嚴(yán)彬-Unicorn:走向目標(biāo)跟蹤的大一統(tǒng)_第1頁
嚴(yán)彬-Unicorn:走向目標(biāo)跟蹤的大一統(tǒng)_第2頁
嚴(yán)彬-Unicorn:走向目標(biāo)跟蹤的大一統(tǒng)_第3頁
嚴(yán)彬-Unicorn:走向目標(biāo)跟蹤的大一統(tǒng)_第4頁
嚴(yán)彬-Unicorn:走向目標(biāo)跟蹤的大一統(tǒng)_第5頁
已閱讀5頁,還剩58頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

OverviewOverviewPart1:ReviewofObjectTracking?SingleObjectTracking(SOT)?VideoObjectSegmentation(VOS)?MultipleObjectTracking(MOT)?Multi-ObjectTrackingandSegmentation(MOTS)?SummaryPart2:TowardsGrandUnificationofObjectTracking?GeneralVisionModels(GVM)?UnificationofObjectTracking?Unicorn?Experiments?FurtherAnalysis PartPart1:ReviewofObjectTracking?SingleObjectTracking(SOT)?VideoObjectSegmentation(VOS)?MultipleObjectTracking(MOT)?Multi-ObjectTrackingandSegmentation(MOTS) SingleSingleObjectTracking(SOT)TrackanarbitraryobjectinavideogivenitsinitiallocationSingle-object,Any-classOcclusion,LightChange,BackgroundClutter,etc. zCorrHead !Online !Head !TransformerzHeadxfffSingleObjectTrackingzCorrHead !Online !Head !TransformerzHeadxfffSingleObjectTracking(SOT)SiameseRPNf !fx?SiamRPN(CVPR18)?DaSiamRPN(ECCV18)?SiameRPN++(CVPR19)?Ocean(ECCV20)zDCFx?ATOM(CVPR19)?DiMP(ICCV19)?PrDiMP(CVPR20)?KYS(ECCV20)f !fTransf !f?TransT(CVPR21)?STARK(ICCV21)MostSOTmethodsarebasedonthesearchregion.Pros:Cons:?SavingcomputationV.S?Sensitivetotemporarytrackingfailure?Filteringoutdistractors?Time-consumingwhennumofobjectsislarge UnsupervisedVOSReferringUnsupervisedVOSReferringVOSVideoObjectSegmentation(VOS)nGoalnSegmentspecificobjectspreciselyinavideo.SegmentsalientmovingobjectSemi-supervisedVOSSegmentobjectsgiveninthe1stframebymasksSegmentobjectsgiveninthe1stframebylanguageSTM(ICCVSTM(ICCV19)CFBI(ECCV20)STCN(NeurIPS21)VideoObjectSegmentation(VOS)Semi-supervisedVOSisdominatedbySpace-TimeMemoryNetworkAlthoughachievinggreatperformance,STM-basedmethodssufferfromthefollowingdisadvantages:?Hugetimeandspacecomplexity,especiallyforhighspatialresolutionandthelongsequence.?Highlyrelyingonhigh-qualitymaskannotationsonthefirstframe.MultipleObjectMultipleObjectTracking(MOT)nGoalnTrackallobjectsofspecificclassesinavideo.MOTChallengeBDD100KVisdrone(1class:Person)(8classes:Car,pedestrian,etc)(10classes:Car,pedestrian,etc)ParadigmParadigmMultipleObjectTracking(MOT)RepresentativeMethodsuTrackingbyDetectionuTrackingbyDetection(SORT,DeepSORT,StrongSORT)uJointDetectionandTrackinguJointDetectionandTracking(JDE,FairMOT,CenterTrack,QDTrack)(TrackFormer,GTR)MOTmethodstakesthehigh-resolutionwholeimageastheinputtodetectobjectsascompletelyaspossible.Multi-ObjectTrackingandSegmentation(MOTS)nGoalnSegmentallobjectsofspecificclassesinavideo.MOTSChallengeBDD100KMOTS(1class:Person)(8classes:Car,pedestrian,etc)MOTScanbeseenasavariantofMOTbyreplacingboxeswithmasks.SummarSummaryReferenceOutputsClassTrackspervideoRepresentativeMethodsTypicalInputsSOTInitialboxBoxesagnosticOneOne-ShotDetectionSmallsearchregionVOSInitialmaskMasksagnosticSeveralSTMMedium-resolutionWholeImageMOTNOBoxesspecificTensorhundredsDetection+AssociationHigh-resolutionWholeImageMOTSNOMasksspecificTensorhundredsDetection+AssociationHigh-resolutionWholeImagettherearelargegapsbetweenthefourtrackingtasks?GeneralVisionModels(GVM)?UnificationofObjectTracking?Unicorn?Experiments?FurtherAnalysis entAIvsAGI–CurrentweakAIisdesignedforsolvingonespecifictask.–Artificialgeneralintelligence(AGI)isexpectedtounderstandorlearnanyintellectualtaskthatahumanbeingcan. ?Pioneeringworksinthepastyear2021.082021.112021.112022.01ies Threeobstacleshinderingtheunification:(1)Thecharacteristicsoftrackedobjectsvary(onetargetofanyclassgiveninthereferenceframev.stensevenhundredsofinstancesofspecificcategories)(2)SOTandMOTrequiredifferenttypesofcorrespondence.(pixel-levelcorrespondencedistinguishingthetargetfromthebackgroundv.sinstance-levelcorrespondencematchingthecurrentlydetectedobjectswithprevioustrajectories)(3)DifferentInputs.(smallsearchregiontosavecomputationandfilterpotentialdistractorsv.shigh-resolutionfullimagefordetectinginstancesascompleteaspossible) ?WeproposeUnicorn,aunifiedsolutionforSOT,MOT,VOSandMOTS.?Unicornaccomplishesthegreatunificationofthenetworkarchitectureandthelearningparadigmforfourtrackingtasks.?Unicornputsforwardsnewstate-of-the-artperformanceonmultiplechallengingtrackingbenchmarkswiththesamemodelparameters. Unifiedinputsandbackbone?Takingthefullimagesasinputsforalltasks.?Referenceframeisthe1stframeforSOT&VOSandthe(t-1)thframeforMOT&MOTS?Oneunifiedbackbone(ConvNeXtbydefault)ErefeRhwxcEcureRhwxcCpixeRhwxhwForMOT&MOTS,TheinstanceembeddingeisextractedfromtheframeembeddingE,wherethecenteroftheinstanceislocatederefeRMxc,ecureRNxcCinsteRNxMCinstisthesub-matrixofCpixLearninghighlydiscriminativeembedding{Eref,Ecur}isthekeytobuildingprecisecorrespondenceforalltrackingtasks.Aninteractionmoduleisusedtoenhancedtheoriginalimagefeature.Bydefaultweusethedeformableattentionblockforinteraction.LearningCorrespondencebyPropagation&LearningCorrespondencebyPropagation&Association.?ForSOT&VOS,Correspondencehelpstopropagatethetargetmapfromthereferenceframetothecurrentframe.?ForMOT&MOTS,Correspondencehelpstomatchthedetectionsonthecurrentframewiththetrajectoriesonthereferenceframe.Weintroducethetargetpriorastheswitchamongfourtrackingtasks.?ForSOT&VOS,thetargetpriorcanenhancetheoriginalFPNfeatureandmakesthenetworkfocusonthetrackedtarget.?ForMOT&MOTS,thefusedfeatureF′degeneratesbacktotheoriginalFPNfeatureFtodetectobjectsofspecificclasses.ObjectObjectdetectionheadbasedonYOLOXandCondInst?One-stage,anchor-free?NoRoIoperationssuchasRoI-AlignYOLOXHeadforobjectdetectionCondInstHeadforinstancesegmentationAddthemaskbranchandfreezeotherparametersStage1Target:Correspondence+DetectionLoss:Lstage1=Lcorr+LdetData:1:1fromSOT&MOTSOT:weuseCOCO,LaSOT,GOT-10KandTrackingNetMOT:?ForMOT17,weuseCrowdhuman,ETHZ,CityPerson,MOT17?ForBDD100K,weuseBDD100KStage2Target:MaskLoss:Lstage2=LmaskData:1:1fromVOS&MOTSVOS:weuseCOCO,DAVIS,Youtube-VOSMOTS:?ForMOTS,weuseCOCOandMOTS?ForBDD100K,weuseBDD100K?TrainingofVOS&MOTSwouldnotimpacttheperformanceofSOT&MOT.ForuserswhoareonlyinterestedintheSOT&MOT,runningStage1isenough.?Ineachstage,wetrainthemodel

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論