函數(shù)的定義域與值域_第1頁
函數(shù)的定義域與值域_第2頁
函數(shù)的定義域與值域_第3頁
函數(shù)的定義域與值域_第4頁
函數(shù)的定義域與值域_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

鹽城高級(jí)職業(yè)學(xué)校:陸軍第2課時(shí)函數(shù)的定義域與值域的求法1.函數(shù)的自然定義域和限定定義域:用解析法表示的函數(shù),其定義域有時(shí)需要根據(jù)解析式何時(shí)有意義來求出,有時(shí)在給出函數(shù)的同時(shí)一起給出.函數(shù)的自然定義域:使函數(shù)的表達(dá)式有意義的自變量的取值集合叫做函數(shù)的自然定義域.如:函數(shù)y=的定義域?yàn)閧x|x≠0}.函數(shù)的限定定義域:有特殊限制規(guī)定的自變量的取值集合叫做函數(shù)的限定定義域.限定定義域是自然定義域的子集如:函數(shù)y=+x+3,x∈[-2,3],它的自然定義域?yàn)镽,[-2,3]是該函數(shù)的限定定義域.

2.函數(shù)自然定義域的求法求函數(shù)的自然定義域,就是使函數(shù)的解析式達(dá)到如下要求:(1)分式的分母不為0,如:函數(shù)f(x)=-的定義域?yàn)閧x|x≠-3};(2)偶次根下的式子不能小于0,如:函數(shù)f(x)=

的定義域?yàn)閧x|x≥-2}(3)如果函數(shù)由幾個(gè)式子構(gòu)成,那么函數(shù)的定義域就是使各部分式子都有意義的實(shí)數(shù)集合的交集,如:f(x)=的定義域?yàn)閧x|x≥2且x≠-1}.3.函數(shù)的值域的定義:在函數(shù)y=f(x)中,與自變量x的值對(duì)應(yīng)的y的值叫做函數(shù)值.函數(shù)值的集合叫做函數(shù)的值域.如:函數(shù)y=+2x+3的值域?yàn)閇2,+∞).

4.確定函數(shù)值域的原則(1)當(dāng)函數(shù)y=f(x)用表格給出時(shí),函數(shù)的值域是指表格中實(shí)數(shù)y的集合;(2)當(dāng)函數(shù)y=f(x)用圖象給出時(shí),函數(shù)的值域是指圖象在y軸上的投影所覆蓋的實(shí)數(shù)y的集合;(3)當(dāng)函數(shù)y=f(x)用解析式給出時(shí),函數(shù)的值域由函數(shù)的定義域及其對(duì)應(yīng)法則唯一確定;(4)當(dāng)函數(shù)由實(shí)際問題給出時(shí),函數(shù)的值域由問題的實(shí)際意義確定.5.求函數(shù)值域的方法常用的方法有:①配方法;②分離常數(shù)法;③換元法;④判別式法;⑤圖像法.求定義域2、如果函數(shù)y=f(x)是用解析式給出的,則可用下列法則求函數(shù)定義域:1、使函數(shù)的表達(dá)式有意義的自變量的取值集合叫做函數(shù)的定義域.(1)函數(shù)解析式是整數(shù)時(shí),它的定義域是一切實(shí)數(shù),即R;(2)函數(shù)的解析式是分式時(shí),它的定義域是所有使分母不等于零的實(shí)數(shù)的集合(3)函數(shù)的解析式是偶次根式時(shí),它的定義域是所有滿足偶次根號(hào)下的被開方式大于或等于零的實(shí)數(shù)的集合(4)函數(shù)解析式是

時(shí),(5)函數(shù)解析式是對(duì)數(shù)式時(shí),真數(shù)>0,底數(shù)>0且底數(shù)(6)函數(shù)解析式是正切函數(shù)時(shí),定義域是(7)如果函數(shù)由幾個(gè)式子構(gòu)成,那么函數(shù)的定義域就是使各部分式子都有意義的實(shí)數(shù)集合的交集,【例1】求下列函數(shù)的定義域:(1)(2)(3)(4)(5).【舉一反三】求下列函數(shù)的定義域:(1)(2).【例2】

若的定義域?yàn)閇0,1],求函數(shù)的定義域.【舉一反三】設(shè)的定義域?yàn)閇-2,2],則的定義域?yàn)開_

_.【例3】

如圖,用長(zhǎng)為的鐵絲彎成下部為矩形,上部為半圓形的框架,若矩形底邊長(zhǎng)為,求此框架圍成的面積與的函數(shù)關(guān)系式,并指出其定義域.

求值域【例4】

求下列函數(shù)的值域:.【舉一反三】求函數(shù)的值域.

求函數(shù)的值域的方法:(1)觀察法;【例4】

求下列函數(shù)的值域:(2)配方法,圖像法求二次函數(shù)的值域二次函數(shù)f(x)=ax2+bx+c(a≠0)定義域二次函數(shù)f(x)=ax2+bx+c(a≠0)R判別式a>0a<0圖象對(duì)稱性單調(diào)性最值△>0△<0△=0oxyoxyoxyoxyoxyoxy關(guān)于x=-

對(duì)稱b2ax∈(-∞,]單調(diào)遞減b2ax∈(-∞,]單調(diào)遞增b2ax∈[,+∞)單調(diào)遞增b2ax∈[,+∞)單調(diào)遞減b2a最小值為4ac-b24a最大值為4ac-b24a例1.已知函數(shù)y=x2-2x-3,求x在下列范圍內(nèi)函數(shù)的值域.(1)x∈R(2)0≤x≤3(3)-2≤x≤0(4)3≤x≤4解:配方得:y=(x-1)2-4(1)∵x∈R∴y≥-4∴值域?yàn)閇-4,+∞)(2)∵0≤x≤3∴值域?yàn)閇-4,0](3)∵-2≤x≤0∴值域?yàn)閇-3,5](4)∵3≤x≤4∴值域?yàn)閇0,5]Oxy-113-4-3二、典型題探究:注:解決二次函數(shù)值域問題的一般步驟:(1).配方;(2).畫圖象;(3).看區(qū)間;(4).確定值域。練習(xí):1.求下列函數(shù)值域:(1).y=x2-2x-3(-5≤x≤0);(2).f(x)=-x2+4x+5(x∈[1,4]);([-3,32])([5,9])2、求函數(shù)

y=x2+2x+3

在下面給定閉區(qū)間上的值域:①[-4,-3];②[-4,1];③[-2,1];④[0,1].[6,11];[2,11];[2,6];[3,6].(3)分式分離常數(shù)法;例1、求下列函數(shù)的值域:(4)、換元法

通過代數(shù)換元法或者三角函數(shù)換元法,把無理函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)等超越函數(shù)轉(zhuǎn)化為代數(shù)函數(shù)來求函數(shù)值域的方法(關(guān)注新元范圍).例2

求下列函數(shù)的值域:(1)

y=x-

x-1;(2)

y=x+

2-x

;34[

,

+∞)(5)判別式法例5

求函數(shù)y

=

的值域.

x2+x+1x2-x

主要適用于形如

y

=(a,d不同時(shí)為零)的函數(shù)(最好是滿足分母恒不為零).ax2+bx+c

dx2+ex+f

(1)y=

;

x2+12x例6

求下列函數(shù)的值域:

(2)y=(x>1).

x-1x2-2x+5[-1,1]

[4,

+∞)

能轉(zhuǎn)化為

A(y)x2+B(y)x+C(y)=0

的函數(shù)常用判別式法求函數(shù)的值域.

[1-,

1+

]2332331.求下列函數(shù)的值域:練習(xí)題(1)y=;x-23x+1(2)y=2x+4

1-x;(3)y=x+1-x;(1)(-∞,3)∪(3,+∞)(2)(-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論