餃子機(jī)及傳動(dòng)系統(tǒng)設(shè)計(jì)畢業(yè)設(shè)計(jì)論文_第1頁(yè)
餃子機(jī)及傳動(dòng)系統(tǒng)設(shè)計(jì)畢業(yè)設(shè)計(jì)論文_第2頁(yè)
餃子機(jī)及傳動(dòng)系統(tǒng)設(shè)計(jì)畢業(yè)設(shè)計(jì)論文_第3頁(yè)
餃子機(jī)及傳動(dòng)系統(tǒng)設(shè)計(jì)畢業(yè)設(shè)計(jì)論文_第4頁(yè)
餃子機(jī)及傳動(dòng)系統(tǒng)設(shè)計(jì)畢業(yè)設(shè)計(jì)論文_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

編號(hào)無錫太湖學(xué)院畢業(yè)設(shè)計(jì)(論文)相關(guān)資料題目:餃子機(jī)及傳動(dòng)系統(tǒng)設(shè)計(jì)信機(jī)系機(jī)械工程及自動(dòng)化專業(yè)學(xué)號(hào):0923039學(xué)生姓名:指導(dǎo)教師:(職稱:副教授)(職稱:)201目錄一、畢業(yè)設(shè)計(jì)(論文)開題報(bào)告二、畢業(yè)設(shè)計(jì)(論文)外文資料翻譯及原文三、學(xué)生“畢業(yè)論文(論文)計(jì)劃、進(jìn)度、檢查及落實(shí)表”四、實(shí)習(xí)鑒定表無錫太湖學(xué)院畢業(yè)設(shè)計(jì)(論文)開題報(bào)告題目:餃子機(jī)及傳動(dòng)系統(tǒng)設(shè)計(jì)信機(jī)系機(jī)械工程及自動(dòng)化專業(yè)學(xué)號(hào):0923039學(xué)生姓名:指導(dǎo)教師:(職稱:副教授)(職稱:)2012課題來源自擬題目科學(xué)依據(jù)(包括課題的科學(xué)意義;國(guó)內(nèi)外研究概況、水平和發(fā)展趨勢(shì);應(yīng)用前景等)(1)課題科學(xué)意義餃子食品機(jī)械的應(yīng)用前景和發(fā)展現(xiàn)狀餃子食品在我國(guó)歷史悠久,伴隨著幾千年的文明的發(fā)展已經(jīng)成為我國(guó)食品文化中的代表,如餃子、包子、餛沌是主食的一部分;湯圓、月餅、粽子是傳統(tǒng)節(jié)日中必不可缺的食物。如今,經(jīng)濟(jì)的迅速增長(zhǎng)、人民生活水平的提高和生活節(jié)奏的加快,對(duì)食品行業(yè)提出了新的要求。而本人認(rèn)為這些要求可以歸納為兩大類:其一是食品的質(zhì)量:如食用口感、衛(wèi)生狀況、營(yíng)養(yǎng)含量等。其二便是食品供應(yīng)的速度。而解決這兩個(gè)矛盾要求的辦法便是實(shí)現(xiàn)食品生產(chǎn)的機(jī)械化和自動(dòng)化,通過機(jī)械動(dòng)作可以極大程度的提高食品的生產(chǎn)率;采用環(huán)保的機(jī)械材料和嚴(yán)格的密封技術(shù)可以很好的保證食品衛(wèi)生;而合理的工藝編排更能改善食品的口感。(2)餃子機(jī)的研究狀況及其發(fā)展前景目前國(guó)內(nèi)外廠家在包餡夾餡食品機(jī)械化上的研究已經(jīng)取得了一定的成果成功研發(fā)了餃子機(jī)、包子機(jī)、餛沌機(jī)、湯圓機(jī)、月餅機(jī)以及自動(dòng)化程度更高的全自動(dòng)萬能包餡機(jī)。因東西方飲食文化的差異,目前國(guó)外包餡成型類機(jī)械主要為日本所生產(chǎn),如日產(chǎn)的自動(dòng)萬能包餡機(jī),其最大生產(chǎn)能力可達(dá)每小時(shí)8000個(gè),且加工范圍極廣,能生產(chǎn)各式饅頭、包子、餃子、夾餡餅干、壽司、等等近百種產(chǎn)品,采用可拆卸料斗能實(shí)現(xiàn)快速更換餡料,內(nèi)置的無級(jí)變速調(diào)控裝置可以實(shí)現(xiàn)皮和餡的任意配比。廣泛用于各種帶餡食品的加工。而國(guó)內(nèi)相關(guān)機(jī)械雖然在自動(dòng)化和多功能方面較之日本產(chǎn)品還有一定的差距,但是通過改革開放以后二十余年的發(fā)展亦取得了很大的進(jìn)步。以上海滬信飲料食品機(jī)械有限公司生產(chǎn)的水餃機(jī)為例:配備1.1Kw的電動(dòng)機(jī),生產(chǎn)效率達(dá)每小時(shí)7000個(gè)。已相當(dāng)接近日產(chǎn)餃子機(jī)的生產(chǎn)水平。每逢過時(shí)過節(jié)現(xiàn)做現(xiàn)賣餃子往往出現(xiàn)供不應(yīng)求的現(xiàn)象。當(dāng)然也有很多人選擇在家里自己做,卻需要提前半天甚至一天進(jìn)行準(zhǔn)備,而包餃子的時(shí)候更是要叫上好幾個(gè)親朋過來幫忙方可。因此如果能研究開發(fā)一種能夠以機(jī)械動(dòng)作代替人工勞動(dòng)的機(jī)器,那么除了可以節(jié)約大量的時(shí)間、降低餃子的生產(chǎn)成本、提高利潤(rùn)之外,更可以免除人們冬日里冒寒排隊(duì)購(gòu)物之苦,一舉多得。餃子生產(chǎn)機(jī)的初步目標(biāo)確定為能夠?qū)崿F(xiàn)餃子包餡成型工藝的機(jī)械化。未來可在此基礎(chǔ)上加以改進(jìn)和擴(kuò)展,以實(shí)現(xiàn)橫縱兩方向發(fā)展。即餃子生產(chǎn)全過程的無人干預(yù)自動(dòng)化與多功能化。研究?jī)?nèi)容①熟悉餃子機(jī)的工作原理與結(jié)構(gòu);②熟悉餃子機(jī)傳動(dòng)系統(tǒng)的布置與結(jié)構(gòu);③熟練掌握傳動(dòng)系統(tǒng)的設(shè)計(jì)計(jì)算方法;④掌握CAD的使用方法;⑤能夠熟練使用UG進(jìn)行三維的畫圖設(shè)計(jì)。擬采取的研究方法、技術(shù)路線、實(shí)驗(yàn)方案及可行性分析(1)實(shí)驗(yàn)方案對(duì)餃子機(jī)整體設(shè)計(jì),擬定其傳動(dòng)部分的結(jié)構(gòu)、轉(zhuǎn)速等,使其能夠半自動(dòng)的進(jìn)行加工。(2)研究方法=1\*GB3①用CAD進(jìn)行二維畫圖,對(duì)餃子機(jī)結(jié)構(gòu)有個(gè)全面的了解。②對(duì)餃子的傳動(dòng)部分進(jìn)行計(jì)算與結(jié)構(gòu)設(shè)計(jì),使其提供合適的動(dòng)力。研究計(jì)劃及預(yù)期成果研究計(jì)劃:2012年10月12日-20122013年1月12013年1月282013年3月4日-2013年4月12013年4月15日-2013年4月29日預(yù)期成果:達(dá)到預(yù)期的畢業(yè)設(shè)計(jì)要求,設(shè)計(jì)出的餃子機(jī)可以進(jìn)行半自動(dòng)加工,可以快速美觀的加工出餃子,并且傳動(dòng)簡(jiǎn)單緊湊、滿足工作要求。特色或創(chuàng)新之處①餃子機(jī)可以無需手工進(jìn)行制作。②餃子制作過程安全,方便,快速,可以批量生產(chǎn)。③傳動(dòng)路線簡(jiǎn)單、緊湊,滿足餃子加工的要求。已具備的條件和尚需解決的問題①設(shè)計(jì)方案思路已經(jīng)明確,已經(jīng)具備機(jī)械設(shè)計(jì)能力和餃子機(jī)方面的知識(shí)。②進(jìn)行結(jié)構(gòu)設(shè)計(jì)的能力尚需加強(qiáng)。指導(dǎo)教師意見指導(dǎo)教師簽名:年月日教研室(學(xué)科組、研究所)意見教研室主任簽名:年月日系意見主管領(lǐng)導(dǎo)簽名:年月日英文原文wear181-183(1995)868-875CaseStudyTheoreticalandpracticalaspectsofthewearofvanepumpsPartB.AnalysisofwearbehaviourintheVickersvanepumptestA.Kunza,R.Gellrichb,G.Beckmannc,E.BroszeitaaInstituteofMaterialScience,TechnicalUniversityDarmstadt,P.O.Box111452,64229Darmstadt,GcmbUniversityforTechnol08y,EconomyandSocialScienceZittau/Goditz,FacukyofMaihematics,P.O.Box264,02763ZutaucPetersiliensrr.2d,03044Cottbus,Received16August1994;acceptedlNovember1994AbstractThewearbehaviourofthevanepumpusedinthestandardmethodforindicatingthewearcharacteristicsofhydraulicfluids(ASTMD2882/DIN51389)hasbeenexaminedbycomparisonofthecalculatedwearandexperimentaldatausingalubricantwithoutanyadditives.InadditiontothetestseriesaccordingtoDIN51389,temperatureprofilesfromthepumphavebeenanalysedusingthebulktemperaturesofthecontactingcomponentsandthetemperatureinthelubricationgapasinputdataforthewearcalculation.CartridgesusedintestsaccordingtotheGennanstandardhavebeenexaminedextensivelybeforeandaftereachruntoobtaininputdataforthemathematicalmodelandtoJocatewear.Ananalysisofthe:tluidpropertiesandaninvestigationoftheinnuenceofwearparticlesinthehydrauliccircuitwereperformed.Theexperimentalresultswerecomparedwiththewearprediction,whichwasverifiedbytheagreementintermsofload,temporalwearprogressandlocalwear.Conclusionshavebeendrawnwithregardtothevalidityoftheloadassumptionsandwearcalculation,aswellastothelimitsofapplicabilityofthismethodinthepresenceofadditives.Keywords:Vanepumps;Hydraulicfluids;Wearprediction;Vickersvanepumptest1.IntroductionEffortstodevelopamathematicaltoolforwearpredictionwillnotbesuccessfulwithoutconsideringwearanditsphenomena.ThetaskofPartBofthisstudyistodescribetheanalysisofthewearbehaviourinthetribosysteminvestigatedandhowtheknowledgeachievedinfluencesthecalculations.Inputdataarederivedfromthemeasurementofmechanicalandgeometricalquantities,suchasthehardness,stylusprofilometry,fluidpropertiesandcontactradii.Thermalquantitiesarealsoessentialforthemodellingoflubrication.Thecalculationsmustbeverifiedwithweardata.BecausethetribosystemtobeanalysedisthevanepumpemployedintheVickersvanepumptest,whichhasbeeninuseforabout40years,severalweardatacanbeusedforcomparisonbetweencalculatedandmeasuredwearresults.Thesearethewearmasses0043-1648/95/$09.50@1995ElsevierScienceS.A.AllrightsreservedSSDI0043-1648(94)07087-3aftereachtcstrun,theprogrcssionofwearovertimeandthelocalwearontheinnerringsurface;incombination,theseenableacomprehensivestatementtobemadeonthevalidityofthemathematicalmodeldescribedinPartA.2.ExperimentsAlIVickersvanepumptestsdescribedwererunwiththesamefiuid.ItisareferenceoiloftheGermanRcscarchAssociationforTransmissionTechnique(FVA),andisamineraloilwithoutanyadditives(FVA3).Thusthedisturbinginfluencesofadditivescanbeexcluded.2./.InputdataforcalculationFig.1liststheinputandoutputquantitiesofthecalculations.MostoftheinputparameterswerederivedsurfaceprofilescontactforceandcontactvelocitydynamicviscositycontactradiihardnessvaluesYoungsmoduli,Poissonnumbersandlubricationgapspecificshearenergydensities*pressureexponentc,fviscosity;tlubricationgaptemperatureRoughsurfuce←→shaarenergyhypot←→elastoliubiction↓Wm=f(t)Wf=f(ɑ)Fig.1.InputparametersandoutputquantitiesofthemathematicalmodelofPartA.Fig.2.CartridgeV104C:bushing,rotor,ring,bushing(abcwe),singlevane,pin(below).experimentallyfromallthecomponentsinvolvedbeforeandafteruseinthevanepumptests.Themechanicalcomponents,whichmustberenewedforeachtestrun,areshowninFig.2.Suchacartridgekitconsistsofarotor,ring,12vanes,bushingsandpin.Stylusprofilometrywasperformedontheinnersurfaceoftheringandonthetipsoftwovanesofthecartridgebeforeandaftereachtestrun.Earlierinvestigationshaveshownthattenparallelsectionsintheslidingdirectiononeachbodyaresufficienttodescribethesurfacetopographyinastatisticallysatisfactorymannerasatwo-dimensionalisotropicgaussianfieldaccordingtoRef.[1].Onlythehighpassfilteredcomponentsoftheprofile(samplinglength,1.5mm;cuto五0.25mm)wereusedtodeterminethespectralmomentsmo,m2,m4andtheparameterofroughnessa.Accordingtothepartitionofthecontactforceintodifferentloadingzones,thetopographicdataofthenewsurfaceswereusedforzoneIV(lowlevelload,seePartA).Fortheotherzoneswithhighercontactforces,theprofilesofthesurfacesinthefinalconditionwereused,whichcorrespondstotheappearanceoftheinnerringsurfaceafterthetestruns.Thecontactforceandcontactvelocitywerecalculatedwithdifferentfluidpressuresanddynamicforcesactingonthevanes,revolutionnumberandringradu,whereasthechangeincontactradiuswasdocumentedwithaprofileprojector.Becausetheringradiiaremuchlargerthar)theradiiofthevanesinthecontactzone,thevanescanbeassumedtobehertziancylindersslidingalongaplanesurfaceandthecontactradiiaresimplytheradiiofthevanetips.Eachvanetipwastwicedrawnupatmagnificationsof100:1andthecontactradiiandcontactlocationsweremeasuredwithastenciLMeanvaluesofthecontactradiiweretransferredtothecalculation,whichisbased(similartothesurfaceprofiles)onvanesinbothconditions.TheVickershardnessHVlOwasmeasuredontheringandthreevanesofeachcartridge.Thishardnessleadstoabetterreproducibilitythanmicrohardnessvalues,butduetothelargeindenterload,itcouldonlybetakenafterthetestruns.Thereforechangesinhardnessvaluescouldnotberegistered.TheYoung'smoduli,Poissonnumbersanddensitiesofthering(AISI52100)andvanematerials(M2regC)arethefirstinputparametersintheshearenergyhypothesisandwereobtainedfromtheliterature.Thespecificshearenergydensities(seePartA)arematerialspecificconstants[2l.Thefluidproperties(Fig.1)weremeasured,derivedfromtheliteratureorcalculated.Toobtainthedynamicviscosity,thedensitiesandkinematicviscositiesat20,40and800Cweremeasured.BecausethefluidisareferenceoilofFVA,thepressureexponentoftheviscosityisgiven[3].Thetemperatureinthelubricationgapbetweentheringandvaneswasapprox:imatedbymeasurementsandcalculationsdescribedbelow.2.2.TemperatureprofilesTemperaturemeasurementwasperformedtoobtaininformationonhowaheatabletribometermustbecontrolledtosimulatethewearbehaviourofthevanepump.Thereforeshortenedtestrunswerecarriedoutuntiltemperatureswerestabilized.These10hvanepumptestsdeliveredtheinputdatafortheapproximationofthelubricationgaptemperatureinthering-vanecontact,aswellasadditionalwearmassestobecomparedwiththecalculatedprogressiortofwearintime.ThesamplingprinciplesforacquiringthetemperatureprofilesofthevanepumpareillustratedinFig.3.Thetemperatureofthelubricantinthegapbetweentheringandvaneswasestimatedtobeequaltoorgreaterthanthebulktemperatureontheinnerringsurface.Followingthefirstmainstatementofthermodynamics,theheatfluxQmpintothecomponentsofthepumpcanbederivedfromwiththefluidasthemediumforenergytransport.Qa,mpcanonlybetransferredtothecomponentsshowninFig.2.Forthesametemperaturedifferencesandmaterials,thisheatnUXcanbedividedintosinglecomponentfluxesaccordingtotherelationofmasses.ThederivedfluxQringistheheatwhichflowsinacertaintimeperiodinaradialdirectionthroughthering.Withtheknowntemperaturesontheouterringsurface,thebulktemperaturesontheinnerringsurfacecanbecalculatedandtransferredtothemodelofelastohydrodynamiclubrication.AlltestrunswiththeVickersvanepumpV104CwereperformedonatestrigaccordingtoASTMD2882/DIN51389,whichisshownschematicallyinFig.4.Thesestandardsdescribetheprocedurefortestingtheanti-wearpropertiesofhydraulicfiuids.TostarttheVickersvanepumptestaccordingtotheGermanstandard,thesystempressuremustberaisedinstepsof2MPaevery10min,beginningat2MPa,untilafinalpressureof14MPaisreached.Atthisstage,thefluidtemperaturemeasurcdbcforethepump(seeFig.4)mustbecontrolledtoguaranteeakinematicviscosityof13mm2S-iattheinletforevery:tluidtested.Theseconditionsmustbemaintaineduntilthetestisabortednormallyafter250hbyopeningthebypassofthepressurecontrolvalvebeforethemotorisstopped.Byacomparisonofthewearachievedontheringandvaneswiththeupperwearlimits,theanti-wearpropertiesofthefluidtestedcanbederived.ForperformingthetestssafelywiththefluidFVA3,itwaspreheatedt0400Candcirculatedinapressurefreeway.ThedamagewhichmayoccurduringthecriticalfirsthouroftherunscanbeavoidedusingTiNcoatedbushings[4].Forcomparisonwiththeresultsderivedfromcomputation,thewearproducedintheserunsmustbedocumentedasamounts,bothlocallyandtemporally.Thewearmasseswerederivedfromtheweightdifferencesoftheringandvanesbeforeandaftereachrun.Theywereobtainedfromasequenceoffour250htestrunsandtw010hrunsfortemperaturemeasurement.Thelocallinearamountofwearwasdocumentedbythedifferencesintheinnerringradiiperdegreeofrevolution,whichweremeasuredbysurfacedigitizationalongtheinnerringsurfaceatthreedifferentpositionsoftheringwidthbeforeandafterthetesiruns.Inearlierinvestigations[5],thewearprogressionovertimeofthevaneswasmeasuredunderidenticaltestingconditions,exceptforalowerfluidtemperature.Forthisexperiment,theradiotracertechniquewasused.Twovanetipsinthesetof12vanesofeachcartridgewereradiologicallyactivatedbybombardmentwithprotons.Adetectorclosetothepumpbodyallowedthedecreaseinradiologicalactivitytobemonitoredcontinuously,whichwasfoundtobereciprocallyproportionaltothelinearamountofvanewearasafunctionoftime[5l.Duetothegoodtemperingpropertiesofthevanematerial(M2regC),withaspecificsecondaryhardnessmaximumbetween450and5500C,theinfiuenceoftheactivationprocessat2200Conthewearbehaviouroftheactivatedzoneofthevanetipscouldbeexcluded.Phyd+Pfric-Qcomp-Qfluid=0(1)Qfluid=mcfluid△Tfluid(2) Fig.4.Hydrauliccircuitofthetestrig.3resultlinesthestatisticalreliabilityofsurfacemodellingasatwo-dimensionalisotropicgaussianfield.Althoughonlythefilteredprofilesscannedintheslidingdirectionareshown,adistinctchangeinsurfaceroughnessisobvious.Agoodrepresentationofthewearphenomena(seePartA)bytheinputdataforthewearcalculationderivedfromtheseprofilescanbeassumed.ThechangeinthevanetipshapeoverthetestingperiodisdocumentedinPartA.Thehardnessvaluesfortheringsandvanesvariedfrom743t0769HVlO(rings)andfrom778t0816HVlO(vanes).Inallcases,thevanesofonecartridgehadhigherhardnessvaluesthanthering,butthesedifferencesvariedandhadalargeinfluenceonthewearcalculation(seePartA).Themeasurementofthefiuidpropertiesled,incombinationwiththekinematicviscosityprescribedbytheGermanstandard,toafluidtemperatureof84-86oCatthepumpinlet.Togetherwiththeothertemperaturemeasurementsacquiredinthe10hruns,thesetemperatureprofilesareillustratedinFig.6.TestNumbertwasfoundthat,inaboutlh,alltemperatureswerestabilized.Itshouldbenotedthatalltemperaturesinoronthepumpcomponentsarehigherthanthefluidtemperaturemeasuredbehindthepump.Thehighesttemperatureswerefoundontheouterringsurface,withsignificantdifferencesdependingonthelocationofthethermocouples.Thecalculationofthebulktemperaturesontheinnerringsurfaceviatheheatfluxbalanceeliminatedtheinfiuenceofthedifferentringthicknessesatthescanlocations.Dependingontbesedifferentdistancesforheatconduction,between4and70Cmustbeaddedtothemeanvaluesofthecomponenttemperaturestoobtainthesurfacetemperatures.Thesevaluesare20c70higherthanthefluidtemperaturemeasuredbehindthepump,whichwasusedasinputdataforthewearcalculation.Duringthelhstartingphaseofthetestruns,thestepwiseincreaseinsystempressureleadstoanimmediateeffectonthecomponenttemperatures,whereasthefluidtemperatureincreaseswithamoreorlessconstantgradient,whichdemonstratestheassociationofloadandfrictionalheat.Thefour250htestrunscausedamixtureofadhesiveandabrasivewearatahighlevel(seePartA).ThewearresultsachievedareshowninFig.7.RingwearincreasedfromtestItotest3.Thereforethe12pmfilternormallyusedwasreplacedafterthethirdtestbya3pmfilter,andapressure-freerunwithanadditionalcartridgewasstartedasacleaningprocedure.Duetothefilterchange,thereservoirneededtoberefilledbyaboutlOv-/oofitscontentwithfreshfluidbeforecontroltest4,againwitha12ymfilter,wasstarted.Inadditiontotheseeffortstominimizepossiblewearparticleinfluence,acomparisonoftheviscosityandneutralizationnumberwiththoseoffreshfluidshowedonlyaninsignificantriseinviscosityandalowneutralizationnumberafter750hoftesting.Intest4,thehighestvalueforringandvanewearataconstantlevelwasachieved.Foralltests,thelinearamountofwearontheringsurfaceshowedastrongdependenceonthemeasurementlocationwithstrictlylimitedareasofhighandlowwear.TheresultsofcontinuousvanewearmonitoringareshowninFig.8inadditiontotheprincipleofmeasurement.Degressivewearlapswerefound,wherethestationarylevelwasreachedafter100h.4.DiscussionBeforethewearcalculationscanbeverifiedbyweardata,itmustbedemonstratedthattheassumptions,measurementsandcalculationsformingtheinputforthemathematicalmodelcorrelatewiththewearmeasured.Fig.9comparesthecalculatedloadnthering-vanecontact,derivedfromthecontactforceandchangingshapesofthevanetipsintroducedinPartA,withthemeasuredlinearamountsofwearalongtheinnerringsurfaceandthetemperaturedistributionatthesameplace.Thereisqualitativelygoodcorrelationfortheprogressionofloadandwearwithcharacteristicleapsatalmostthesamedegreeofrevolution.Inaddition,hightemperature,resistingdynamicequilibrium,isfoundwheretheloadandweararehighandviceversa.Thereforeitisabsolutelycorrecttocreatedifferentloadingzones(accordingtofig.2inPartA)asinputforthewearcalculations.Althoughafewdifferencesinqualitycanbefoundinthepro-gressionofhertzianpressureandthelinearamountsofwear,seriousmistakesinthecollectionofinputinformationareprobablyavoided,sothattheverificationofthecalculatedwearresultsbyexperimentaldatawillshowthevalidityofthemathematicalmodel.Forlocalamountsoflinearringwear,thisverificationcanbeseeninFig.10.Itshouldbenotedthatthecalculationandexperimentalresultsareplacedinthesamedecade,theprogressionsshowthecharacteristicleapssimilartotheloadinFig.9atalmostthesamedegreesandtheamountsaredirectlycomparable.Theloadingzonesareadaptedtotheprogressionofthecontactforce(seePartA),whichthecalculatedlinearwearmustfollowaswellasthehertzianpressure.Thedifferentshapesofthetwographsbetween300and700(2100and2500)turnanglesremainunsatisfactory,becausethisshowsanuncertaintyintheloadassumptions.Thefluidpressureinacellformedbytwovanes,rotorandringwasassumedtobesegmentallyconstant.Thereforethecontactforcewasdeterminedtofollowtheseassumptions,whichneedtobedempressure)inthering-vanecontact,derivedfromthecontactforceandchangingshapesofthevanetipsintroducedinPartA,withthemeasuredlinearamountsofwearalongtheinnerringsurfaceandthetemperaturedistributionatthesameplace.Thereisqualitativelygoodcorrelationfortheprogressionofloadandwearwithcharacteristicleapsatalmostthesamedegreeofrevolution.Inaddition,hightemperature,resistingdynamicequilibrium,isfoundwheretheloadandweararehighandviceversa.Thereforeitisabsolutelycorrecttocreatedifferentloadingzones(accordingtofig.2inPartA)asinputforthewearcalculations.Althoughafewdifferencesinqualitycanbefoundintheprogressionofhertzianpressureandthelinearamountsofwear,seriousmistakesinthecollectionofinputinformationareprobablyavoided,sothattheverificationofthecalculatedwearresultsbyexperimentaldatawillshowthevalidityofthemathematicalmodel.Forlocalamountsoflinearringwear,thisverificationcanbeseeninFig.10.Itshouldbenotedthatthecalculationandexperimentalresultsareplacedinthesamedecade,theprogressionsshowthecharacteristicleapssimilartotheloadinFig.9atalmostthesamedegreesandtheamountsaredirectlycomparable.Theloadingzonesareadaptedtotheprogressionofthecontactforce(seePartA),whichthecalculatedlinearwearmustfollowaswellasthehertzianpressure.Thedifferentshapesofthetwographsbetween300and700(2100and2500)turnanglesremainunsatisfactory,becausethisshowsanuncertaintyintheloadassumptions.Thefluidpressureinacellformedbytwovanes,rotorandringwasassumedtobesegmentallyconstant.Thereforethecontactforcewasdeterminedtofollowtheseassumptions,whichneedtobedem-onstratedbycorrespondingexperiments.Comparedwiththemeasurement,thecontactforceinloadingzoneIwasassumedtobetoohighandcausedvaluesabovetheexperimentaldata.Thiswasduetodifficultiesinmodellingthelargevarietyofvanetipgeometrieswhichcanappearinonecartridgeandstronglydeterminethecontactforceinthisregion.Moreinformationaboutthereliabilityofloadassumptionscouldhavebeenobtainedfromaknowledgeofthebulksurfacetemperatures,whichwerenotmeasuredorcalculated.Despiteotherdeviationsofthetwoprogressions,theareasbeloweachgrapharecomparable,sothatagoodcorrelationbetweencalculatedandmeasuredwearmassescanbeexpected.Forvanewearmassesafter250hoftesting,theexpectationshavebeenfulfilledinasatisfactorymanner,Iftheprogressionofthevanewearmassintime(seePartA)isverifiedbythemeasuredamountsoflinearwear(Fig.8),goodcorrelationoftheprogressionscanbefound.Forbothvalues,thestationaryphaseisreachedafter100h.Thedifferencesinthegradientsduringthestationaryphasemaybecausedbythedifferenttcmperaturesofthetwotestseries.Thedif-ferencesintheringwearmassescanbeinterpretedasscattering(whichisdependentonthetestingprocedure),becausethethermalagingandtheinfluenceofwearparticlescanbeneglectcd,especiallyiftherechargewithfreshfluidistakenintoconsideration.ThusthesCwcarresultsarcalsowellapproximatedbythecalculation,becausethecalculatedaveragewearmassaftcr250hisplacedinthemiddleofthefourexperimentalresults(seePartA).Thisissupportedbythefactthatthewearmassesachievedintheshort-timerunsaresituatedclosetothecalculatedprogressionofthewearmassesforthattime.conclusionIThefollowingconclusionscanbedrawn.(1)Forthewearsystem,VickersvanepumpV104C/lubricantFVA3,agoodcorrelationbetweenloadandwearlocationontheringwasfound,whichisassociatedwithacorrespondingtemperaturedistribution.(2)Theloadassumptionsarewidelyconfirmed.(3)ThemathematicalmodelintroducedinPartA,withinputinformationbasedontheseassumptions,deliverswearmasses,progressionsofwearmassesintimeandlocalamountsoflinearwearwhichcorrelatewithcorrespondingexperiments.(4)Thismathematicalmodelbasedontheshearenergyhypothesisisaqualifiedinstrumentforretracingthewearbehaviourinfrictionregimeswithboundarylubrication,withtheexclusionofadditives.(5)Largeeffortsarenecessarytoobtainqualifiedinputdata.(6)Wearpredictionisnotpossible,becauseseveralparametersderivedfrominvestigationsoncomponentsintheirfinalconditionneedtobeusedasinputdata.Futureinvestigationsarerequired.(1)Toimprovetheassumptionsonthestructureofthefiuidpressureinthepump.(2)Todevelopamethodtoobtainallinputdatafromcomponentsinthenewconditiontoallowrealwearprediction.(3)Toenlargethetheorywithanempiricalstatementdescribingtheinfluenceofadditives.ExperimentsandinvestigationssimilartothoseinthispaperhavebeenperformedwiththesamefluidcontainingadditivesandwithacommerciallyavailableHMfluid.中文譯文葉片泵磨損理論和實(shí)踐方面第二部分:關(guān)于維克斯公司葉片泵實(shí)驗(yàn)?zāi)p情況分析Kunza,R.Gellrichb,G.Beckmannc,E.Broszeitaa材料科學(xué)研究所,達(dá)姆城工業(yè)大學(xué),P.O.Box111452,64229達(dá)姆城,德國(guó)b齊陶摘要葉片泵的磨損狀況標(biāo)準(zhǔn)方法是指示水力的失效流體(美國(guó)材料試驗(yàn)學(xué)會(huì)D2882/德國(guó)工業(yè)標(biāo)準(zhǔn)51389)已經(jīng)被通過用沒有任何添加劑的潤(rùn)滑劑得到的失效計(jì)算和審查實(shí)驗(yàn)數(shù)據(jù)審查。除了依照德國(guó)工業(yè)標(biāo)準(zhǔn)得到的檢驗(yàn)系列之外,泵的剖面溫度已經(jīng)用來自絕大部分聯(lián)系原件和間縫潤(rùn)滑之間的溫度作為失效計(jì)算的原始數(shù)據(jù)。根據(jù)德國(guó)標(biāo)準(zhǔn)檢驗(yàn)的卷筒已經(jīng)被前前后后嚴(yán)格的測(cè)試為了獲得精確模型的原始數(shù)據(jù)和確定磨損位置。執(zhí)行流體的性能分析和在液壓環(huán)路中粒子磨損的調(diào)查。實(shí)驗(yàn)結(jié)果和預(yù)測(cè)的相比較,預(yù)測(cè)的是由協(xié)議核實(shí)負(fù)荷條件,時(shí)間磨損過程和當(dāng)?shù)氐哪p證實(shí)的。已經(jīng)得出關(guān)于合理的載荷消耗和失效校核的結(jié)論,就像這種方法在添加劑存在的適用性范圍。1.說明在沒有考慮到失效磨損的一些現(xiàn)象時(shí),努力去開發(fā)一種精確工具去預(yù)測(cè)磨損失效是不會(huì)成功的。本研究第二部分的目的就是為了描述磨損行為在調(diào)查的tribo系統(tǒng)中的分析和怎樣運(yùn)用知識(shí)完成影響計(jì)算。初始數(shù)據(jù)來源于機(jī)械的測(cè)量和幾何量,比如硬度,針式輪廓,流體特性和接觸半徑。熱量對(duì)模型潤(rùn)滑也是必不可少的的數(shù)據(jù)量。2.實(shí)驗(yàn)所有的維克斯葉片泵的實(shí)驗(yàn)都是用同種的流體。它是德國(guó)一個(gè)研究協(xié)會(huì)為傳輸技術(shù)涉及的一種油FVA,它是一種沒有任何添加劑的礦物質(zhì)油FVA3。因此可以排除添加劑所引起的后果。2.1計(jì)算原始數(shù)據(jù)數(shù)據(jù)1.列出輸入和輸出的計(jì)算量。大部分參數(shù)來源于:粗糙度流體性質(zhì)平面度接觸力和接觸速度動(dòng)態(tài)粘度接觸半徑粘性的壓力指數(shù)硬度標(biāo)準(zhǔn)間隙潤(rùn)滑溫度泊松數(shù)和密度實(shí)際單位剪切力隨即模擬的粗糙表面←→剪切力假說←→彈性液壓潤(rùn)滑↓Wm=f(t)Wf=f(ɑ)圖1.數(shù)學(xué)模型的第一部分的原始參數(shù)和實(shí)際工程量圖2.卷筒V104C:套管,轉(zhuǎn)子,定子,上套管,單一葉片,釘所有涉及實(shí)驗(yàn)前后的原件在葉片泵測(cè)試都用到了。在每個(gè)實(shí)驗(yàn)中的機(jī)械原件都不一樣,比如在圖2中卷筒由轉(zhuǎn)子,定子,12個(gè)輪葉,套管和釘組成。在每一個(gè)實(shí)驗(yàn)前后古老的輪廓測(cè)定法會(huì)在卷筒的環(huán)的內(nèi)表面和兩個(gè)葉片的頂端測(cè)定。根據(jù)專家所說,較早的研究已經(jīng)指出十個(gè)類似的部分在每個(gè)部分的不同方向由統(tǒng)計(jì)學(xué)來描述表面度是足夠的。只有輪廓中重要的濾過部件(采樣長(zhǎng)度1.5mm,剪下0.25mm)用于測(cè)定光譜時(shí)刻m0,m2,m4和粗糙度ɑ。依據(jù)不同承載位置的接觸力的劃分,新表面的地形圖數(shù)據(jù)被用于平面Ⅳ(低負(fù)載,參考partA)。對(duì)于另外一些存在高載荷的平面,最后一個(gè)條件的表面的輪廓被用了,在試運(yùn)轉(zhuǎn)之后證明外表內(nèi)環(huán)符合要求。盡管接觸半徑的變化被記錄在剖面投光器,接觸力和接觸速度還是根據(jù)葉片上不同的流體壓力,動(dòng)力,旋轉(zhuǎn)量和環(huán)半徑計(jì)算得出。因?yàn)槎ㄗ拥陌霃竭h(yuǎn)遠(yuǎn)大于在接觸位置葉片的半徑,葉輪能被假定變得赫茲圓柱體滑動(dòng)向前一個(gè)平的表面和接觸半徑只是葉輪的半徑。每一個(gè)葉片的尖端的損耗是100:1的兩倍,并且接觸半徑和接觸為定位由模板測(cè)量。接觸半徑的平均值由計(jì)算得到,而計(jì)算是根據(jù)兩種不同的條件。測(cè)得定子和三個(gè)葉片的硬度為10HV,這個(gè)硬度值決定了它比微硬度值有更好的彈性,但是由于存在大的切應(yīng)力,所以它只能在試驗(yàn)之后得到。所以硬度標(biāo)準(zhǔn)不能被注冊(cè)。泊松數(shù),模數(shù),定子的密度和葉片原料是從文獻(xiàn)中得到的剪切力假說中最基本的參數(shù)。實(shí)際的單位剪切力是不變的。數(shù)據(jù)1.中的流體性質(zhì)是由計(jì)算和文獻(xiàn)中得到的。密度和運(yùn)動(dòng)粘性分別在20℃、40℃和80℃測(cè)量而得到動(dòng)態(tài)粘性參數(shù)。粘性的壓力指數(shù)由德國(guó)傳輸工程動(dòng)力研究協(xié)會(huì)給出。在定子和葉片間隙間的潤(rùn)滑溫度接近于測(cè)定和計(jì)算得到的。2.2溫度分布測(cè)量溫度是為了獲得需要多少加熱量能使得接近葉片泵的磨損現(xiàn)象。因此要不斷縮短實(shí)驗(yàn)期直到溫度穩(wěn)定為止。這些10h輪葉泵檢驗(yàn)為近似值遞送輸入數(shù)據(jù)潤(rùn)滑間隙溫度在這定子與輪葉的接觸,連同另外磨耗集合被與磨耗的有計(jì)劃級(jí)數(shù)相較及時(shí)。葉片泵的溫度分布在數(shù)據(jù)3.通過抽樣原理論證。在定子和葉片間隙中的潤(rùn)滑溫度估計(jì)會(huì)等于或稍高于內(nèi)部定子主題表便的溫度。其次主要的熱力學(xué)報(bào)表,熱流量Qcomp可由一下得數(shù)據(jù)3.溫度測(cè)量原理Phyd+Pfric-Qcomp-Qfluid=0(1)和Qfluid=mcfluid△Tfluid(2)圖3.流體作為能量運(yùn)輸?shù)拿浇?,熱量通量可以在圖2.中體現(xiàn)出來。同樣的溫度差異和材料的熱通量可分為單根據(jù)構(gòu)件的關(guān)系fhrxes腫塊。推導(dǎo)過程中產(chǎn)生的熱量通量向是流動(dòng)的在一段時(shí)間的徑向通過定子。與已知的溫度在外環(huán)線表面上的溫度,大部分的內(nèi)圈的表面能計(jì)算和轉(zhuǎn)移到模型。2.3.資料比較所有的測(cè)試運(yùn)行與維氏的葉片泵V104C試驗(yàn)臺(tái)進(jìn)行了按照ASTM(美國(guó)材料試驗(yàn)協(xié)會(huì))D嗎2882/DIN51389位,這體現(xiàn)schematically圖4。這些標(biāo)準(zhǔn)描述程序進(jìn)行測(cè)試抗磨液壓流體的性質(zhì)。開始葉片泵試驗(yàn)的維氏據(jù)德國(guó)標(biāo)準(zhǔn)、系統(tǒng)壓力必須得到提高的腳步每隔10分鐘的2兆帕,開始在2兆帕,直到有一個(gè)最后的壓力達(dá)到14個(gè)兆帕。在這一階段,泵的流體溫度測(cè)量之前(見圖4)必須進(jìn)行控制,在進(jìn)口為每個(gè)流體進(jìn)行測(cè)試保證了運(yùn)動(dòng)學(xué)13mm2s-1。這些條件必須持續(xù)到本測(cè)試是中止250小時(shí)之后通常通過打開旁路的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論