版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
半經(jīng)驗方法Semiempiricaltheory密度泛函理論DensityFunctionalTheory(DFT)快速計算方法第一性原理計算ExactSolutionHFMP2CCSD(T)DZTZQZBasisSetExpansionFullCIWaveFunctionExpansionHF
LimitTypicalCalculations
BasisSetAllpossibleconfigurationsNeedtospecifymethodandbasissetwhendescribingacalculationInteractionbetweenbasissetandcorrelationmethodrequirepropertreatmentofbothforaccuratecalculations.dilemmaaccuracycostWhynotusebestavailablecorrelationmethodwiththelargestavailablebasisset?chemicalaccuracyComputationalCostC2H6C4H101天27=128天
等待并行ComputationalCostAMP2calculationwouldbe100xmoreexpensivethanHFcalculationwithsamebasisset.ACCSD(T)calculationwouldbe104xmoreexpensivethanHFcalculationwithsamebasisset.TriplingbasissetsizewouldincreaseMP2calculation243x(35).Increasingthemoleculesize2x(sayethanebutane)wouldincreaseaCCSD(T)calculation128x(27).為什么從頭算方法慢?N粒子基Slaterdeterminant6重積分!NxNmatrix為什么從頭算方法慢?單粒子基GTOSTOGTO1,2-electronintegrals6重積分!為什么從頭算方法慢?Howmanyintegrals?電子數(shù)HFCI(H2O)2dimer億億億為什么從頭算方法慢?太多電子!太多積分!I/Obottleneck硬盤積分數(shù)據(jù)IO解決方案:不直接計算積分,用參數(shù)代替半經(jīng)驗方法Semiempirical不直接解方程密度泛函理論DensityFunctionalSemi-empiricalMOMethods基本思路ThehighcostofabinitioMOcalculationsislargelyduetothemanyintegralsthatneedtobecalculated(esp.twoelectronintegrals).Semi-empiricalMOmethodsstartwiththegeneralformofabinitioHartree-Fockcalculations,butmakenumerousapproximationsforthevariousintegrals.Manyoftheintegralsareapproximatedbyfunctions
withempiricalparametersthatareadjustedtoimprovetheagreementwithexperiment.Semi-empiricalMOMethods基本思路Coreorbitalsarenottreatedbysemi-empiricalmethods,sincetheydonotchangemuchduringchemicalreactionsOnlyaminimalsetofvalenceorbitalsareconsideredoneachatom(e.g.2s,2px,2py,2pzoncarbon)HFlevel沒有電子相關valence只有價電子STO-V3G最小基組functions擬合實驗Semi-empiricalMOMethods(1918-1997)non-benzenoid
aromaticity
"AMolecularOrbitalTheoryofOrganicChemistry",I,II,III,IV,V,VI,JACS,1952,3345-3350-3353-3354-3356-3363MOPACprogramMolecularOrbitalPACkageHuckelmethodErichHuckelextendedHuckelmethodRoaldHoffmannCNDO/2,INDO,NDDOJohnPopleMINDO,MNDO,AM1,PM3,RM1andSAM1Lysergicaciddiethylamide(LSD)49atomsgeometryoptimization:1974@CDC6600week2006@pc1minnowseconds~10000atomsExtendedHückelMethodH----HamiltonianmatrixCi----Columnvectorofthemolecularorbitalcoefficientsi----OrbitalenergyS----OverlapmatrixH
Ci=i
S
CiH
----Chooseasaconstant(valenceshellIP)H=KS(H+H)/2近似:Wolfsberg-Helmholtzconstant,1.75R.
Hoffmann,J.Chem.Phys.39,1397(1963).ExtendedHückelMethodconformation
cited1151ZeroDifferentialOverlap(ZDO,零級微分重迭)
TwoelectronrepulsionintegralsareoneofthemostexpensivepartsofabinitioMOcalculationsNeglectintegralsiforbitalsarenotthesameApproximateintegralsbyusings
orbitalsonly
CompleteNeglectofDifferentialOverlapCNDO[CNDO/1,CNDO/2]J.A.Pople,D.P.SantryandG.A.Segal,J.Chem.Phys.,1965,43,S129.totalnumberofsuchintegrals[N(N+1)/2][N(N+1)/2+1]/2N4/8N(N+1)/2N2/2全略微分重迭(H2O)220000200cited:478
IntermediateNeglectofDifferentialOverlapINDO間略微分重迭J.A.Pople,D.L.Beveridge,andP.A.Dobosh,J.Chem.Phys.47,2026(1967)keepintegralswhenA=B=C=DnowrarelyusedMINDO,ZINDO,SINDOINDOcited:415
ModifiedIntermediateNeglectofDifferentialOverlapBingham,R.C.,Dewar,M.J.S.andLo,D.H.J.Amer.Chem.Soc.,1975,97,1285.MINDO,MINDO/1,MINDO/2,MINDO/3MINDO/3參數(shù)化MINDO/3參數(shù)化生成焓偶極矩ZINDO/1,ZINDO/s
Zerner's
IntermediateNeglectofDifferentialOverlapMichaelZerner(1940-2000)groundstategeom.excitedstatesUVspectra
Symmetricorthogonalised
INDOSINDO,SINDO/1D.N.NandaandK.Jug,,TheoreticaChimicaActa,57,95,(1980)dorbitalsfor2ndrowelementNeglectofDiatomicDifferentialOverlapNDDO忽略雙原子微分重迭J.A.Pople,D.L.Beveridge,andP.A.Dobosh,J.Chem.Phys.47,2026(1967)keepintegralswhenA=B&C=DThebasisofmostsuccessfulsemiempiricalmethodsMNDOAM1SAM1RM1PM3PM6
ModifiedNeglectofDifferentialOverlapMNDODewar,M.J.S.andThiel,W.,J.Amer.Chem.Soc.,1977,99,4899.MNDO/dThiel,W.andVoityuk,A.A.,J.Phys.Chem.,1996,100.616.+dbasisfunctionsMNDOCThiel,W.,J.Amer.Chem.Soc.,1981,103,1413.+correlationsDewar,M.J.S.andThiel,W.,J.Amer.Chem.Soc.,1977,99,4899.databaseparameterizationDewar,M.J.S.andThiel,W.,J.Amer.Chem.Soc.,1977,99,4899.cited:372Thiel,W.andVoityuk,A.A.,J.Phys.Chem.,1996,100.616.cited:87Thiel,W.,J.Amer.Chem.Soc.,1981,103,1413.cited:68notwelltested.
AustinModel1AM1
SemiempiricalabinitioModel1SAM1Dewar,M.J.S.,Zoebisch,E.G.,Healy,E.F.andStewart,J.J.P.,J.Amer.Chem.Soc.,1985,107,3902.Tetrahedron,1993,23,5003.MNDO+AM1/dPt-oligoolefinsbindingenergy
ParameterizedModelnumber3PM3thesameformalismandequationsastheAM1method,butcorerepulsionfunction:PM3usestwoGaussianfunctionsAM1usesbetweenoneandfourGaussians/elementStewart,J.J.P.J.Comput.Chem.1989,10,209.Stewart,J.J.P.J.Comput.Chem.1989,10,221.Stewart,J.J.P.J.Comput.Chem.1991,12,320.cited:4982
ParameterizedModelnumber3Stewart,J.J.P.J.Mol.Model.2004,10,155.Stewart,J.J.P.J.Mol.Model.2007,13,1173.PM6cited:261geometricaloptimization!BScatStrathclydeUniversity,Glasgow,Scotland,in1969PhDatStrathclydeUniversity,Glasgow,Scotland,in1972DScatStrathclydeUniversity,Glasgow,Scotland,in1995AuthoredthefirstMOPACwhileworkinginProfessorMichaelDewar'sgroup,1983.BeenworkingonMOPACnowfor27years.Authoredover140papers.In1999,wasreportedtobethe15thmost-citedchemistintheworld.WorkedattheFrankJ.SeilerResearchLaboratoryattheAirForceAcademyinColoradoSpringsfrom1984-1991.Becameaconsultant(asoleproprietor)in1991,andworkedasaconsultanttoFujitsuuntil2004.Hasbeenanindependentdevelopersincethen.HasseveralPCs,andworksoutofaroominthebasementofhishouseinColoradoSprings.Hasnostudentsorco-workers,butcommunicatesviatheInternet.Hehastwocats,awife,andasnow-blower,noneofwhichwork.ScienceorTechnique?Semi-empiricalmethods:heavilyparameterizedmethodsFit-an-elephantFreemanDysonEnricoFermi(1901-1954)(1923-)meson–protonscatteringcalculatednumbersagreedprettywellwithFermi'smeasurednumbers"Therearetwowaysofdoingcalculationsintheoreticalphysics.Oneway,andthisisthewayIprefer,istohaveaclearphysicalpictureoftheprocessthatyouarecalculating.Theotherwayistohaveapreciseandself-consistentmathematicalformalism.Youhaveneither."IndesperationIaskedFermiwhetherhewasnotimpressedbytheagreementbetweenourcalculatednumbersandhismeasurednumbers.Hereplied,“Howmanyarbitraryparametersdidyouuseforyourcalculations?”Ithoughtforamomentaboutourcut-offproceduresandsaid,“Four.”Hesaid,“IremembermyfriendJohnnyvonNeumannusedtosay,withfourparametersIcanfitanelephant,andwithfiveIcanmakehimwigglehistrunk.”ScienceorTechnique?Semi-empiricalmethods:heavilyparameterizedmethodsFit-an-elephantFreemanDysonEnricoFermiFit-an-elephantFreemanDysonEnricoFermiScienceorTechnique?heavilyparameterizedSemi-empiricalmethodsindependentofexperimentsexperiment-dependenttruth&onlytruthuseful&usable密度泛函理論DensityFunctionalTheoryDFTThewavefunctionitselfisessentiallyuninterpertable.Reduceproblemsize:WavefunctionsforN-electronsystemscontain4Ncoordinates.Wavefunctionbasedmethodsquicklybecomeintractableforlargesystems,evenwithcontinuedimprovementincomputingpower,duetothecoupledmotionoftheelectrons.Adesiretoworkwithsomephysicalobservableratherthanprobabilityamplitude.MotivationElectronicEnergyComponentsTotalelectronicenergycanbepartitioned:E=ET+ENE+EJ+EX+ECET,ENE,&EJarelargestcontributorstoEEX>EC
ET=KineticenergyoftheelectronsENE=CoulombattractionenergybetweenelectronsandnucleiEJ=CoulombrepulsionenergybetweenelectronsEX=Exchangeenergy,acorrectionfortheself-repulsionsofelectronsEC=CorrelationenergybetweenthemotionsofelectronswithdifferentspinsThomas-Fermi-Dirac(TFD)ModelEnergyisafunctionoftheoneelectrondensity,Nuclear-electronattraction&electron-electronrepulsionThomas-FermiapproximationforthekineticenergySlaterapproximationfortheexchangeenergyXModelTFDdoesnotpredictbondingandthetotalenergiesareinerrorby15-50%.IfthevalueinSlater’sExistreatedasparameter,thenbetterresultsareachieved.TheXmodel(aka.Hartree-Fock-Slater)uses=3/4.AlthoughXhasbeensupercededbymodernfunctionals,itisstillusefulforinorganicsystemsandpreliminarycalculations.TheNobelPrizeinChemistry1998“forhisdevelopmentofthedensity-functionaltheory"WalterKohn(1923-)1925-2004TheoreticalBasiscanbewrittenasasingleSlaterdeterminantoforbitals,butorbitalsarenotthesameasHartree-FockEXCtakescareofelectroncorrelationaswellasexchangeEnergyisafunctionalofthedensityE[]Thefunctionalisuniversal,independentofthesystemTheexactdensityminimizesE[]Appliesonlytothegroundstate
HohenbergandKohn(1964)KohnandSham(1965)
VariationalequationsforalocalfunctionalTheHohenberg-KohnTheorem
propertiesareuniquelydeterminedbytheground-stateelectron
In1964,HohenbergandKohnprovedthat:molecularenergy,wavefunction
andallothermolecularelectronic
probabilitydensity
namely,Phys.Rev.136,13864(1964)
.”“Formoleculeswitha
nondegenerate
groundstate,theground-state
Densityfunctionaltheory(DFT)attemptstoandotherground-statemolecularproperties
fromtheground-stateelectrondensity
calculate
probabilitydensityandotherproperties”emphasizesthedependenceoftheexternalpotential
differs
fordifferentmolecules.“Forsystemswithanondegenerategroundstate,theground-stateelectrondeterminestheground-statewavefunctionandenergy,,whichHowever,thefunctionalsareunknown.isalsowrittenasThefunctionalindependentoftheexternalonispotential.TheHohenberg-kohnvariationaltheorem“Foreverytrialdensityfunctionthatsatisfiesandforall,thefollowinginequalityholds:,isthetrueground–stateenergy.”whereTheKohn-Shammethod
Ifweknowtheground-stateelectrondensity
molecularpropertiesfromfunction.,theHohenberg-Kohntheoremtellsusthatitispossibleinprincipletocalculatealltheground-state,withouthavingtofindthemolecularwave
1965,KohnandShamdevisedapracticalmethodforfinding
andforfinding
from.[Phys.Rev.,140,A1133(1965)].Theirmethod
iscapable,inprinciple,ofyieldingexactresults,butbecausetheequationsof
theKohn-Sham(KS)methodcontainanunknownfunctionalthatmustbeapproximated,theKSformationofDFTyield
approximateresults.electronsthateachexperiencethesameexternalpotential
theground-stateelectronprobabilitydensity
equaltotheexactofthemoleculeweareinterestedin:.KohnandShamconsideredafictitiousreferencesystemsofnnoninteractingthatmakesofthereferencesystemSincetheelectronsdonot
interactwithoneanotherinthereferencesystem,theHamiltonianofthereferencesystemiswhereistheone-electronKohn-ShamHamiltonian.
自由電子氣模型Thus,theground-statewavefunctionofthereferencesystemis:
isaspinfunctionorbitalenergies.areKohn-ShamForconvenience,thezerosubscriptonisomittedhereafter.Defineasfollows:ground-state
electronickineticenergysystemofnoninteractingelectrons.(either)isthedifferenceintheaveragebetweenthemoleculeand
thereference
Thequantityrepulsionenergy.units)
for
theelectrostaticinterelectronicistheclassicalexpression(inatomicRememberthatWiththeabovedefinitions,
canbewrittenasDefinetheexchange-correlationenergyfunctionalbyNowwehaveside
are
easytoevaluatefromgetagoodapproximationto
totheground-stateenergy.
Thefourthquantity
accurately.
ThekeytoaccurateKSDFT
calculationofmolecular
propertiesisto
Thefirstthreetermsontherightisarelativelysmallterm,butisnoteasytoevaluate
andtheymakethe
maincontributionsThusbecomes.Nowweneedexplicitequationstofindtheground-stateelectrondensity.sameelectrondensityasthatinthegroundstateofthemolecule:isreadilyprovedthatSincethefictitioussystemofnoninteractingelectronsisdefinedtohavethe,itground-stateenergybyvaryingtominimizethefunctional
canvarytheKSorbitals
minimizetheaboveenergyexpressionsubjecttotheorthonormalityconstraint:TheHohenberg-Kohnvariationaltheoremtellusthatwecanfindthe
soas.Equivalently,insteadofvaryingweThus,theKohn-Shamorbitalsarethosethatwiththeexchange-correlationpotential
definedby(Ifisknown,itsfunctionalderivative
isalsoknown.)CommentsontheDFTmethods:(1)TheKSequationsaresolvedinaself-consistentfashion,liketheHFequations.(2)ThecomputationtimerequiredforaDFTcalculationformallyscalesthe
third
power
ofthenumberofbasisfunctions.(3)ThereisnoDFmolecularwavefunction.(4)TheKSorbitalscanbeusedinqualitativeMOdiscussions,liketheHF
orbitals.TheKSoperatorexchangeoperatorsintheHFoperatorarereplacedbytheeffectsofbothexchangeandelectroncorrelation.isthesameastheHFoperator
exceptthatthe,whichhandles(5)Variousapproximatefunctionals
DFcalculations.Thefunctionalandacorrelation-energyfunctionalAmongvariousCommonlyusedandPW91(PerdewandWang’s1991functional)Lee-Yang-Parr(LYP)functionalareusedinmolecularapproximations,gradient-corrected
exchangeandcorrelationenergyfunctionalsarethemostaccurate.PW86(PerdewandWang’s1986functional)B88(Becke’s1988functional)P86(the
Perdew1986correlationfunctional)
(6)NowadaysKSDFTmethodsaregenerallybelievedtobebetterthantheHFmethod,andinmostcasestheyareevenbetterthanMP2
iswrittenasthesumofanexchange-energyfunctional
ConstructingDensityFunctionalsExactformisunknown.Hohenberg-Kohnisonlyanexistenceproof.Densityfunctionalshavetheform:ForLSDA:a=b=c=0Forpurefunctionals:a=0Systematicimprovementoffunctionalsispossible,butcomplicatedbythefactthatexactconstraintsandpropertiesofsaidfunctionalsarestillbeingelucidated.IncreasingChemicalAccuracyDecreasingComputationalCostsAccuracyvs.ComputationalCostLSDAGGAMeta-GGAX1951Dirac1930G96B86B88PW91PBE1996RPBE1999revPBE1998xPBE2004PW86mPWTPSS2003BR89PKZB1999Exchange,ExCS1975LSDAGGAMeta-GGAW38xPBE2004PW86PBE1996PW91LYP1988B95TPSS2003PKZB1999B88VWN1980PZ81PW92CAData1980Correlation,EcCalculatingExcTermsExchange-correlationfunctionalsmustbenumericallyintegratednotasrobustasanalyticmethods.Energiesandgradientsare1-3timesthecostofHartree-Fock.Frequenciesare2-4timesthecostofHartree-Fock.Someofthiscomputationalcostcanberecuperatedforpuredensityfunctionalsbyemployingthede
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 園林景觀石材安裝合同
- 新學期自律保證書范文
- 九年級化學上冊 第五單元 定量研究化學反應 第一節(jié) 化學反應中的質量守恒同步教案 (新版)魯教版
- 2024秋九年級語文上冊 第二單元 寫作 觀點要明確教案 新人教版
- 2024-2025學年新教材高中政治 第三課 只有中國特色社會主義才能發(fā)展中國 2 中國特色社會主義的創(chuàng)立、發(fā)展和完善(2)教案 部編版必修1
- 2024八年級數(shù)學下冊 第22章 四邊形22.3三角形的中位線教案(新版)冀教版
- 2024-2025學年高中歷史 第二單元 凡爾賽-華盛頓體系下的世界 第1課 巴黎和會(4)教學教案 新人教版選修3
- 2023六年級語文下冊 第二單元 口語交際:同讀一本書配套教案 新人教版
- 2023三年級數(shù)學上冊 五 周長第3課時 長方形的周長說課稿 北師大版
- 2023七年級英語上冊 Module 6 A trip to the zoo Unit 1 Does it eat meat教案 (新版)外研版
- 礦山財務分析與風險評估
- 埋地鋼質管道腐蝕與防護
- 人工智能對教育考試的改革與應用
- 青年教師個人專業(yè)發(fā)展三年規(guī)劃表
- 會議宴會接待通知單
- 數(shù)字化人才管理
- 煙草行業(yè)供應鏈優(yōu)化
- 血液循環(huán)系統(tǒng)課件
- 起重機械自查報告
- 2021年至2023年廣東省公務員遴選筆試真題、面試真題及答案解析(各地市、省直共12套)
- ZJ40J鉆機技術參數(shù)
評論
0/150
提交評論