2023年山東科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年山東科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年山東科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年山東科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年山東科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩45頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年山東科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.方程組的解集是()

A.{-1,2}

B.(-1,2)

C.{(-1,2)}

D.{(x,y)|x=-1或y=2}答案:C2.設(shè)O是正△ABC的中心,則向量AO,BO.CO是()

A.相等向量

B.模相等的向量

C.共線向量

D.共起點的向量答案:B3.直線y=x-1的傾斜角是()

A.30°

B.120°

C.60°

D.150°答案:A4.命題“當(dāng)AB=AC時,△ABC是等腰三角形”與它的逆命題、否命題、逆否命題這四個命題中,真命題有______個.答案:原命題為真命題.逆命題“當(dāng)△ABC是等腰三角形時,AB=AC”為假命題.否命題“當(dāng)AB≠AC時,△ABC不是等腰三角形”為假命題.逆否命題“當(dāng)△ABC不是等腰三角形時,AB≠AC”為真命題.故為:2.5.如圖所示,設(shè)P為△ABC所在平面內(nèi)的一點,并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C6.如圖:在長方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F(xiàn)分別是線段AB,BC上的點,且EB=FB=1.

(1)求二面角C-DE-C1的大?。?/p>

(2)求異面直線EC1與FD1所成角的大??;

(3)求異面直線EC1與FD1之間的距離.答案:(1)以A為原點AB,AD,AA1分別為x軸、y軸、z軸的正向建立空間直角坐標(biāo)系,則有D(0,3,0),D1(0,3,2),E(3,0,0),F(xiàn)(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),F(xiàn)D1=(-4,2,2)(3分)設(shè)向量n=(x,y,z)與平面C1DE垂直,則有n⊥DEn⊥EC1?3x-3y=0x+3y+2z=0?x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),則n0是一個與平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)與平面CDE垂直,∴n0與AA1所成的角θ為二面角C-DE-C1的平面角.(6分)∴cosθ=n0?AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小為arccos63.(8分)(2)設(shè)EC1與FD1所成角為β,(1分)則cosβ=EC1?FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故異面直線EC1與FD1所成角的大小為arccos2114(11分)(3)設(shè)m=(x,y,z)m⊥EC1m⊥FD1?m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)設(shè)所求距離為d,則d=|m?D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).7.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進(jìn)行分析,抽取了總成績介于350分到650分之間的10000名學(xué)生成績,并根據(jù)這10000名學(xué)生的總成績畫了樣本的頻率分布直方圖.為了進(jìn)一步分析學(xué)生的總成績與各科成績等方面的關(guān)系,要從這10000名學(xué)生中,再用分層抽樣方法抽出200人作進(jìn)一步調(diào)查,則總成績在[400,500)內(nèi)共抽出()

A.100人

B.90人

C.65人

D.50人

答案:B8.(1+3x)n(其中n∈N且n≥6)的展開式中x5與x6的系數(shù)相等,則n=()A.6B.7C.8D.9答案:二項式展開式的通項為Tr+1=3rCnrxr∴展開式中x5與x6的系數(shù)分別是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故選B9.“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結(jié)論)”,上面推理的錯誤是()

A.大前提錯導(dǎo)致結(jié)論錯

B.小前提錯導(dǎo)致結(jié)論錯

C.推理形式錯導(dǎo)致結(jié)論錯

D.大前提和小前提錯都導(dǎo)致結(jié)論錯答案:A10.(x+2y)4展開式中各項的系數(shù)和為______.答案:令x=y=1,可得(1+2)4=81故為:81.11.用反證法證明命題“在函數(shù)f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個不小于”時,假設(shè)正確的是()

A.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有一個小于

B.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有兩個小于

C.假設(shè)|f(1)|,|f(2)|,|f(3)|都不小于

D.假設(shè)|f(1)|,|f(2)|,|f(3)|都小于答案:D12.一部記錄影片在4個單位輪映,每一單位放映一場,則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個單位看成四個位置,在四個位置進(jìn)行全排列,故有A44種結(jié)果,故選C.13.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為(

A.

B.

C.3

D.2答案:C14.如圖,正六邊形ABCDEF中,=()

A.

B.

C.

D.

答案:D15.如圖,海中有一小島,周圍3.8海里內(nèi)有暗礁.一軍艦從A地出發(fā)由西向東航行,望見小島B在北偏東75°,航行8海里到達(dá)C處,望見小島B在北偏東60°.若此艦不改變艦行的方向繼續(xù)前進(jìn),問此艦有沒有觸礁的危險?答案:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,過B作AC的垂線垂足為D,在△BCD中,可得BD=BC?sin30°=4.∵4>3.8,∴沒有危險.16.如圖,圓心角∠AOB=120°,P是AB上任一點(不與A,B重合),點C在AP的延長線上,則∠BPC等于______.

答案:解:設(shè)點E是優(yōu)弧AB(不與A、B重合)上的一點,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故為60°.17.從裝有兩個白球和兩個黃球的口袋中任取2個球,以下給出了三組事件:

①至少有1個白球與至少有1個黃球;

②至少有1個黃球與都是黃球;

③恰有1個白球與恰有1個黃球.

其中互斥而不對立的事件共有()組.

A.0

B.1

C.2

D.3答案:A18.集合{1,2,3}的真子集總共有()A.8個B.7個C.6個D.5個答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個.故選B.19.過點(1,0)且與直線x-2y-2=0平行的直線方程是()

A.x-2y-1=0

B.x-2y+1=0

C.2x+y-2=0

D.x+2y-1=0答案:A20.Direchlet函數(shù)定義為:D(t)=1,t∈Q0,t∈CRQ,關(guān)于函數(shù)D(t)的性質(zhì)敘述不正確的是()A.D(t)的值域為{0,1}B.D(t)為偶函數(shù)C.D(t)不是周期函數(shù)D.D(t)不是單調(diào)函數(shù)答案:函數(shù)D(t)是分段函數(shù),值域是兩段的并集,所以值域為{0,1};有理數(shù)和無理數(shù)正負(fù)關(guān)于原點對稱,所以函數(shù)D(t)的圖象關(guān)于y軸對稱,所以函數(shù)是偶函數(shù);對于不同的有理數(shù)x對應(yīng)的函數(shù)值相等,所以函數(shù)不是單調(diào)函數(shù);因為任取一個非0有理數(shù),都有有理數(shù)加有理數(shù)為有理數(shù),有理數(shù)加無理數(shù)為無理數(shù),所以函數(shù)D(t)的圖象周期出現(xiàn),所以函數(shù)是周期函數(shù),所以選項C不正確.故選C.21.某海域內(nèi)有一孤島,島四周的海平面(視為平面)上有一淺水區(qū)(含邊界),其邊界是長軸長為2a,短軸長為2b的橢圓,已知島上甲、乙導(dǎo)航燈的海拔高度分別為h1、h2,且兩個導(dǎo)航燈在海平面上的投影恰好落在橢圓的兩個焦點上,現(xiàn)有船只經(jīng)過該海域(船只的大小忽略不計),在船上測得甲、乙導(dǎo)航燈的仰角分別為θ1、θ2,那么船只已進(jìn)入該淺水區(qū)的判別條件是______.答案:依題意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故為:h1?cotθ1+h2?cotθ2≤2a22.下面四個結(jié)論:

①偶函數(shù)的圖象一定與y軸相交;

②奇函數(shù)的圖象一定通過原點;

③偶函數(shù)的圖象關(guān)于y軸對稱;

④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R),

其中正確命題的個數(shù)是()A.1B.2C.3D.4答案:偶函數(shù)的圖象關(guān)于y軸對稱,但不一定與y軸相交,因此①錯誤,③正確;奇函數(shù)的圖象關(guān)于原點對稱,但不一定經(jīng)過原點,只有在原點處有定義才通過原點,因此②錯誤;若y=f(x)既是奇函數(shù),又是偶函數(shù),由定義可得f(x)=0,但不一定x∈R,只要定義域關(guān)于原點對稱即可,因此④錯誤.故選A.23.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計算該數(shù)列的第10項,則判斷框內(nèi)的條件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B24.如圖,AC、BC分別是直角三角形ABC的兩條直角邊,且AC=3,BC=4,以AC為直徑作圓與斜邊AB交于D,則BD=______.答案:連CD,在Rt△ABC中,因為AC、BC的長分別為3cm、4cm,所以AB=5cm,∵AC為直徑,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽Rt△BCA,∴BD=165,故為:16525.復(fù)數(shù)1+i(i為虛數(shù)單位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故選A.26.對任意實數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個非零常數(shù)m,使得對任意實數(shù)x,都有x*m=x,則m的值是(

)。答案:427.已知平面向量=(3,1),=(x,3),且⊥,則實數(shù)x的值為()

A.9

B.1

C.-1

D.-9答案:C28.以橢圓上一點和橢圓兩焦點為頂點的三角形的面積最大值為1時,橢圓長軸的最小值為()

A.

B.

C.2

D.2

答案:D29.如圖所示直角梯形ABCD中,∠A=90°,PA⊥面ABCD,AD||BC,AB=BC=a,AD=2a,與底面ABCD成300角.若AE⊥PD,E為垂足,PD與底面成30°角.

(1)求證:BE⊥PD;

(2)求異面直線AE與CD所成的角的大小.答案:為了計算方便不妨設(shè)a=1.(1)證明:根據(jù)題意可得:以A為原點,AB,AD,AP所在直線為坐標(biāo)軸建立直角坐標(biāo)系(如圖)則A(0,0,0),B(1,0,0)D(0,2,0)P(0,0,233)AB?PD=(1,0,0)?(0,2,-233)=0又AE?PD=0∴AB⊥PD,AE⊥PD所以PD⊥面BEA,BE?面BEA,∴PD⊥BE(2)∵PA⊥面ABCD,PD與底面成30°角,∴∠PDA=30°過E作EF⊥AD,垂足為F,則AE=AD?sin30°=1,∠EAF=60°AF=12,EF=32∴E(0,12,32),于是AE=(0,12,32)又C(1,1,0),D(0,2,0),CD=(-1,1,0)則COSθ=AE?CD|AE||CD|=24∴AE與CD所成角的余弦值為24.30.(選做題)

設(shè)集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實數(shù)a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內(nèi)直接求解情況比較多,考慮補(bǔ)集設(shè)全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內(nèi)}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內(nèi)∴,∴,∴,∴∴實數(shù)a的取值范圍為.31.為如圖所示的四塊區(qū)域涂色,要求相鄰區(qū)域不能同色,現(xiàn)有3種不同顏色可供選擇,則共有______種不同涂色方案(要求用具體數(shù)字作答).答案:由題意,首先給左上方一個涂色,有三種結(jié)果,再給最左下邊的上面的涂色,有兩種結(jié)果,右上方,如果與左下邊的同色,則右方的涂色,有兩種結(jié)果,右上方,如果與左下邊的不同色,則右方的涂色,有1種結(jié)果,∴根據(jù)分步計數(shù)原理得到共有3×2×(2+1)=18種結(jié)果,故為18.32.方程x2+(m-2)x+5-m=0的兩根都大于2,則m的取值范圍是()

A.(-5,-4]

B.(-∞,-4]

C.(-∞,-2]

D.(-∞,-5)∪(-5,-4]答案:A33.在△ABC中,已知A(2,3),B(8,-4),點G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標(biāo)為______.答案:設(shè)C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).34.若點A分有向線段所成的比是2,則點C分有向線段所成的比是()

A.

B.3

C.-2

D.-3答案:D35.如果:在10進(jìn)制中2004=4×100+0×101+0×102+2×103,那么類比:在5進(jìn)制中數(shù)碼2004折合成十進(jìn)制為()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故選B.36.若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實數(shù)),則b=()

A.-2

B.2

C.-8

D.8答案:C37.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實數(shù)解,求a的值.答案:設(shè)方程的實根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復(fù)數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-338.在復(fù)平面上,設(shè)點A,B,C對應(yīng)的復(fù)數(shù)分別為i,1,4+2i,過A、B、C作平行四邊形ABCD,則平行四邊形對角線BD的長為______.答案:∵點A,B,C對應(yīng)的復(fù)數(shù)分別為i,1,4+2i∴A(0,1),B(1,0),C(4,2)設(shè)D(x,y)∴AD=BC=(3,2)∴D(3,3)∴對角線BD的長度是4+9=13故為:1339.點P從(2,0)出發(fā),沿圓x2+y2=4按逆時針方向運(yùn)動弧長到達(dá)點Q,則點Q的坐標(biāo)為()

A.(-1,

)

B.(-,

-1)

C.(-1,

-)

D.(-,

1)答案:C40.指數(shù)函數(shù)y=ax的圖象經(jīng)過點(2,16)則a的值是()A.14B.12C.2D.4答案:設(shè)指數(shù)函數(shù)為y=ax(a>0且a≠1)將(2,16)代入得16=a2解得a=4所以y=4x故選D.41.已知F1,F(xiàn)2為橢圓x2a2+y2b2=1(a>b>0)的兩個焦點,過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率為e=32,則橢圓的方程為______.答案:根據(jù)橢圓的定義,△AF1B的周長為16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴橢圓的方程為x216+y24=1,故為x216+y24=142.已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”給出下列直線①y=x+1;②y=2;③y=x④y=2x+1;其中為“B型直線”的是()

A.①③

B.①②

C.③④

D.①④答案:B43.已知f(x)在(0,2)上是增函數(shù),f(x+2)是偶函數(shù),那么正確的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根據(jù)函數(shù)的圖象的平移可得把f(x+2)向右平移2個單位可得f(x)的圖象f(x+2)是偶函數(shù),其圖象關(guān)于y軸對稱可知f(x)的圖象關(guān)于x=2對稱∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)單調(diào)遞增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故選:B44.若直線l過拋物線y=ax2(a>0)的焦點,并且與y軸垂直,若l被拋物線截得的線段長為4,則a=______.答案:拋物線方程整理得x2=1ay,焦點(0,14a)l被拋物線截得的線段長即為通徑長1a,故1a=4,a=14;故為14.45.以橢圓的焦點為頂點、頂點為焦點的雙曲線方程是()

A.

B.

C.

D.答案:C46.設(shè)a、b∈R+且a+b=3,求證1+a+1+b≤10.答案:證明:證法一:(綜合法)∵(1+a+1+b)2=2+a+b+2(1+a)?(1+b)≤5+(1+a+1+b)=10∴1+a+1+b≤10證法二:(分析法)∵a、b∈R+且a+b=3,∴欲證1+a+1+b≤10只需證(1+a+1+b)2≤10即證2+a+b+2(1+a)?(1+b)≤10即證2(1+a)?(1+b)≤5只需證4(1+a)?(1+b)≤25只需證4(1+a)?(1+b)≤25即證4(1+a+b+ab)≤25只需證4ab≤9即證ab≤94∵ab≤(a+b2)2=(32)2=94成立∴1+a+1+b≤10成立47.已知點P為y軸上的動點,點M為x軸上的動點,點F(1,0)為定點,且滿足PN+12NM=0,PM?PF=0.

(Ⅰ)求動點N的軌跡E的方程;

(Ⅱ)過點F且斜率為k的直線l與曲線E交于兩點A,B,試判斷在x軸上是否存在點C,使得|CA|2+|CB|2=|AB|2成立,請說明理由.答案:(Ⅰ)設(shè)N(x,y),則由PN+12NM=0,得P為MN的中點.∴P(0,y2),M(-x,0).∴PM=(-x,-y2),PF=(1,-y2).∴PM?PF=-x+y24=0,即y2=4x.∴動點N的軌跡E的方程y2=4x.(Ⅱ)設(shè)直線l的方程為y=k(x-1),由y=k(x-1)y2=4x,消去x得y2-4ky-4=0.設(shè)A(x1,y1),B(x2,y2),則

y1+y2=4k,y1y2=-4.假設(shè)存在點C(m,0)滿足條件,則CA=(x1-m,y1),CB=(x2-m,y2),∴CA?CB=x1x2-m(x1+x2)+m2+y1y2=(y1y24)2-m(y12+y224)+m2-4=-m4[(y1+y2)2-2y1y2]+m2-3=m2-m(4k2+2)-3.∵△=(4k2+2)2+12>0,∴關(guān)于m的方程m2-m(4k2+2)-3=0有解.∴假設(shè)成立,即在x軸上存在點C,使得|CA|2+|CB|2=|AB|2成立.48.已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點為F,準(zhǔn)線為l,過拋物線上一點M作l的垂線,垂足為E.若|EF|=|MF|,點M的橫坐標(biāo)是3,則p=(

)。答案:249.過點P(0,-2)的雙曲線C的一個焦點與拋物線x2=-16y的焦點相同,則雙曲線C的標(biāo)準(zhǔn)方程是()

A.

B.

C.

D.答案:C50.在統(tǒng)計中,樣本的標(biāo)準(zhǔn)差可以近似地反映總體的()

A.平均狀態(tài)

B.頻率分布

C.波動大小

D.最大值和最小值答案:C第2卷一.綜合題(共50題)1.已知隨機(jī)變量x服從二項分布x~B(6,),則P(x=2)=()

A.

B.

C.

D.答案:D2.如圖,四條直線互相平行,且相鄰兩條平行線的距離均為h,一直正方形的4個頂點分別在四條直線上,則正方形的面積為()

A.4h2

B.5h2

C.4h2

D.5h2

答案:B3.若函數(shù)f(x)對任意實數(shù)x都有f(x)<f(x+1),那么()A.f(x)是增函數(shù)B.f(x)沒有單調(diào)遞增區(qū)間C.f(x)沒有單調(diào)遞減區(qū)間D.f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間答案:根據(jù)函數(shù)f(x)對任意實數(shù)x都有f(x)<f(x+1),畫出一個滿足條件的函數(shù)圖象如右圖所示;根據(jù)圖象可知f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間故選D.4.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)定原信息為a0a1a2,ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕運(yùn)算規(guī)則為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導(dǎo)致接收信息出錯,則下列接收信息一定有誤的是()A.11010B.01100C.10111D.00011答案:A選項原信息為101,則h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為11010,A選項正確;B選項原信息為110,則h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以傳輸信息為01100,B選項正確;C選項原信息為011,則h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為10110,C選項錯誤;D選項原信息為001,則h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以傳輸信息為00011,D選項正確;故選C.5.已知點P是以F1、F2為左、右焦點的雙曲線(a>0,b>0)左支上一點,且滿足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線的離心率為()

A.

B.

C.

D.答案:D6.已知點A(-1,-2),B(2,3),若直線l:x+y-c=0與線段AB有公共點,則直線l在y軸上的截距的取值范圍是()

A.[-3,5]

B.[-5,3]

C.[3,5]

D.[-5,-3]答案:A7.已知x、y之間的一組數(shù)據(jù)如下:

x0123y8264則線性回歸方程y=a+bx所表示的直線必經(jīng)過點()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴線性回歸方程y=a+bx所表示的直線必經(jīng)過點(1.5,5)故選C8.圓的極坐標(biāo)方程是ρ=2cosθ+2sinθ,則其圓心的極坐標(biāo)是()

A.(2,)

B.(2,)

C.(1,)

D.(1,)答案:A9.在7塊并排、形狀大小相同的試驗田上進(jìn)行施化肥量對水稻產(chǎn)量影響的試驗,得到如下表所示的一組數(shù)據(jù)(單位:kg).

(1)畫出散點圖;

(2)求y關(guān)于x的線性回歸方程;

(3)若施化肥量為38kg,其他情況不變,請預(yù)測水稻的產(chǎn)量.答案:(1)根據(jù)題表中數(shù)據(jù)可得散點圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據(jù)回歸直線方程系數(shù)的公式計算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預(yù)測,施化肥量為38kg,其他情況不變時,水稻的產(chǎn)量是438kg.10.若點A分有向線段所成的比是2,則點C分有向線段所成的比是()

A.

B.3

C.-2

D.-3答案:D11.已知x與y之間的一組數(shù)據(jù):

x

0

1

2

3

y

2

4

6

8

則y與x的線性回歸方程為y=bx+a必過點()

A.(1.5,4)

B.(1.5,5)

C.(1,5)

D.(2,5)答案:B12.若有以下說法:

①相等向量的模相等;

②若a和b都是單位向量,則a=b;

③對于任意的a和b,|a+b|≤|a|+|b|恒成立;

④若a∥b,c∥b,則a∥c.

其中正確的說法序號是()A.①③B.①④C.②③D.③④答案:根據(jù)定義,大小相等且方向相同的兩個向量相等.因此相等向量的模相等,故①正確;因為單位向量的模等于1,而方向不確定.所以若a和b都是單位向量,則不一定有a=b成立,故②不正確;根據(jù)向量加法的三角形法則,可得對于任意的a和b,都有|a+b|≤|a|+|b|成立,當(dāng)且僅當(dāng)a和b方向相同時等號成立,故③正確;若b=0,則有a∥b且c∥b,但是a∥c不成立,故④不正確.綜上所述,正確的命題是①③故選:A13.若關(guān)于x的方程x2-2ax+2+a=0有兩個不相等的實根,求分別滿足下列條件的a的取值范圍.

(1)方程兩根都大于1;

(2)方程一根大于1,另一根小于1。答案:解:設(shè)f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。14.已知函數(shù)f(x)=2-x,x≤112+log2x,x>1,則滿足f(x)≥1的x的取值范圍為______.答案:當(dāng)x≤1時,2-x≥1,解得-x≥0,即x≤0,所以x≤0;當(dāng)x>1時,12+log2x≥1,解得x≥2,所以x≥2.所以滿足f(x)≥1的x的取值范圍為(-∞,0]∪[2,+∞).故為:(-∞,0]∪[2,+∞).15.在獨立性檢驗中,統(tǒng)計量Χ2有兩個臨界值:3.841和6.635.當(dāng)Χ2>3.841時,有95%的把握說明兩個事件有關(guān),當(dāng)Χ2>6.635時,有99%的把握說明兩個事件有關(guān),當(dāng)Χ2≤3.841時,認(rèn)為兩個事件無關(guān).在一項打鼾與患心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計算Χ2=20.87.根據(jù)這一數(shù)據(jù)分析,認(rèn)為打鼾與患心臟病之間()

A.有95%的把握認(rèn)為兩者有關(guān)

B.約有95%的打鼾者患心臟病

C.有99%的把握認(rèn)為兩者有關(guān)

D.約有99%的打鼾者患心臟病答案:C16.下列語句不屬于基本算法語句的是()

A.賦值語句

B.運(yùn)算語句

C.條件語句

D.循環(huán)語句答案:B17.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的()

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件答案:C18.直線kx-y+1=3k,當(dāng)k變動時,所有直線都通過定點[

]

A.(3,1)

B.(0,1)

C.(0,0)

D.(2,1)答案:A19.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點P在平面α內(nèi)的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內(nèi)的軌跡是橢圓的一部分,故選B.20.若a>0,b>0,2a+3b=1,則ab的最大值為______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故為12421.有一段“三段論”推理是這樣的:對于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點,因為函數(shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f'(0)=0,所以,x=0是函數(shù)f(x)=x3的極值點.以上推理中()

A.大前提錯誤

B.小前提錯誤

C.推理形式錯誤

D.結(jié)論正確答案:A22.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計算該數(shù)列的第10項,則判斷框內(nèi)的條件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B23.求由曲線圍成的圖形的面積.答案:面積為解析:當(dāng),時,方程化成,即.上式表示圓心在,半徑為的圓.所以,當(dāng),時,方程表示在第一象限的部分以及軸,軸負(fù)半軸上的點,.同理,當(dāng),時,方程表示在第四象限的部分以及軸負(fù)半軸上的點;當(dāng),時,方程表示圓在第二象限的部分以及軸負(fù)半軸上的點;當(dāng),時,方程表示圓在第三象限部分.以上合起來構(gòu)成如圖所示的圖形,面積為.24.將5位志愿者分成4組,其中一組為2人,其余各組各1人,到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有______種(用數(shù)字作答).答案:由題意,先分組,再到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有C25A44=240種故為:240.25.已知=(-3,2,5),=(1,x,-1),且=2,則x的值為()

A.3

B.4

C.5

D.6答案:C26.不等式|x+3|-|x-1|≤a2-3a對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為()

A.(-∞,-1]∪[4,+∞)

B.(-∞,-2]∪[5,+∞)

C.[1,2]

D.(-∞,1]∪[2,+∞)答案:A27.如圖,長方體ABCD-A1B1C1D1中,M為DD1的中點,N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.28.在極坐標(biāo)系中,極點到直線ρcosθ=2的距離為______.答案:直線ρcosθ=2即x=2,極點的直角坐標(biāo)為(0,0),故極點到直線ρcosθ=2的距離為2,故為2.29.下列關(guān)于結(jié)構(gòu)圖的說法不正確的是()

A.結(jié)構(gòu)圖中各要素之間通常表現(xiàn)為概念上的從屬關(guān)系和邏輯上的先后關(guān)系

B.結(jié)構(gòu)圖都是“樹形”結(jié)構(gòu)

C.簡潔的結(jié)構(gòu)圖能更好地反映主體要素之間關(guān)系和系統(tǒng)的整體特點

D.復(fù)雜的結(jié)構(gòu)圖能更詳細(xì)地反映系統(tǒng)中各細(xì)節(jié)要素及其關(guān)系答案:B30.在樣本的頻率分布直方圖中,共有11個小長方形,若中間一個長方形的面積等于其他十個小長方形面積的和的14,且樣本容量是160,則中間一組的頻數(shù)為()A.32B.0.2C.40D.0.25答案:設(shè)間一個長方形的面積S則其他十個小長方形面積的和為4S,所以頻率分布直方圖的總面積為5S所以中間一組的頻率為S5S=0.2所以中間一組的頻數(shù)為160×0.2=32故選A31.為了了解1200名學(xué)生對學(xué)校某項教改試驗的意見,打算從中抽取一個容量為40的樣考慮用系統(tǒng)抽樣,則分段的間隔k為______答案:由題意知本題是一個系統(tǒng)抽樣,總體中個體數(shù)是1200,樣本容量是40,根據(jù)系統(tǒng)抽樣的步驟,得到分段的間隔K=120040=30,故為:30.32.某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計資料預(yù)測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設(shè)備正在該地工作,為了保護(hù)設(shè)備,施工部門提出以下三種方案:

方案1:運(yùn)走設(shè)備,此時需花費(fèi)4000元;

方案2:建一保護(hù)圍墻,需花費(fèi)1000元,但圍墻只能抵御一個河流發(fā)生的洪水,當(dāng)兩河流同時發(fā)生洪水時,設(shè)備仍將受損,損失約56

000元;

方案3:不采取措施,此時,當(dāng)兩河流都發(fā)生洪水時損失達(dá)60000元,只有一條河流發(fā)生洪水時,損失為10000元.

(1)試求方案3中損失費(fèi)ξ(隨機(jī)變量)的分布列;

(2)試比較哪一種方案好.答案:(1)在方案3中,記“甲河流發(fā)生洪水”為事件A,“乙河流發(fā)生洪水”為事件B,則P(A)=0.25,P(B)=0.18,所以,有且只有一條河流發(fā)生洪水的概率為P(A?.B+.A?B)=P(A)?P(.B)+P(.A)?P(B)=0.34,兩河流同時發(fā)生洪水的概率為P(A?B)=0.045,都不發(fā)生洪水的概率為P(.A?.B)=0.75×0.82=0.615,設(shè)損失費(fèi)為隨機(jī)變量ξ,則ξ的分布列為:(2)對方案1來說,花費(fèi)4000元;對方案2來說,建圍墻需花費(fèi)1000元,它只能抵御一條河流的洪水,但當(dāng)兩河流都發(fā)生洪水時,損失約56000元,而兩河流同時發(fā)生洪水的概率為P=0.25×0.18=0.045.所以,該方案中可能的花費(fèi)為:1000+56000×0.045=3520(元).對于方案來說,損失費(fèi)的數(shù)學(xué)期望為:Eξ=10000×0.34+60000×0.045=6100(元),比較可知,方案2最好,方案1次之,方案3最差.33.若隨機(jī)向一個半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π34.已知向量a、b的夾角為60°,且|a|=2,|b|=1,則|a+2b|=______;向量a與向量a+2b的夾角的大小為______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,設(shè)向量a與向量a+2b的夾角的大小為θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故為23,30°.35.某程序框圖如圖所示,該程序運(yùn)行后輸出的k的值是()A.4B.5C.6D.7答案:根據(jù)流程圖所示的順序,程序的運(yùn)行過程中各變量值變化如下表:是否繼續(xù)循環(huán)

S

K循環(huán)前/0

0第一圈

1

1第二圈

3

2第三圈

11

3第四圈

20594第五圈

否∴最終輸出結(jié)果k=4故為A36.對于實數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.37.(幾何證明選講)如圖,點A、B、C都在⊙O上,過點C的切線交AB的延長線于點D,若AB=5,BC=3,CD=6,則線段AC的長為______.答案:∵過點C的切線交AB的延長線于點D,∴DC是圓的切線,DBA是圓的割線,根據(jù)切割線定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由題意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故為:4.538.圓ρ=2sinθ的圓心到直線2ρcosθ+ρsinθ+1=0的距離是______.答案:由ρ=2sinθ,化為直角坐標(biāo)方程為x2+y2-2y=0,其圓心是A(0,1),由2ρcosθ+ρsinθ+1=0得:化為直角坐標(biāo)方程為2x+y+1=0,由點到直線的距離公式,得+d=|1+1|5=255.故為255.39.參數(shù)方程,(θ為參數(shù))表示的曲線是()

A.直線

B.圓

C.橢圓

D.拋物線答案:C40.隨機(jī)地向某個區(qū)域拋撒了100粒種子,在面積為10m2的地方有2粒種子發(fā)芽,假設(shè)種子的發(fā)芽率為100%,則整個撒種區(qū)域的面積大約有______m2.答案:設(shè)整個撒種區(qū)域的面積大約xm2,由于假設(shè)種子的發(fā)芽率為100%,所以在面積為10m2的地方有2粒種子發(fā)芽,意味著在面積為10m2的地方有2粒種子,從而有:100x=210,∴x=500,故為:500.41.已知

p:所有國產(chǎn)手機(jī)都有陷阱消費(fèi),則¬p是()

A.所有國產(chǎn)手機(jī)都沒有陷阱消費(fèi)

B.有一部國產(chǎn)手機(jī)有陷阱消費(fèi)

C.有一部國產(chǎn)手機(jī)沒有陷阱消費(fèi)

D.國外產(chǎn)手機(jī)沒有陷阱消費(fèi)答案:C42.設(shè)a>0,f(x)=ax2+bx+c,曲線y=f(x)在點P(x0,f(x0))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對稱軸距離的取值范圍為()

A.[0,]

B.[0,]

C.[0,||]

D.[0,||]答案:B43.已知0<a<1,loga(1-x)<logax則()

A.0<x<1

B.x<

C.0<x<

D.<x<1答案:C44.已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且

則滿足條件的函數(shù)f(x)有()

A.6個

B.10個

C.12個

D.16個答案:C45.設(shè)a=log32,b=log23,c=,則()

A.c<b<a

B.a(chǎn)<c<b

C.c<a<b

D.b<c<a答案:C46.已知空間兩點A(4,a,-b),B(a,a,2),則向量AB=()A.(a-4,0,2+b)B.(4-a,0,-b-2)C.(0,a-4,2+b)D.(a-4,0,-b-2)答案:∵A(4,a,-b),B(a,a,2)∴AB=(a-4,a-a,2-(-b))=(a-4,0,2+b)故選A47.三棱錐P-ABC中,M為BC的中點,以為基底,則可表示為()

A.

B.

C.

D.答案:D48.用系統(tǒng)抽樣法要從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生隨機(jī)地從1~160編號,按編號順序平均分成20組(1~8號,9~16號,…,153~160號),若第16組抽出的號碼為126,則第1組中用抽簽的方法確定的號碼是______.答案:不妨設(shè)在第1組中隨機(jī)抽到的號碼為x,則在第16組中應(yīng)抽出的號碼為120+x.設(shè)第1組抽出的號碼為x,則第16組應(yīng)抽出的號碼是8×15+x=126,∴x=6.故為:6.49.設(shè)復(fù)數(shù)z=cosθ+sinθi,0≤θ≤π,則|z+1|的最大值為______.答案:復(fù)數(shù)z=cosθ+sinθi,0≤θ≤π,則|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故為:2.50.已知棱長都相等的正三棱錐內(nèi)接于一個球,某學(xué)生畫出四個過球心的平面截球與正三棱錐所得的圖形,如圖所示,則()A.以上四個圖形都是正確的B.只有(2)(4)是正確的C.只有(4)是錯誤的D.只有(1)(2)是正確的答案:(1)當(dāng)平行于三棱錐一底面,過球心的截面如(1)圖所示;(2)過三棱錐的一條棱和圓心所得截面如(2)圖所示;(3)過三棱錐的一個頂點(不過棱)和球心所得截面如(3)圖所示;(4)棱長都相等的正三棱錐和球心不可能在同一個面上,所以(4)是錯誤的.故選C.第3卷一.綜合題(共50題)1.算法:第一步

x=a;第二步

若b>x則x=b;第三步

若c>x,則x=c;

第四步

若d>x,則x=d;

第五步

輸出x.則輸出的x表示()A.a(chǎn),b,c,d中的最大值B.a(chǎn),b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數(shù),故選A.2.設(shè)雙曲線的漸近線方程為2x±3y=0,則雙曲線的離心率為______.答案:∵雙曲線的漸近線方程是2x±3y=0,∴知焦點是在x軸時,ba=23,設(shè)a=3k,b=2k,則c=13k,∴e=133.焦點在y軸時ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=132.故為:133或1323.已知直線的參數(shù)方程為x=1+ty=3+2t.(t為參數(shù)),圓的極坐標(biāo)方程為ρ=2cosθ+4sinθ.

(I)求直線的普通方程和圓的直角坐標(biāo)方程;

(II)求直線被圓截得的弦長.答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標(biāo)方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長L=2r2-d2=4305(10分)4.平面向量a與b的夾角為,若a=(2,0),|b|=1,則|a+2b|=()

A.

B.2

C.4

D.12答案:B5.選修4-2:矩陣與變換

已知矩陣M=0110,N=0-110.在平面直角坐標(biāo)系中,設(shè)直線2x-y+1=0在矩陣MN對應(yīng)的變換作用下得到曲線F,求曲線F的方程.答案:由題設(shè)得MN=01100-111=100-1.…(3分)設(shè)(x,y)是直線2x-y+1=0上任意一點,點(x,y)在矩陣MN對應(yīng)的變換作用下變?yōu)椋▁′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因為點(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.

…(10分)6.設(shè)a=log32,b=log23,c=,則()

A.c<b<a

B.a(chǎn)<c<b

C.c<a<b

D.b<c<a答案:C7.對于空間中的三個向量,

,

,它們一定是()

A.共面向量

B.共線向量

C.不共面向量

D.以上均不對答案:A8.下列圖形中不一定是平面圖形的是(

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B9.一個盒子裝有10個紅、白兩色同一型號的乒乓球,已知紅色乒乓球有3個,若從盒子里隨機(jī)取出3個乒乓球,則其中含有紅色乒乓球個數(shù)的數(shù)學(xué)期望是______.答案:由題設(shè)知含有紅色乒乓球個數(shù)ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×

2140+2×740+3×1120=910.故為:910.10.設(shè)a,b是非負(fù)實數(shù),求證:a3+b3≥ab(a2+b2).答案:證明:由a,b是非負(fù)實數(shù),作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)[(a)5-(b)5].當(dāng)a≥b時,a≥b,從而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;當(dāng)a<b時,a<b,從而(a)5<(b)5,得(a-b)[(a)5-(b)5]>0.所以a3+b3≥ab(a2+b2).11.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線的三點是()

A.A,B,C

B.A,B,D

C.A,C,D

D.B,C,D答案:C12.已知R為實數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點,故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0,故D正確;故選D.13.橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為()

A.

B.

C.2

D.4答案:A14.大熊貓活到十歲的概率是0.8,活到十五歲的概率是0.6,若現(xiàn)有一只大熊貓已經(jīng)十歲了,則他活到十五歲的概率是()

A.0.8

B.0.75

C.0.6

D.0.48答案:B15.已知點M的極坐標(biāo)為,下列所給四個坐標(biāo)中能表示點M的坐標(biāo)是()

A.

B.

C.

D.答案:D16.不等式的解集是(

A.

B.

C.

D.答案:D17.①點P在△ABC所在的平面內(nèi),且②點P為△ABC內(nèi)的一點,且使得取得最小值;③點P是△ABC所在平面內(nèi)一點,且,上述三個點P中,是△ABC的重心的有()

A.0個

B.1個

C.2個

D.3個答案:D18.若圓C過點M(0,1)且與直線l:y=-1相切,設(shè)圓心C的軌跡為曲線E,A、B為曲線E上的兩點,點P(0,t)(t>0),且滿足AP=λPB(λ>1).

(I)求曲線E的方程;

(II)若t=6,直線AB的斜率為12,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;

(III)分別過A、B作曲線E的切線,兩條切線交于點Q,若點Q恰好在直線l上,求證:t與QA?QB均為定值.答案:【解】(Ⅰ)依題意,點C到定點M的距離等于到定直線l的距離,所以點C的軌跡為拋物線,曲線E的方程為x2=4y.(Ⅱ)直線AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以拋物線x2=4y在點A處切線的斜率為y'|x=6=3.直線NA的方程為y-9=-13(x-6),即y=-13x+11.①線段AB的中點坐標(biāo)為(1,132),線段AB中垂線方程為y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圓C的方程為(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)設(shè)A(x1,x124),B(x2,x224),Q(a,-1).過點A的切線方程為y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直線AB的方程為y-x124=x1+x24(x-x

1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA?QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.19.扇形周長為10,則扇形面積的最大值是()A.52B.254C.252D.102答案:設(shè)半徑為r,弧長為l,則周長為2r+l=10,面積為s=12lr,因為10=2r+l≥22rl,所以rl≤252,所以s≤254故選B20.設(shè)a=log132,b=log1213,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:解;∵a=log132<log131=0,b=log1213>log1212=1,c=(12)0.3∈(0,1)∴b>c>a.故選B.21.數(shù)學(xué)歸納法證明“2n+1≥n2+n+2(n∈N*)”時,第一步驗證的表達(dá)式為______.答案:根據(jù)數(shù)學(xué)歸納法的步驟,首先要驗證證明當(dāng)n取第一個值時命題成立;結(jié)合本題,要驗證n=1時,2n+1≥n2+n+2的成立;即21+1≥12+1+2成立;故為:21+1≥12+1+2(22≥4或4≥4也算對).22.已知x與y之間的一組數(shù)據(jù):

x0123y1357則y與x的線性回歸方程為y=bx+a必過點______.答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4,∴本組數(shù)據(jù)的樣本中心點是(1.5,4),∴y與x的線性回歸方程為y=bx+a必過點(1.5,4)故為:(1.5,4)23.若不等式的解集,則實數(shù)=___________.答案:-424.已知,向量與向量的夾角是,則x的值為()

A.±3

B.±

C.±9

D.3答案:D25.函數(shù)y=(43)x,x∈N+是()A.增函數(shù)B.減函數(shù)C.奇函數(shù)D.偶函數(shù)答案:由正整數(shù)指數(shù)函數(shù)不具有奇偶性,可排除C、D;因為函數(shù)y=(43)x,x∈N+的底數(shù)43大于1,所以此函數(shù)是增函數(shù).故選A.26.給出下列問題:

(1)求面積為1的正三角形的周長;

(2)求鍵盤所輸入的三個數(shù)的算術(shù)平均數(shù);

(3)求鍵盤所輸入兩個數(shù)的最小數(shù);

(4)求函數(shù)f(x)=2xx2(x≥3)(x<3)當(dāng)自變量取相應(yīng)值時的函數(shù)值.

其中不需要用條件語句描述的算法的問題有()A.1個B.2個C.3個D.4個答案:(1)求面積為1的正三角形的周長用順序結(jié)構(gòu)即可,故不需要用條件語句描述;(2)求鍵盤所輸入的三個數(shù)的算術(shù)平均數(shù)用順序結(jié)構(gòu)即可解決問題,不需要用條件語句描述;(3)求鍵盤所輸入兩個數(shù)的最小數(shù),由于要作出判斷,找出最小數(shù),故本問題的解決要用到條件語句描述;(4)求函數(shù)f(x)=2xx2(x≥3)(x<3)當(dāng)自變量取相應(yīng)值時的函數(shù)值,由于此函數(shù)是一個分段函數(shù),所以要用條件結(jié)構(gòu)選擇相應(yīng)的函數(shù)解析式,需要用條件語句描述.綜上,(3)(4)兩個問題要用到條件語句描述,(1),(2)不需要用條件語句描述故選B27.如圖,一個正方體內(nèi)接于一個球,過球心作一個截面,則截面的可能圖形為(

A.①③

B.②④

C.①②③

D.②③④答案:C28.設(shè)平面α內(nèi)兩個向量的坐標(biāo)分別為(1,2,1)、(-1,1,2),則下列向量中是平面的法向量的是()

A.(-1,-2,5)

B.(-1,1,-1)

C.(1,1,1)

D.(1,-1,-1)答案:B29.定義直線關(guān)于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點A(3,0);②直線y=x關(guān)于圓C的圓心距單位λ=2,試寫出一個滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標(biāo)為3,設(shè)圓心的縱坐標(biāo)為r,則半徑為|r|>0,則圓心的坐標(biāo)為(3,r).設(shè)圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=130.已知x+2y+3z=1,則x2+y2+z2取最小值時,x+y+z的值為______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32)故x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3取等號,此時y=2x,z=3x,x+2y+3z=14x=1,∴x=114,y=214,x=314,x+y+z=614=37.故為:37.31.盒中有10只螺絲釘,其中有3只是壞的,現(xiàn)從盒中隨機(jī)地抽取4只,那么310為()A.恰有1只壞的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只壞的概率答案:∵盒中有10只螺絲釘∴盒中隨機(jī)地抽取4只的總數(shù)為:C104=210,∵其中有3只是壞的,∴所可能出現(xiàn)的事件有:恰有1只壞的,恰有2只壞的,恰有3只壞的,4只全是好的,至多2只壞的取法數(shù)分別為:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只壞的概率分別為:105210=12,,恰有2只好的概率為63210=310,,4只全是好的概率為35210=16,至多2只壞的概率為203210=2930;故A,C,D不正確,B正確故選B32.設(shè)xi,yi

(i=1,2,…,n)是實數(shù),且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一個排列.求證:n

i-1(xi-yi)2≥n

i-1(xi-zi)2.答案:證明:要證ni-1(xi-yi)2≥ni-1(xi-zi)2,只需證

ni=1

yi2-2ni=1

xi?yi≥ni=1

zi2-2ni=1

xi?zi,由于ni=1

yi2=ni=1

zi2,故只需證ni=1

xi?zi≤ni=1

xi?yi

①.而①的左邊為亂序和,右邊為順序和,根據(jù)排序不等式可得①成立,故要證的不等式成立.33.讀下面的程序:

上面的程序在執(zhí)行時如果輸入6,那么輸出的結(jié)果為()

A.6

B.720

C.120

D.1答案:B34.有一個正四棱錐,它的底面邊長與側(cè)棱長均為a,現(xiàn)用一張正方形包裝紙將其完全包?。ú荒懿眉艏垼梢哉郫B),那么包裝紙的最小邊長應(yīng)為()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由題意可知:當(dāng)正四棱錐沿底面將側(cè)面都展開時如圖所示:分析易知當(dāng)以PP′為正方形的對角線時,所需正方形的包裝紙的面積最小,此時邊長最?。O(shè)此時的正方形邊長為x則:(PP′)2=2x2,又因為PP′=a+2×32a=a+3a,∴(

a+3a)2=2x2,解得:x=6+22a.故選A35.已知x,y的取值如下表:

x0134y2.24.34.86.7從散點圖分析,y與x線性相關(guān),則回歸方程為.y=bx+a必過點______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點的坐標(biāo)為(2,92).故為:(2,92).36.在空間直角坐標(biāo)系中,點,過點P作平面xOy的垂線PQ,則Q的坐標(biāo)為()

A.

B.

C.

D.答案:D37.若向量的起點與終點M、A、B、C互不重合且無三點共線,且滿足下列關(guān)系(O為空間任一點),則能使向量成為空間一組基底的關(guān)系是()

A.

B.

C.

D.答案:C38.已知當(dāng)m∈R時,函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點,求實數(shù)a的取值范圍.答案:(1)m=0時,f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時a∈R.(2)m≠0時,由題意知,方程mx2+x-(m+a)=0恒有實數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時,a∈R;m≠0時,a∈[-1,1].39.為提高廣東中小學(xué)生的健康素質(zhì)和體能水平,廣東省教育廳要求廣東各級各類中小學(xué)每年都要在體育教學(xué)中實施“體能素質(zhì)測試”,測試總成績滿分為100分.根據(jù)廣東省標(biāo)準(zhǔn),體能素質(zhì)測試成績在[85,100]之間為優(yōu)秀;在[75,85]之間為良好;在[65,75]之間為合格;在(0,60)之間,體能素質(zhì)為不合格.

現(xiàn)從佛山市某校高一年級的900名學(xué)生中隨機(jī)抽取30名學(xué)生的測試成績?nèi)缦拢?/p>

65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.

(1)在答題卷上完成頻率分布表和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論