北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)設(shè)計(jì)_第1頁(yè)
北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)設(shè)計(jì)_第2頁(yè)
北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)設(shè)計(jì)_第3頁(yè)
北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)設(shè)計(jì)_第4頁(yè)
北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)設(shè)計(jì)_第5頁(yè)
已閱讀5頁(yè),還剩83頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

蘭州交通大學(xué)畢業(yè)設(shè)計(jì)(論文)蘭州交通大學(xué)畢業(yè)設(shè)計(jì)(論文)任務(wù)書(shū)課題北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)設(shè)計(jì)姓名宿穩(wěn)平專(zhuān)業(yè)土木工程班級(jí)土木088班設(shè)計(jì)任務(wù)1.根據(jù)所給資料,根據(jù)工程地質(zhì)與水文地質(zhì)條件,參照區(qū)間隧道設(shè)計(jì)規(guī)范和標(biāo)準(zhǔn),進(jìn)行線路平縱斷面設(shè)計(jì)、結(jié)構(gòu)設(shè)計(jì)(包括主體結(jié)構(gòu)設(shè)計(jì)、附屬結(jié)構(gòu)設(shè)計(jì)和臨時(shí)結(jié)構(gòu)設(shè)計(jì)。)并繪制區(qū)間隧道標(biāo)準(zhǔn)斷面圖、區(qū)間隧道標(biāo)準(zhǔn)斷面配筋圖、區(qū)間隧道縱斷面圖、區(qū)間隧道結(jié)構(gòu)平面圖、風(fēng)道結(jié)構(gòu)設(shè)計(jì)圖。2.對(duì)區(qū)間隧道主體結(jié)構(gòu)設(shè)計(jì)中結(jié)構(gòu)型式及結(jié)構(gòu)支護(hù)參數(shù)及尺寸進(jìn)行計(jì)算、結(jié)構(gòu)計(jì)算包括結(jié)構(gòu)二維計(jì)算。對(duì)荷載與荷載組合進(jìn)行計(jì)算。3.進(jìn)行施工組織設(shè)計(jì)。施工單位的施工組織設(shè)計(jì)(實(shí)施性施工組織設(shè)計(jì))應(yīng)包括以下內(nèi)容:隧道工程說(shuō)明書(shū),工地詳細(xì)平面布置圖,工程預(yù)計(jì)進(jìn)度表,各工程項(xiàng)目分月完成工作量表,各項(xiàng)資源計(jì)算表及說(shuō)明,組織機(jī)構(gòu)設(shè)置,勞動(dòng)力分月表,各項(xiàng)材料分月需要量表,施工機(jī)具需要量及使用起訖日期表,材料及備品需要量表,技術(shù)復(fù)雜工序及新施工方法的技術(shù)操作規(guī)定,保證質(zhì)量及安全的技術(shù)組織措施等。4.編寫(xiě)設(shè)計(jì)說(shuō)明書(shū)。應(yīng)包括自然條件,工程概況,設(shè)計(jì)依據(jù)及各項(xiàng)技參數(shù)的選定和設(shè)計(jì)內(nèi)容等5.分別用中英文撰寫(xiě)畢業(yè)設(shè)計(jì)摘要(500字左右),并用計(jì)算機(jī)打印。設(shè)計(jì)要求1.根據(jù)所給資料,參照《地鐵設(shè)計(jì)規(guī)范》<GB50157-3003>和《地下鐵道工程施工及驗(yàn)收規(guī)范》<GB50299-1999>,《混凝土結(jié)構(gòu)設(shè)計(jì)規(guī)范》<GB50010-2002>,設(shè)計(jì)并用CAD制圖軟件繪制隧道縱橫斷面圖(1:1000)。2.進(jìn)行襯砌結(jié)構(gòu)的設(shè)計(jì)和計(jì)算。參照標(biāo)準(zhǔn)圖進(jìn)行隧道襯砌結(jié)構(gòu)設(shè)計(jì),利用給定或自編的程序計(jì)算襯砌結(jié)構(gòu)的內(nèi)力并檢算其抗壓和抗拉強(qiáng)度。3.進(jìn)行施工組織設(shè)計(jì)。4.編寫(xiě)設(shè)計(jì)說(shuō)明書(shū)。5.編寫(xiě)英文的摘要。指導(dǎo)教師簽字系主任簽字主管院長(zhǎng)簽章蘭州交通大學(xué)畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告表課題名稱(chēng)北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)設(shè)計(jì)課題來(lái)源工程實(shí)際課題類(lèi)型AY導(dǎo)師學(xué)生姓名學(xué)號(hào)專(zhuān)業(yè)土木工程一、調(diào)研資料的準(zhǔn)備北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)處的地質(zhì)資料和地形圖,《地鐵設(shè)計(jì)規(guī)范》<GB50157-3003>和《地下鐵道工程施工及驗(yàn)收規(guī)范》<GB50299-1999>,《混凝土結(jié)構(gòu)設(shè)計(jì)規(guī)范》<GB50010-2002>,和部分外文書(shū)籍。畢業(yè)設(shè)計(jì)目的設(shè)北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道),其結(jié)構(gòu)的設(shè)計(jì)使用年年限為100年,按荷載基本效應(yīng)組合計(jì)算,襯砌結(jié)構(gòu)的抗震作用符合8度抗震烈度,地下工程的主要部件的防火等級(jí)為一級(jí)。在戰(zhàn)時(shí)應(yīng)能滿(mǎn)足人防工程的要求。三、思路與預(yù)期成果根據(jù)相關(guān)的規(guī)范《地鐵隧道設(shè)計(jì)規(guī)范》和設(shè)計(jì)要求進(jìn)行設(shè)計(jì),并能夠按期的完成畢業(yè)設(shè)計(jì),基本掌握地鐵隧道的設(shè)計(jì)。尤其對(duì)北京地區(qū)地鐵隧道從設(shè)計(jì)到施工獲得深入了解,為以后工作打下基礎(chǔ),得到實(shí)踐經(jīng)驗(yàn)。四、階段任務(wù)的完成內(nèi)容及時(shí)間安排第5周:查閱外文資料,并以其進(jìn)行翻譯和學(xué)習(xí)。第5-6周:熟悉圖紙和相應(yīng)的設(shè)計(jì)要求,仔細(xì)研究地質(zhì)條件,明確基本的設(shè)計(jì)方向。第8周:確定開(kāi)挖斷面面積及結(jié)構(gòu)斷面形式。第9周:和同組同學(xué)進(jìn)行溝通確定相鄰斷的銜接問(wèn)題。第10-11周:襯砌結(jié)構(gòu)設(shè)計(jì)及檢算。第12周:繪制襯砌結(jié)構(gòu)橫斷面圖。第13周:整理以前的計(jì)算資料。第14周:熟悉隧道施工組織設(shè)計(jì)內(nèi)容。第15周:施工方案的選擇,組織機(jī)構(gòu)設(shè)置和施工隊(duì)伍的分工,并交開(kāi)題報(bào)告。第16周:臨時(shí)工程和總體工程進(jìn)度安排,監(jiān)控量測(cè)和施工控制測(cè)量。第17周:整理資料,準(zhǔn)備答辯。(可另加附頁(yè))指導(dǎo)教師意見(jiàn)簽名:年月日課題類(lèi)型和性質(zhì):(1)A—工程設(shè)計(jì);B—技術(shù)開(kāi)發(fā);C—軟件工程;D—理論研究;(2)X—真實(shí)課題;Y—模擬課題;Z—虛擬課題(1)、(2)均要填,如AY、BX等。蘭州交通大學(xué)畢業(yè)設(shè)計(jì)(論文)學(xué)生自查表(中期教學(xué)檢查用)學(xué)生姓名專(zhuān)業(yè)土木工程班級(jí)指導(dǎo)教師姓名職稱(chēng)講師課題名稱(chēng)北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)設(shè)計(jì)個(gè)人精力實(shí)際投入日平均工作時(shí)間6小時(shí)周平均工作時(shí)間42小時(shí)迄今缺席天數(shù)0出勤率%100%指導(dǎo)教師每周指導(dǎo)次數(shù)3次每周指導(dǎo)時(shí)間(小時(shí))9小時(shí)備注畢業(yè)設(shè)計(jì)(論文)工作進(jìn)度(完成)內(nèi)容及比重已完成主要內(nèi)容%待完成主要內(nèi)容%任務(wù)計(jì)劃書(shū),開(kāi)題報(bào)告;英文資料的翻譯;地形平面圖的繪制,地質(zhì)剖面圖,限界的確定;迂回風(fēng)道結(jié)構(gòu)圖的繪制,區(qū)間隧道橫斷面圖的繪制;隧道結(jié)構(gòu)荷載的確定以及結(jié)構(gòu)內(nèi)力計(jì)算。55迂回風(fēng)道襯砌的內(nèi)力計(jì)算與檢算;區(qū)間隧道襯砌的檢算與配筋;施工組織方案的確定;整理以前的計(jì)算資料與圖紙;并撰寫(xiě)設(shè)計(jì)說(shuō)明書(shū)。45存在問(wèn)題在進(jìn)行結(jié)構(gòu)內(nèi)力計(jì)算時(shí),運(yùn)用軟件sap2000不太熟練,甚至不足;由于對(duì)盾構(gòu)法施工不太熟悉,在設(shè)計(jì)中有諸多不合理之處;由于區(qū)間隧道結(jié)構(gòu)底板下有層間水,是否考慮抗浮驗(yàn)算存在問(wèn)題;在施工組織中需多查閱資料,以完善和補(bǔ)充。指導(dǎo)教師簽字:年月日摘要本畢業(yè)設(shè)計(jì)主要包括兩個(gè)部分,第一部分是北京某區(qū)間(K13+510.000—K13+585.600)隧道結(jié)構(gòu)設(shè)計(jì);第二部分是北京某區(qū)間(K13+510.000—K13+585.600)隧道施工組織設(shè)計(jì);在第一部分區(qū)間隧道結(jié)構(gòu)設(shè)計(jì)中,根據(jù)工程地質(zhì)與水文地質(zhì)條件,參照區(qū)間隧道設(shè)計(jì)規(guī)范和標(biāo)準(zhǔn),對(duì)區(qū)間隧道進(jìn)行結(jié)構(gòu)設(shè)計(jì)(包括主體結(jié)構(gòu)設(shè)計(jì)、附屬結(jié)構(gòu)設(shè)計(jì)),并繪制區(qū)間隧道橫斷面圖、區(qū)間隧道縱斷面圖、區(qū)間隧道結(jié)構(gòu)平面圖、風(fēng)道結(jié)構(gòu)設(shè)計(jì)圖。通過(guò)施工方案的比選,確定盾構(gòu)法施工,隧道襯砌結(jié)構(gòu)平板型鋼筋混泥土管片,利用fortran程序進(jìn)行襯砌內(nèi)力計(jì)算與檢算,并對(duì)其進(jìn)行相應(yīng)的強(qiáng)度和抗浮驗(yàn)算。第二部分是區(qū)間隧道施工組織設(shè)計(jì),根據(jù)隧道施工方法和隧道周邊的環(huán)境情況,對(duì)施工前準(zhǔn)備工作,施工場(chǎng)地布置,隧道開(kāi)挖與襯砌結(jié)構(gòu)施工等進(jìn)行設(shè)計(jì),并編制了工程進(jìn)度計(jì)劃,編寫(xiě)了相應(yīng)的質(zhì)量、安全、環(huán)境保護(hù)等措施。關(guān)鍵詞:盾構(gòu);結(jié)構(gòu)設(shè)計(jì);內(nèi)力計(jì)算;檢算;施工組織 ABSTRACTThedesignmainlyincludestwoparts.Thefirstpartisthetunnelstructuredesignofarange(theK13510.000-theK13585.600);Thesecondpartisarange(theK13510.000-theK13585.600)tunnelconstructiondesign.Inthefirstpartofthesectiontunnelsstructuraldesign,engineeringgeologicalandhydrogeologicalconditions,thereferenceintervaltunneldesignnormsandstandards,structuraldesign(includingthemainstructureofthedesignoftherunningtunnels,subsidiarystructuraldesign),anddrawthecross-sectionaldiagramoftherunningtunnels,therangeoftunnellongitudinalsectionstructureplanofrunningtunnels,ductstructuredesign.Comparisonandselectionoftheconstructionprogramtodeterminetheshieldconstruction,thestructureofflatreinforcedconcretetunnelliningsegments,fortranprogramliningcalculationandCalculation,andthecorrespondingstrengthandanti-floatingchecking.

Thesecondpartisthetunnelsectionconstructionarrangementdesign.Accordingtothetunnelconstructionmethodsandtheenvironmentaround,thepreparationbeforetheconstruction,constructionsitelayout,tunnelexcavationandliningconstructionisdesigned.Theprojectschedule,thequality,thesafetyandtheenvironmentprotectionaremade.Keywords:shield;structuraldesign;internalforcecalculation;checkingcalculation;constructionorganizations蘭州交通大學(xué)畢業(yè)設(shè)計(jì)(論文)1目錄1. 緒論 ⑤建立規(guī)范統(tǒng)一的測(cè)量記錄手薄,認(rèn)真填寫(xiě)測(cè)量記錄。6.8.3消防安全措施(1)消防器材的放置。場(chǎng)地上重要的機(jī)械設(shè)備、油庫(kù)、辦公室、更衣室、倉(cāng)庫(kù)等均設(shè)置消防器材。(2)站臺(tái)層和站廳在顯眼處也設(shè)置消防器材。隧道內(nèi)每隔50m設(shè)置一個(gè)滅火器,盾構(gòu)頭部設(shè)置一組滅火器。(3)隧道內(nèi)嚴(yán)禁吸煙。在井下合理位置布置一吸煙點(diǎn),并配備滅火器材。結(jié)論本次設(shè)計(jì)中主要是北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)設(shè)計(jì)。包括區(qū)間隧道和迂回風(fēng)道的平縱斷面設(shè)計(jì)、襯砌內(nèi)力的計(jì)算與檢算以及施工組織設(shè)計(jì)兩部分內(nèi)容。(1)在結(jié)構(gòu)設(shè)計(jì)過(guò)程中,綜合地質(zhì)情況、施工方法、以及車(chē)輛類(lèi)型(A型車(chē))決定隧道限界,斷面形式,最終確定區(qū)間隧道為圓形結(jié)構(gòu),迂回風(fēng)道為直墻圓拱結(jié)構(gòu)形式。(2)在計(jì)算結(jié)構(gòu)襯砌內(nèi)力的計(jì)算與檢算過(guò)程中,運(yùn)用fortran程序和Excel計(jì)算,通過(guò)檢算,管片能夠滿(mǎn)足強(qiáng)度要求。(3)對(duì)結(jié)構(gòu)進(jìn)行抗浮驗(yàn)算,能夠滿(mǎn)足要求,并進(jìn)行了管片斷面設(shè)計(jì)。(4)在施工組織設(shè)計(jì)中,全面考慮施工高效、科學(xué)、安全的原則,結(jié)合盾構(gòu)施工的特點(diǎn),詳細(xì)的進(jìn)行設(shè)計(jì),能夠滿(mǎn)足施工要求。(5)同時(shí)在斷面設(shè)計(jì)中用CAD繪制區(qū)間隧道的平面圖、縱斷面圖、迂回風(fēng)道橫斷面圖。在設(shè)計(jì)過(guò)程中,大量地用運(yùn)了EXCEL、Word、AutoCAD等軟件。同時(shí),設(shè)計(jì)嚴(yán)格依據(jù)《地鐵設(shè)計(jì)規(guī)范》和其他規(guī)范進(jìn)行。致謝畢業(yè)設(shè)計(jì)是對(duì)大學(xué)四年的的學(xué)業(yè)成果的一次檢閱,同時(shí)又是從面向社會(huì)、面向基層、面向工程出發(fā),其目的是使學(xué)生在學(xué)完培養(yǎng)計(jì)劃所規(guī)定的基礎(chǔ)課、技術(shù)專(zhuān)業(yè)課及各類(lèi)必修和選修專(zhuān)業(yè)課之后,通過(guò)這次畢業(yè)設(shè)計(jì),在培養(yǎng)學(xué)生從事科技工作正確思想方法的同時(shí),培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新、實(shí)事求是、用實(shí)踐來(lái)檢驗(yàn)理論,全方位地考慮問(wèn)題等科學(xué)技術(shù)人員應(yīng)具有的素質(zhì)。通過(guò)設(shè)計(jì),我深刻地感受到理論知識(shí)與工程實(shí)踐相結(jié)合的重要性,從設(shè)計(jì)中,我全面地鍛煉了自己綜合運(yùn)用知識(shí)以及捕捉信息的能力,而且我也深深地發(fā)現(xiàn)自己在學(xué)習(xí)過(guò)程中的欠缺和不足,基礎(chǔ)知識(shí)不夠扎實(shí)。完成這次畢業(yè)設(shè)計(jì)后,我對(duì)今后工作和學(xué)習(xí)充滿(mǎn)信心,對(duì)未來(lái)充滿(mǎn)必勝的信念!經(jīng)過(guò)了近三個(gè)月的努力,畢業(yè)設(shè)計(jì)終于完成了。隨著大學(xué)四年最后一項(xiàng)學(xué)習(xí)任務(wù)的完成,也標(biāo)志著我在大學(xué)的學(xué)習(xí)、生活將告以段落。四年以來(lái),老師的悉心教導(dǎo)、同學(xué)的熱情幫助,讓我學(xué)到了許多知識(shí),同時(shí)也讓我學(xué)會(huì)了做人的道理,這將是我一生最大的財(cái)富。而本次畢業(yè)設(shè)計(jì)是對(duì)我大學(xué)四年學(xué)習(xí)成果的一次綜合檢驗(yàn),也是對(duì)我四年所學(xué)的專(zhuān)業(yè)知識(shí)的進(jìn)一步強(qiáng)化和提高。在該設(shè)計(jì)的構(gòu)思、設(shè)計(jì)以及定稿過(guò)程中,我得到了陳志敏老師耐心、細(xì)致的指導(dǎo)。陳老師雖然教學(xué)任務(wù)和工程任務(wù)都比較重,但是他總是盡他所能的幫助我們,并為我們提供必要的參考資料以及很多的經(jīng)驗(yàn)指導(dǎo)。由于我們所學(xué)的知識(shí)與完成設(shè)計(jì)所需要的知識(shí)存在一定斷層,陳老師不辭辛勞的為我們補(bǔ)課。在此,我對(duì)陳老師的悉心教導(dǎo)表示誠(chéng)摯的感謝!此外,在做設(shè)計(jì)的過(guò)程中,我的同學(xué)也給予了我很多幫助,在此也表示感謝。宿穩(wěn)平2012年6月7日參考文獻(xiàn)[1]張一寧.地鐵旁通道和凍結(jié)法施工風(fēng)險(xiǎn)分析與建議[J].城市道橋與防洪,2010[2]劉志強(qiáng).隧道工程[M].徐州:中國(guó)礦業(yè)大學(xué)出版社,2002[3]高少?gòu)?qiáng).隋修志.隧道工程[M].北京:中國(guó)鐵道出版社,2003[4]朱合華.地下建筑結(jié)構(gòu)[M].北京:中國(guó)建筑工業(yè)出版社,2005[5]夏軍武.賈福萍.結(jié)構(gòu)設(shè)計(jì)原理[M].徐州:中國(guó)礦業(yè)大學(xué)出版社,2007[6]翁家杰.地下工程[M].北京:煤炭工業(yè)出版社,1995[7]秦漢禮.盾構(gòu)隧道鋼筋混凝土管片制作技術(shù)[J].隧道建設(shè),2006[8]朱合華.土壓平衡盾構(gòu)法施工參數(shù)的模型試驗(yàn)研究[J].巖土工程學(xué)報(bào)雜志編輯部,2006[9]翁家杰.地下工程[M].北京:煤炭工業(yè)出版社,1995[10]孫均.地鐵隧道盾構(gòu)掘進(jìn)施工市區(qū)的環(huán)境土工安全技術(shù)標(biāo)準(zhǔn)及其變形與沉降控制[J].世界隧道,2000(增刊):233~240[11]施仲衡.張彌等.地下鐵道設(shè)計(jì)與施工[M].西安:陜西科學(xué)技術(shù)出版社,1997.6,378~381附錄一翻譯部分原文AnalysisofSettlementCausedbyTBMConstructioninSandFormationsinBeijingABSTRACTBasedondatacollectedintunnelboringmachine(TBM)constructioninBeijingsubway,soilsettlementpredictionmodelsforsandformationsareanalyzedandverified.ThroughtheanalysisofPeck’sformula,thepaperpointsoutthatthepreconditionistodeterminethecoefficientofsettlementgroovewidth(i),whileiisfurthercontrolledbythemaximumsettlementofsingletunnel(δ1max).ByusingthesettlementequationofTakeyamaTakashi,δ1maxcanbecalculateddirectly,buttheelasticmodulus(E)shouldbeanequivalentvaluethatrepresentsallthesoilsinvolved.Inthecalculationofthecoefficientofsettlementgroovewidth(i)byusingO'Reilly-Newmethod,theresultsislargelyaffectedbytheformationparameters.InordertofindanidealmodeltopredictthesettlementinTBMconstructioninBeijingsandyformation,modifiedcalculationmethodsofEandiarerecommended.Theresultsshowthatthemaximumsettlementinthegroundsurface,thetotalwidthofsettlementgrooveandthesettlementcurveinthecrosssectionmatchmonitoreddataverywell.Fordoubleparalleltunnels,thesettlementatanypointcanbecalculatedbyaddingindividualsettlementgeneratedbyeachtunnelconstruction,andeachofwhichcanbecalculatedbyusingtheformulasofPeckandTakeyamaTakashi.Butthesettlementsatthecenterlineofeachtunnelaredifferent.Theamountofsettlementisaffectedbyconstructionsequenceofthetwotunnels.Theearlierthetunnelisconstructed,thelargertheeventuallysettlementis.KEYWORDSTBM;Settlement;CoefficientofSettlementGrooveWidth;Peck;TakeyamaTakashi;BeijingsubwayINTRODUCTIONRecentyearstheBeijingsubwayextendsatthespeedofabout100kmeveryyear.MostofthesubwaytunnelsareconstructedbyusingearthpressurebalanceTBMmethod.BecauseBeijingcityliesintheintersectionareaofplainandmountain,themainformationsencounteredinTBMconstructionaresand,gravel,siltysand,finesand,clay,etc.EspeciallyineasternBeijing,thesubwaytunnelsarenormallyinthedepthof20munderground,andthesand-gravelformationsarefullofwater.Inthiskindofsituation,settlementcontrolisabasicrequirement;otherwisebuildings,pipelinesandotherundergroundinfrastructureswillbeaffectedseverely,evendamaged.SohowtoexactlypredictsoillossinTBMconstructionisveryimportant.ByfarthemethodsforanalysisofsettlementinducedbyTBMarederivedfromtheoretical,experienceornumericalanalysis.Amongthem,Peck’sformulaiswidelyaccepted.Itsupposesthesettlementiscausedbysoillossandthevolumeofsettlementgrooveequivalentstothevolumeofsoillossifconstructionisunderundrainedconditions.ThecurveofgroundsettlementgroovebyPeck’sformulaisdistributedintheshapeofnormalcurve(Peck,1969).O'Reilly-NewputforwardanotherformulatocalculatethesettlementgroovewidthgeneratedbytheTBMconstructionindifferentburieddepthoftunnels(O'Reilly,1982).Attewellinducedothertwofactors,kandn,tocalculatethesettlementgroovewidth(Attewell,1986).In1982FujitaofJapananalyzed74settlementcasescausedbyTBMconstruction.TheresultshowedthattheshapeofthesettlementgroovewasverysimilartothatofPeck’scurve.Thereafter,theJapanesescholarTakeyamaTakashiabsorbedthelatestresearchresultsfromelasticfiniteanalysis,analyzedthemonitoreddata,andthenbroughtforwardthemodifiedsettlementpredictionformula(Rankin,1988andWei,2010).Anyway,ifthesettlementistobepredictedproperly,besidesemployingasuitablesettlementformula,thechoiceoftheproperparametersofsoilsandconstructionisequallyimportant.Thefollowingpartdemonstratessomesuccessfulpredictionpracticefortheselectionofsettlementcalculationformulaanddisposingtechniqueofsoilparameters.SETTLEMENTDETERMINATIONTHEORIESPeck’sformula.ThemostacceptedPeck’sformulaforthecalculationofgroundsettlementyieldedbytunnelboringconstructionisasfollows:So,Equation(1)takestheformDeterminationofcoefficientofsettlementgroovewidth(i).Therearethreewaystoobtainthecoefficientofsettlementgroovewidth(i).Method1.AccordingtotherecommendationofEnglishscholarO'Reilly-New,icanbedeterminedaccordingtotunneldepthandsoiltypes,asshowninEquation(4).i=α?Z(4)Whereα=Factorrelatedtosoil.α=0.4forhardclay;α=0.7forsoftclay;α=0.5formediumhardclay;α=0.2~0.3forsand.Z=Tunneldepthfromgroundsurfacetothetopofatunnel,m.Method2.AccordingtoKloofandSchmid(Zhouwenbo,2004;Yinluchao,1999;ZhangFengxiang,2005),forplasticundrainedclay,thecoefficientofsettlementgroovewidthcanbecalculatedbyEquation(5).WhereR=Outerdiameteroftunnelbore,mMethod3.icanbecalculatedaccordingtogeologicalcondition,tunneldepthandtunnelradius,asshowninEquation(6).Whereφ=Internalfrictionangelofsoil,degreeFurthermore,scholarCordingregardssettlementgrooveasVshapeslot,sothesettlementgroovewidthcanbesimplifiedas:B=5i(7)WhereB=Settlementgroovewidth,mExperienceformulaofTakeyamaTakashi.Throughthestudyofmonitoreddataandtheachievementofelasticfinite,TakeyamaTakashideducedthefollowingequationtocalculatethemaximumsettlementgeneratedbytunnelTBMconstruction.Themaximumsettlementproducedbysingletunnelconstructionis:Themaximumsettlementinducedbydoubletunnelsconstructionis:Whereδ1max=MaximumsettlementinsingletunnelTBMconstruction,mδmax=MaximumsettlementindoubletunnelTBMconstruction,mH=Distancebetweenthetopoftunnelandgroundsurface,mD=Outerdiameteroftunnelbore,mE=Weightedmeanvalueofsoilelasticmodulus,MPaW=Netdistancebetweentwotunnels,mCASESTUDIES:TBMCONSTRUCTIONBETWEENSTATIONSOFSANYUANBRIDGEANDLIANGMARIVERINBEIJINGSUBWAYLINE10ThetunnelbetweenstationsofSanYanBridgeandLiangMaRiverinBeijingSubwayLine10isconstructedbyearthpressurebalancetunnelboringmachine.Thedistancebetweenlefttunnelandrighttunnelis12m.Thedepthbetweenthetopoftunnelandgroundsurfaceis12~16m,theouterdiameteroftunnelboreis6.28m.Theformationsencounteredintheconstructionaresilt,siltyclay,clay,siltysand,andsand.Thegroundwaterisabovethebottomoftunnelbase(Co.,Ltd.2003).Whilethetunnelsectionisrunningalongtheeastthirdringroad,therearemanybridges,buildings,pipelinesabovethetunnel,sothesettlementcontroloftheconstructionisverystrict.InordertodiscussthesettlementpredictiontheoryforBeijingsubwayconstruction,asanexample,onerandomsectionischosen,forsimplicity,hereandthereafternameitSectionA.Itslengthis50m,thedistancebetweendoubletunnelscenterlinesis12m,andthecoverdepthoftunnelHis14.2m.Thetunnelisadvancedintheformationsoffinesandandmediumcoarsesand.ThemainparametersofsoilsarelistedinTable1.SOILSETTLEMENTPREDICTIONMaximumgroundsurfacesettlementcausedbysingletunnelTBMconstruction.ByusingEquation(9),themaximumgroundsurfacesettlementcausedbysingletunnelTBMconstructioninSectionAcanbecalculated.HereH=14.2m,D=6.28m,whileEisregardedasweightedaveragevalueofeachsoillayers,asshowninEquation(10).WhereEs=Weightedcompressionmodulusofallsoillayers,MPaEsi=Compressionmodulusofsoillayeri,MPahi=Depthofsoillayeri,mByusingEquation(10)andthedatainTable1,Es=15.2676MPa.Moreover,theelasticmoduluscanbeobtainedbyusingEquation(11)ifcompressionmodulusisknown.Coefficientofsettlementgroovewidth(i)andsettlementgroovewidth(B).Inthisproject,theformationsencounteredintunnelconstructionaresaturated,dense,lowcompressiblesiltysandandmediumcoarsesand.Whiletheformationsabovethetunnelareplasticmediumcompressiblesiltyclayanddensemediumcompressiblesilt.Asmentionedbefore,forsandlayersi=0.25Z;forsiltyclayi=0.5Z;forsilti=0.35Z.Soheretheweightedmeanvalueisdefinedasthefinalivalue,asshowninequation(12).=Accordingtoequation(7),thetotalsettlementgroovewidthcausedbysingletunnelboringconstructionis5i=5×6.788m=33.942m.Groundsurfacesettlementcausedbysingletunnelconstruction.Ifiandδ1maxareknown,thegroundsurfacesettlementinanypoint(δ1(x))canbecalculatedbyequation(3),asshowninTable2.Notethatδ1max=14.1mminthetable.Table2indicatesthatifthedistancefromanypointingroundsurfacetohorizontaltunnelcenterlineisgreatthan17.5m,thenthesettlementislessthan0.5mm.Thismeansatthatpointtherewillonlytinyinfluencebytunnelboringconstruction.Sothetotalsettlementgroovewidthcanbeconsideredas2×17.5=35m,whichismuchclosertothevalueof5i(33.94m).Groundsurfacesettlementcausedbydoubletunnelsconstruction.Maximumsettlementafterdoubletunnelsconstruction.Generallythenearerdistancethedoubletunnelsis,thegreateradditionalsettlementcausedbythetunnelboringconstructionis.Intheprojectmentionedabove,δ1max=14.1mm,thenetdistancebetweenthetwotunnelsW=5.72m,tunneldiameterD=6.28m.Thusfromequation(9)δmax=17.6mm,thatmeans,themaximumgroundsettlementafterthedoubletunnelsconstructionis17.6mm.Settlementdevelopingprocessintheconstructionofthesecondtunnel.Followingistheanalysisofsettlingprocessintheconstructionperiodofthesecondtunnel.(1)Intheperiodofthefirsttunnelhasbeenfinishedandthesecondtunnelconstructionnotyetbegin,themaximumgroundsettlementcausedbythefirsttunnelisδ1max=14.1mm,asmentionedabove.Withtheincreaseofthedistancetotunnelcenterline,thegroundsettlementcausedbythefirsttunnelconstructionwillgraduallydecrease.Byusingequation(3)andsettingi=6.788m,wecanobtainδ1(6)=9.6mmwhenx=6mandδ1(12)=3.0mmwhenx=12mrespectively.(2)Theadditionalgroundsettlementcausedbythesecondtunnelconstructionisthesubtractionofthetotalmaximumsettlementcausedbydoubletunnelsconstructionfromthesettlementcausedbythefirsttunnelconstruction.(LiuBo,TaoLong-guangandDingCheng-gang,etal.2006).Forthepointsonsymmetrytunnelliner,x=6m,δ2(6)=δmax-δ1(6)=17.6-9.6=8.0mm.(3)Theaccumulatedgroundsettlementabovethesecondtunnelcenterlineconsistsoftwoparts.Thefirstpartisthesettlementcausedbythefirsttunnelconstructioninthepoint,δ1(12)=3.0mm.TheSecondpartisthesettlementcausedbythesecondtunnelconstruction,whichcanbecalculatedbyusingequation(3).Hereδ2(6)=8.0mm,i=6.788mm,δ2max=11.8mm.Sothetotalgroundsettlementabovethesecondtunnelcenterlineis:δ2max+δ1(12)=11.8+3.0=14.8mm.(4)Theaccumulatedgroundsettlementabovethefirsttunnelcenterlinealsoconsistsoftwoparts.Firstthesettlementcausedbythefirsttunnelconstructioninthepointδ1max=14.1mm.Thesecondpartisthesettlementcausedbythesecondtunnelconstruction,whichcanbecalculatedbyusingequation(3),whereδ2(12)=2.51mm,i=6.788mm.Sothetotalgroundsettlementabovethefirsttunnelcenterlineis:δ1max+δ2(12)=14.1+2.51=16.61mm.Throughtheaboveanalysis,thetotalsettlementabovethesecondtunnelcenterline(14.8mm)islessthanthatabovethefirsttunnelcenterline(16.61mm).Totalsettlementatanypointafterdoubletunnelscompletion.Thesettlementatanypointingroundsurfacecausedbytwodoubletunnelsconstructioncanbecalculatedbyfollowingequation:δ(x,y)=δ1(x)+δ2(y)(13)Wherex=Horizontaldistancefromcalculatingpointtocenterlineoffirsttunnely=HorizontaldistancefromcalculatingpointtocenterlineofsecondtunnelInsectionA,thelefttunnelisfirstlyconstructed,thentherighttunnel.Afterthetwotunnelscompletion,thesettlementatanypointingroundsurfacecanbecalculated:(1)Ifcalculatingpointislocatedattheleftofthelefttunnel,thenxequalsthedistancefromthepointtocenterlineoflefttunnel,andy=W+D+x.Forinstance,ifx=6m,theny=18m,δ(6,18)=δ1(6)+δ2(18)=9.6+0.3=9.9mm.(2)Ifcalculatingpointliesinthemiddleofthecenterlinesoflefttunnelandrighttunnel,forexample,ifx=6m,theny=W+D-x=6m,δ(6,6)=δ1(6)+δ2(6)=9.6+8.0=17.6mm.Thisvaluerepresentsthegreatestsettlementcausedbydoubletunnelsconstruction,wherelocatedinthegroundabovethenearesttunnelliner.(3)Ifcalculatingpointisattherightoftherighttunnel,e.g.,ify=6m,thenx=18m,δ(18,6)=δ1(18)+δ2(6)=0.4+8.0=8.4mm.Furthermore,theindividualandaccumulatedgroundsettlementcausedbythefirstandthesecondtunnelsarecalculated,asshowninFigure1.COMPARISONOFPREDICTEDSETTLEMENTANDMONITOREDDATAMonitoredgroundsettlementgeneratedbythefirsttunnelconstruction.Inordertoevaluatethesettlementinducedbythefirsttunnelconstruction,elevensettlementobservationpointsingroundsurfaceoflefttunnelcenterlineareburiedinSectionAinthelengthof50m.Thedistancebetweentwoneighboringobservationpointsis5m,andthepointsareenumerated1~11.ThelefttunnelwasfirstlyconstructedandpassedthroughsectionA,then6monthslater,therighttunneldrilledthroughsectionAalso.Table3listedtheobservedsettlementdataafter60daysoflefttunnelpassedthrough,whilerighttunnelnotreachedhereyet(about150mawayfromsectionA).Theaveragesettlementofthe11observationpointsingroundsurfaceabovethelefttunnelcenterlineis13.56mm,whilethemeansettlementofthe7observationpointsingroundsurfaceabovetherighttunnelcenterlineis4.88mm.Thesesettlementsarecausedonlybytheconstructionoflefttunnelandobservedafter60dayslateroftheconstruction.Figure2comparedthetheoreticalsettlementvalueandactuallyobservedsettlementingroundsurfaceabovethelefttunnelcenterline.Itcanbeseenthatthetheoreticalvalue(δ1max=14.1mm)almostequalstheaveragesettlementof11observationpoints.Figure3showsthecomparisonofobservedsettlementvalue,whichismonitoredafter60dayslateroftheconstructionoflefttunnel,andthecalculatedsettlementingroundsurfaceabovetherighttunnelcenterline.Itcanbeseenthatalthoughthereare12mbetweenlefttunnelcenterlineandtherighttunnelcenterline,yetproducedabout4.0mmsettlementontherighttunnelcenterlineonlybecauseoftheconstructionoflefttunnel.Undertheconditionofδ1max=14.1mm,asmentionedearlier,δ1(12)=3.0mm.Sothedeviationbetweenobservedvalueandtheoreticalvalueisabout1mm,whichdemonstratesabovetheoreticalformulaisbelievable.Accumulatedsettlementsbydoubletunnelsconstruction.Figure4showsthegroundsettlementatobservationpointnumber10.Afterthelefttunneladvancedhereandreachedstable,theultimatesettlementwas12.75mm.Aftertherighttunnelpassedthrough,theadditionalsettlementincreasedforaperiod,eventuallystabilizedat4.46mm,atthattimethetotalsettlementatpoint10reached17.21mm,whichwasveryclosetothetheoreticalvalue16.61mmFigure5showsthemonitoreddataofarandompointSYA24,whichislocatedattherightoftherighttunnel.Thedistanceofthepointtothelefttunnelcenterlineis18.5m,totherighttunnelcenterlineis6.5m.Lefttunnelconstructioncaused1.85mmsettlement,thenwhentherighttunnelalsofinisheditcausedtotal7.61mmsettlementatthatpoint.Whenthelefttunnelpassedthrough,thesettlementofthepointx=18.5isδ1(18.5)=0.3mm;whentherighttunnelpassedthrough,thesettlementofthepointy=6.5isδ2(6.5)=7.5mm.Accordingtoequation(13),thetotalsettlementatthepointshouldbe7.8mm,whichisveryclosertothemonitoredvalue7.61mm.Moreover,throughtheanalysisofallmonitoreddatagatheredinleftandrighttunnelconstruction,itisshowedthatthemaximumsettlementpointsaredistributedintheareasbetweenlefttunnelandrighttunnel,andmostofthemarelocatedatthegroundsurfaceabovethenearesttunnelliner,thevalueisinthescopeof17mmand20mm.Comparedwiththetheoreticalvalueδmax=17.6mm,thedeviationisacceptable.Thereforethecalculationequationsmentionedabovefortotalsettlementindoubletunnelconstructionisbelievable.Maximumgroundsettlementsunderdifferentdistancebetweentwotunnels.Forδmaxmustgreatthanδ1max,equation(9)isonlysuitableundertheconditionofW/(2D)<0.7inthecalculationofsettlementcausedbydoubletunnelsconstruction.Therefore,formosttunnelsinBeijingsubway,whilethediameteroftunnelis6m,thedistancebetweentunnelcenterlinesshouldbettergreatthan14m,sothatthetotalsettlementinthefirsttunnelcenterlinewillhaveonlytinyincreasebecauseoftheconstructionofthesecondtunnel.Figure6showsthattotalsettlementalmostkeeplinearincreasewiththedecreaseofthenetdistancebetweentwotunnels,ifthenetdistanceislessthan1.4D.Monitoredsettlementgroovewidth.Inordertodeducethesettlementgroovewidth,theobservationdatafromthecrosssectionaroundpointnumber6areutilized.Theobservationpointsareinline,whichthelinedirectionisperpendiculartothedirectionoftunnelcenterline.Total7monitoringpointsaresetuponbothsideofpointNo.6,twoofthemsetintheleft,andtheothersareintheright.Thedistanceofnearbytwomonitoringpointsis3m.Thedatarecordedarelistedintable4andplottedonFigure7.Itcanbeseenthatthecalculatedvaluecoincidesperfectlywiththeactualmonitoredsettlement.ThetotaltrendisalsoaccordwiththecurveofPeck’snormalsettlementcurveverywell.Themonitoredsettlementofthemostoutsidepointis1.82mm,whilethedistanceofthepointtothecenterlineofmaximumsettlementis15m.AlsoFigure5showedthattheactualmonitoredsettlementaroundobservationpointSYA24is1.85mm,whilethedistanceofthepointtothemaximumsettlementlineis18.5m.Thereforetheminimumsettlementgroovewidthcausedbysingletunnelconstructionisatleast30m.Accordingtothistrend,thewidthisdeducedtobe35m,whichisveryclosetotheabovecalculatedvalue33.941m.Sotheequationsforcalculatingthesettlementgroovewidthinthearticlearecorrect,andtheyaresuitableforpredictionthesettlementgeneratedinTBMtunnelconstructioninsandformationsinBeijingsubway.CONCLUSIONUpontheaboveanalysis,thefollowingconclusioncanbedrawn:(1)Ifsoilparametersareselectedproperly,thesettlementgeneratedbyTBMtunnelconstructioninBeijingsubwayinsandyformationscanbepredictedaccuratelybyusingtheformulasofPeckandTakeyamaTakashi.(2)WhensettlementiscalculatedwiththeformulaofTakeyamaTakashi,themaximumsettlementwillincreasewiththedecreaseofweightedelasticmodulus,andthesoilmodulusshouldcalculatedwiththeweightedaveragevalueofallsoillayers’compressionmodulus.(3)Thecoefficientofsettlementgroovewidth(i)shouldbetakenastheweightedaveragevalueofdifferentsoils.Thewidthofsettlementgroovecausedbysingletunnelconstructionisabout5i.(4)Themaximumsettlementforthedoubletunnelconstructionliesintheareasbetweentwotunnelcenterlinesifthenetdistancebetweenthemislessthan1.4tunneldiameter(D).Theinfluencebythefollowingconstructedtunnelwillbeminimizedifthenetdistancegreaterthan1.4D.(5)Thesettlementfromthemiddlelineofthetwotunnelcenterlinestooutsideisnotsymmetric.Groundsettlementnearthefirstlyconstructedtunnelwilllargerthanthatoflaterconstructedone.翻譯對(duì)北京地區(qū)沙地層TBM隧道施工所造成沉降的分析摘要根據(jù)在北京地鐵運(yùn)用TBM開(kāi)挖隧道施工過(guò)程中所得資料,利用土沉降預(yù)測(cè)模型對(duì)沙性土進(jìn)行了分析和檢驗(yàn),通過(guò)Peck法則的分析,報(bào)告指出首要必須確定沉降槽寬度的系數(shù)(i),而i值是進(jìn)一步控制最大計(jì)算單隧道(δ1max)。通過(guò)TakeyamaTiakash方程,δ1max能夠被直接計(jì)算出來(lái),但是彈性模量E應(yīng)該是一個(gè)代表各種土質(zhì)的等效值,用O'Reilly-New方法計(jì)算沉降槽寬度系數(shù)(i),其結(jié)果受土壤構(gòu)造物參數(shù)大量的影響,為了找到一種理想的模型去預(yù)測(cè)北京地區(qū)沙性土TBM隧道施工帶來(lái)的沉降,修正計(jì)算方法中的E和i值都是推薦值,其結(jié)果顯示了地表沉降的最大值,整個(gè)沉降槽的寬度和沉降曲線與監(jiān)測(cè)數(shù)據(jù)相符。對(duì)于平行雙線隧道,其沉降在一定程度上能夠通過(guò)增加對(duì)每個(gè)單線隧道施工引起的沉降的計(jì)算而算的,而單線隧道沉降由Peck和TakeyamaTakashi.法則計(jì)算,但是每條隧道的中心線沉降不同,沉降數(shù)量受兩條隧道施工次序的影響,越早施工的隧道,其最終沉降量越大。關(guān)鍵詞:TBM沉降沉降槽寬度PeckTakeyamaTakashi北京地鐵說(shuō)明近些年來(lái),北京地鐵以大約每年100公里的速度延伸著,大多數(shù)地鐵隧道都利用TBM土壓力平衡方法施工的,因?yàn)楸本┦形?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論