGPSreceiverscapableofmakingcarrierphaseandpseudo-rangemeasurementsonthetwoL-bandfrequenciesisanecessaryprerequisiteforveryfastOTF-ARorIOTF-AR.(d)ImprovedmultipathmitigationwithintheGPSreceivers/antennasthemselves.(e)Continuously-operatingreferencereceivernetworksthatsupportreal-timeorWeb-basedpreciseGPSnavigationandsurveying.Thesearebeingestablishedinmanycountries/cities,andoffertheopportunitytodevelopinnovativeservicestoawiderangeofusers.Inaddition,theglobaltrackingnetworkoftheIGSfunctionsasthe'backbone'forprecisestaticandkinematicGPSpositioning.(f)The

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論