版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年山東科技職業(yè)學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.方程組的解集是()
A.{-1,2}
B.(-1,2)
C.{(-1,2)}
D.{(x,y)|x=-1或y=2}答案:C2.設O是正△ABC的中心,則向量AO,BO.CO是()
A.相等向量
B.模相等的向量
C.共線向量
D.共起點的向量答案:B3.直線y=x-1的傾斜角是()
A.30°
B.120°
C.60°
D.150°答案:A4.命題“當AB=AC時,△ABC是等腰三角形”與它的逆命題、否命題、逆否命題這四個命題中,真命題有______個.答案:原命題為真命題.逆命題“當△ABC是等腰三角形時,AB=AC”為假命題.否命題“當AB≠AC時,△ABC不是等腰三角形”為假命題.逆否命題“當△ABC不是等腰三角形時,AB≠AC”為真命題.故為:2.5.如圖所示,設P為△ABC所在平面內的一點,并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點共線,∴AP=λAD+μAC且λ+μ=1設AB=kAD,結合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C6.如圖:在長方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F(xiàn)分別是線段AB,BC上的點,且EB=FB=1.
(1)求二面角C-DE-C1的大??;
(2)求異面直線EC1與FD1所成角的大小;
(3)求異面直線EC1與FD1之間的距離.答案:(1)以A為原點AB,AD,AA1分別為x軸、y軸、z軸的正向建立空間直角坐標系,則有D(0,3,0),D1(0,3,2),E(3,0,0),F(xiàn)(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),F(xiàn)D1=(-4,2,2)(3分)設向量n=(x,y,z)與平面C1DE垂直,則有n⊥DEn⊥EC1?3x-3y=0x+3y+2z=0?x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),則n0是一個與平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)與平面CDE垂直,∴n0與AA1所成的角θ為二面角C-DE-C1的平面角.(6分)∴cosθ=n0?AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小為arccos63.(8分)(2)設EC1與FD1所成角為β,(1分)則cosβ=EC1?FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故異面直線EC1與FD1所成角的大小為arccos2114(11分)(3)設m=(x,y,z)m⊥EC1m⊥FD1?m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)設所求距離為d,則d=|m?D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).7.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,抽取了總成績介于350分到650分之間的10000名學生成績,并根據這10000名學生的總成績畫了樣本的頻率分布直方圖.為了進一步分析學生的總成績與各科成績等方面的關系,要從這10000名學生中,再用分層抽樣方法抽出200人作進一步調查,則總成績在[400,500)內共抽出()
A.100人
B.90人
C.65人
D.50人
答案:B8.(1+3x)n(其中n∈N且n≥6)的展開式中x5與x6的系數相等,則n=()A.6B.7C.8D.9答案:二項式展開式的通項為Tr+1=3rCnrxr∴展開式中x5與x6的系數分別是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故選B9.“因為指數函數y=ax是增函數(大前提),而y=()x是指數函數(小前提),所以y=()x是增函數(結論)”,上面推理的錯誤是()
A.大前提錯導致結論錯
B.小前提錯導致結論錯
C.推理形式錯導致結論錯
D.大前提和小前提錯都導致結論錯答案:A10.(x+2y)4展開式中各項的系數和為______.答案:令x=y=1,可得(1+2)4=81故為:81.11.用反證法證明命題“在函數f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個不小于”時,假設正確的是()
A.假設|f(1)|,|f(2)|,|f(3)|至多有一個小于
B.假設|f(1)|,|f(2)|,|f(3)|至多有兩個小于
C.假設|f(1)|,|f(2)|,|f(3)|都不小于
D.假設|f(1)|,|f(2)|,|f(3)|都小于答案:D12.一部記錄影片在4個單位輪映,每一單位放映一場,則不同的輪映方法數有()A.16B.44C.A44D.43答案:本題可以看做把4個單位看成四個位置,在四個位置進行全排列,故有A44種結果,故選C.13.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為(
)
A.
B.
C.3
D.2答案:C14.如圖,正六邊形ABCDEF中,=()
A.
B.
C.
D.
答案:D15.如圖,海中有一小島,周圍3.8海里內有暗礁.一軍艦從A地出發(fā)由西向東航行,望見小島B在北偏東75°,航行8海里到達C處,望見小島B在北偏東60°.若此艦不改變艦行的方向繼續(xù)前進,問此艦有沒有觸礁的危險?答案:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,過B作AC的垂線垂足為D,在△BCD中,可得BD=BC?sin30°=4.∵4>3.8,∴沒有危險.16.如圖,圓心角∠AOB=120°,P是AB上任一點(不與A,B重合),點C在AP的延長線上,則∠BPC等于______.
答案:解:設點E是優(yōu)弧AB(不與A、B重合)上的一點,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故為60°.17.從裝有兩個白球和兩個黃球的口袋中任取2個球,以下給出了三組事件:
①至少有1個白球與至少有1個黃球;
②至少有1個黃球與都是黃球;
③恰有1個白球與恰有1個黃球.
其中互斥而不對立的事件共有()組.
A.0
B.1
C.2
D.3答案:A18.集合{1,2,3}的真子集總共有()A.8個B.7個C.6個D.5個答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個.故選B.19.過點(1,0)且與直線x-2y-2=0平行的直線方程是()
A.x-2y-1=0
B.x-2y+1=0
C.2x+y-2=0
D.x+2y-1=0答案:A20.Direchlet函數定義為:D(t)=1,t∈Q0,t∈CRQ,關于函數D(t)的性質敘述不正確的是()A.D(t)的值域為{0,1}B.D(t)為偶函數C.D(t)不是周期函數D.D(t)不是單調函數答案:函數D(t)是分段函數,值域是兩段的并集,所以值域為{0,1};有理數和無理數正負關于原點對稱,所以函數D(t)的圖象關于y軸對稱,所以函數是偶函數;對于不同的有理數x對應的函數值相等,所以函數不是單調函數;因為任取一個非0有理數,都有有理數加有理數為有理數,有理數加無理數為無理數,所以函數D(t)的圖象周期出現(xiàn),所以函數是周期函數,所以選項C不正確.故選C.21.某海域內有一孤島,島四周的海平面(視為平面)上有一淺水區(qū)(含邊界),其邊界是長軸長為2a,短軸長為2b的橢圓,已知島上甲、乙導航燈的海拔高度分別為h1、h2,且兩個導航燈在海平面上的投影恰好落在橢圓的兩個焦點上,現(xiàn)有船只經過該海域(船只的大小忽略不計),在船上測得甲、乙導航燈的仰角分別為θ1、θ2,那么船只已進入該淺水區(qū)的判別條件是______.答案:依題意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故為:h1?cotθ1+h2?cotθ2≤2a22.下面四個結論:
①偶函數的圖象一定與y軸相交;
②奇函數的圖象一定通過原點;
③偶函數的圖象關于y軸對稱;
④既是奇函數又是偶函數的函數一定是f(x)=0(x∈R),
其中正確命題的個數是()A.1B.2C.3D.4答案:偶函數的圖象關于y軸對稱,但不一定與y軸相交,因此①錯誤,③正確;奇函數的圖象關于原點對稱,但不一定經過原點,只有在原點處有定義才通過原點,因此②錯誤;若y=f(x)既是奇函數,又是偶函數,由定義可得f(x)=0,但不一定x∈R,只要定義域關于原點對稱即可,因此④錯誤.故選A.23.已知數列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計算該數列的第10項,則判斷框內的條件是()
A.n≤8?
B.n≤9?
C.n≤10?
D.n≤11?
答案:B24.如圖,AC、BC分別是直角三角形ABC的兩條直角邊,且AC=3,BC=4,以AC為直徑作圓與斜邊AB交于D,則BD=______.答案:連CD,在Rt△ABC中,因為AC、BC的長分別為3cm、4cm,所以AB=5cm,∵AC為直徑,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽Rt△BCA,∴BD=165,故為:16525.復數1+i(i為虛數單位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故選A.26.對任意實數x,y,定義運算x*y=ax+by+cxy,其中a,b,c是常數,等式右邊的運算是通常的加法和乘法運算。已知1*2=3,2*3=4,并且有一個非零常數m,使得對任意實數x,都有x*m=x,則m的值是(
)。答案:427.已知平面向量=(3,1),=(x,3),且⊥,則實數x的值為()
A.9
B.1
C.-1
D.-9答案:C28.以橢圓上一點和橢圓兩焦點為頂點的三角形的面積最大值為1時,橢圓長軸的最小值為()
A.
B.
C.2
D.2
答案:D29.如圖所示直角梯形ABCD中,∠A=90°,PA⊥面ABCD,AD||BC,AB=BC=a,AD=2a,與底面ABCD成300角.若AE⊥PD,E為垂足,PD與底面成30°角.
(1)求證:BE⊥PD;
(2)求異面直線AE與CD所成的角的大?。鸢福簽榱擞嬎惴奖悴环猎Oa=1.(1)證明:根據題意可得:以A為原點,AB,AD,AP所在直線為坐標軸建立直角坐標系(如圖)則A(0,0,0),B(1,0,0)D(0,2,0)P(0,0,233)AB?PD=(1,0,0)?(0,2,-233)=0又AE?PD=0∴AB⊥PD,AE⊥PD所以PD⊥面BEA,BE?面BEA,∴PD⊥BE(2)∵PA⊥面ABCD,PD與底面成30°角,∴∠PDA=30°過E作EF⊥AD,垂足為F,則AE=AD?sin30°=1,∠EAF=60°AF=12,EF=32∴E(0,12,32),于是AE=(0,12,32)又C(1,1,0),D(0,2,0),CD=(-1,1,0)則COSθ=AE?CD|AE||CD|=24∴AE與CD所成角的余弦值為24.30.(選做題)
設集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實數a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內直接求解情況比較多,考慮補集設全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內∴,∴,∴,∴∴實數a的取值范圍為.31.為如圖所示的四塊區(qū)域涂色,要求相鄰區(qū)域不能同色,現(xiàn)有3種不同顏色可供選擇,則共有______種不同涂色方案(要求用具體數字作答).答案:由題意,首先給左上方一個涂色,有三種結果,再給最左下邊的上面的涂色,有兩種結果,右上方,如果與左下邊的同色,則右方的涂色,有兩種結果,右上方,如果與左下邊的不同色,則右方的涂色,有1種結果,∴根據分步計數原理得到共有3×2×(2+1)=18種結果,故為18.32.方程x2+(m-2)x+5-m=0的兩根都大于2,則m的取值范圍是()
A.(-5,-4]
B.(-∞,-4]
C.(-∞,-2]
D.(-∞,-5)∪(-5,-4]答案:A33.在△ABC中,已知A(2,3),B(8,-4),點G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標為______.答案:設C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).34.若點A分有向線段所成的比是2,則點C分有向線段所成的比是()
A.
B.3
C.-2
D.-3答案:D35.如果:在10進制中2004=4×100+0×101+0×102+2×103,那么類比:在5進制中數碼2004折合成十進制為()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故選B.36.若純虛數z滿足(2-i)z=4-bi,(i是虛數單位,b是實數),則b=()
A.-2
B.2
C.-8
D.8答案:C37.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實數解,求a的值.答案:設方程的實根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復數相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0
②由②得x0=3或-1,代入①得a=73或-3∴a=73或-338.在復平面上,設點A,B,C對應的復數分別為i,1,4+2i,過A、B、C作平行四邊形ABCD,則平行四邊形對角線BD的長為______.答案:∵點A,B,C對應的復數分別為i,1,4+2i∴A(0,1),B(1,0),C(4,2)設D(x,y)∴AD=BC=(3,2)∴D(3,3)∴對角線BD的長度是4+9=13故為:1339.點P從(2,0)出發(fā),沿圓x2+y2=4按逆時針方向運動弧長到達點Q,則點Q的坐標為()
A.(-1,
)
B.(-,
-1)
C.(-1,
-)
D.(-,
1)答案:C40.指數函數y=ax的圖象經過點(2,16)則a的值是()A.14B.12C.2D.4答案:設指數函數為y=ax(a>0且a≠1)將(2,16)代入得16=a2解得a=4所以y=4x故選D.41.已知F1,F(xiàn)2為橢圓x2a2+y2b2=1(a>b>0)的兩個焦點,過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率為e=32,則橢圓的方程為______.答案:根據橢圓的定義,△AF1B的周長為16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴橢圓的方程為x216+y24=1,故為x216+y24=142.已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”給出下列直線①y=x+1;②y=2;③y=x④y=2x+1;其中為“B型直線”的是()
A.①③
B.①②
C.③④
D.①④答案:B43.已知f(x)在(0,2)上是增函數,f(x+2)是偶函數,那么正確的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根據函數的圖象的平移可得把f(x+2)向右平移2個單位可得f(x)的圖象f(x+2)是偶函數,其圖象關于y軸對稱可知f(x)的圖象關于x=2對稱∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)單調遞增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故選:B44.若直線l過拋物線y=ax2(a>0)的焦點,并且與y軸垂直,若l被拋物線截得的線段長為4,則a=______.答案:拋物線方程整理得x2=1ay,焦點(0,14a)l被拋物線截得的線段長即為通徑長1a,故1a=4,a=14;故為14.45.以橢圓的焦點為頂點、頂點為焦點的雙曲線方程是()
A.
B.
C.
D.答案:C46.設a、b∈R+且a+b=3,求證1+a+1+b≤10.答案:證明:證法一:(綜合法)∵(1+a+1+b)2=2+a+b+2(1+a)?(1+b)≤5+(1+a+1+b)=10∴1+a+1+b≤10證法二:(分析法)∵a、b∈R+且a+b=3,∴欲證1+a+1+b≤10只需證(1+a+1+b)2≤10即證2+a+b+2(1+a)?(1+b)≤10即證2(1+a)?(1+b)≤5只需證4(1+a)?(1+b)≤25只需證4(1+a)?(1+b)≤25即證4(1+a+b+ab)≤25只需證4ab≤9即證ab≤94∵ab≤(a+b2)2=(32)2=94成立∴1+a+1+b≤10成立47.已知點P為y軸上的動點,點M為x軸上的動點,點F(1,0)為定點,且滿足PN+12NM=0,PM?PF=0.
(Ⅰ)求動點N的軌跡E的方程;
(Ⅱ)過點F且斜率為k的直線l與曲線E交于兩點A,B,試判斷在x軸上是否存在點C,使得|CA|2+|CB|2=|AB|2成立,請說明理由.答案:(Ⅰ)設N(x,y),則由PN+12NM=0,得P為MN的中點.∴P(0,y2),M(-x,0).∴PM=(-x,-y2),PF=(1,-y2).∴PM?PF=-x+y24=0,即y2=4x.∴動點N的軌跡E的方程y2=4x.(Ⅱ)設直線l的方程為y=k(x-1),由y=k(x-1)y2=4x,消去x得y2-4ky-4=0.設A(x1,y1),B(x2,y2),則
y1+y2=4k,y1y2=-4.假設存在點C(m,0)滿足條件,則CA=(x1-m,y1),CB=(x2-m,y2),∴CA?CB=x1x2-m(x1+x2)+m2+y1y2=(y1y24)2-m(y12+y224)+m2-4=-m4[(y1+y2)2-2y1y2]+m2-3=m2-m(4k2+2)-3.∵△=(4k2+2)2+12>0,∴關于m的方程m2-m(4k2+2)-3=0有解.∴假設成立,即在x軸上存在點C,使得|CA|2+|CB|2=|AB|2成立.48.已知拋物線的參數方程為(t為參數),其中p>0,焦點為F,準線為l,過拋物線上一點M作l的垂線,垂足為E.若|EF|=|MF|,點M的橫坐標是3,則p=(
)。答案:249.過點P(0,-2)的雙曲線C的一個焦點與拋物線x2=-16y的焦點相同,則雙曲線C的標準方程是()
A.
B.
C.
D.答案:C50.在統(tǒng)計中,樣本的標準差可以近似地反映總體的()
A.平均狀態(tài)
B.頻率分布
C.波動大小
D.最大值和最小值答案:C第2卷一.綜合題(共50題)1.已知隨機變量x服從二項分布x~B(6,),則P(x=2)=()
A.
B.
C.
D.答案:D2.如圖,四條直線互相平行,且相鄰兩條平行線的距離均為h,一直正方形的4個頂點分別在四條直線上,則正方形的面積為()
A.4h2
B.5h2
C.4h2
D.5h2
答案:B3.若函數f(x)對任意實數x都有f(x)<f(x+1),那么()A.f(x)是增函數B.f(x)沒有單調遞增區(qū)間C.f(x)沒有單調遞減區(qū)間D.f(x)可能存在單調遞增區(qū)間,也可能存在單調遞減區(qū)間答案:根據函數f(x)對任意實數x都有f(x)<f(x+1),畫出一個滿足條件的函數圖象如右圖所示;根據圖象可知f(x)可能存在單調遞增區(qū)間,也可能存在單調遞減區(qū)間故選D.4.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關數據組成傳輸信息.設定原信息為a0a1a2,ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕運算規(guī)則為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導致接收信息出錯,則下列接收信息一定有誤的是()A.11010B.01100C.10111D.00011答案:A選項原信息為101,則h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為11010,A選項正確;B選項原信息為110,則h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以傳輸信息為01100,B選項正確;C選項原信息為011,則h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為10110,C選項錯誤;D選項原信息為001,則h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以傳輸信息為00011,D選項正確;故選C.5.已知點P是以F1、F2為左、右焦點的雙曲線(a>0,b>0)左支上一點,且滿足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線的離心率為()
A.
B.
C.
D.答案:D6.已知點A(-1,-2),B(2,3),若直線l:x+y-c=0與線段AB有公共點,則直線l在y軸上的截距的取值范圍是()
A.[-3,5]
B.[-5,3]
C.[3,5]
D.[-5,-3]答案:A7.已知x、y之間的一組數據如下:
x0123y8264則線性回歸方程y=a+bx所表示的直線必經過點()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴線性回歸方程y=a+bx所表示的直線必經過點(1.5,5)故選C8.圓的極坐標方程是ρ=2cosθ+2sinθ,則其圓心的極坐標是()
A.(2,)
B.(2,)
C.(1,)
D.(1,)答案:A9.在7塊并排、形狀大小相同的試驗田上進行施化肥量對水稻產量影響的試驗,得到如下表所示的一組數據(單位:kg).
(1)畫出散點圖;
(2)求y關于x的線性回歸方程;
(3)若施化肥量為38kg,其他情況不變,請預測水稻的產量.答案:(1)根據題表中數據可得散點圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據回歸直線方程系數的公式計算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預測,施化肥量為38kg,其他情況不變時,水稻的產量是438kg.10.若點A分有向線段所成的比是2,則點C分有向線段所成的比是()
A.
B.3
C.-2
D.-3答案:D11.已知x與y之間的一組數據:
x
0
1
2
3
y
2
4
6
8
則y與x的線性回歸方程為y=bx+a必過點()
A.(1.5,4)
B.(1.5,5)
C.(1,5)
D.(2,5)答案:B12.若有以下說法:
①相等向量的模相等;
②若a和b都是單位向量,則a=b;
③對于任意的a和b,|a+b|≤|a|+|b|恒成立;
④若a∥b,c∥b,則a∥c.
其中正確的說法序號是()A.①③B.①④C.②③D.③④答案:根據定義,大小相等且方向相同的兩個向量相等.因此相等向量的模相等,故①正確;因為單位向量的模等于1,而方向不確定.所以若a和b都是單位向量,則不一定有a=b成立,故②不正確;根據向量加法的三角形法則,可得對于任意的a和b,都有|a+b|≤|a|+|b|成立,當且僅當a和b方向相同時等號成立,故③正確;若b=0,則有a∥b且c∥b,但是a∥c不成立,故④不正確.綜上所述,正確的命題是①③故選:A13.若關于x的方程x2-2ax+2+a=0有兩個不相等的實根,求分別滿足下列條件的a的取值范圍.
(1)方程兩根都大于1;
(2)方程一根大于1,另一根小于1。答案:解:設f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。14.已知函數f(x)=2-x,x≤112+log2x,x>1,則滿足f(x)≥1的x的取值范圍為______.答案:當x≤1時,2-x≥1,解得-x≥0,即x≤0,所以x≤0;當x>1時,12+log2x≥1,解得x≥2,所以x≥2.所以滿足f(x)≥1的x的取值范圍為(-∞,0]∪[2,+∞).故為:(-∞,0]∪[2,+∞).15.在獨立性檢驗中,統(tǒng)計量Χ2有兩個臨界值:3.841和6.635.當Χ2>3.841時,有95%的把握說明兩個事件有關,當Χ2>6.635時,有99%的把握說明兩個事件有關,當Χ2≤3.841時,認為兩個事件無關.在一項打鼾與患心臟病的調查中,共調查了2000人,經計算Χ2=20.87.根據這一數據分析,認為打鼾與患心臟病之間()
A.有95%的把握認為兩者有關
B.約有95%的打鼾者患心臟病
C.有99%的把握認為兩者有關
D.約有99%的打鼾者患心臟病答案:C16.下列語句不屬于基本算法語句的是()
A.賦值語句
B.運算語句
C.條件語句
D.循環(huán)語句答案:B17.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的()
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C18.直線kx-y+1=3k,當k變動時,所有直線都通過定點[
]
A.(3,1)
B.(0,1)
C.(0,0)
D.(2,1)答案:A19.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點P在平面α內的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內的軌跡是橢圓的一部分,故選B.20.若a>0,b>0,2a+3b=1,則ab的最大值為______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故為12421.有一段“三段論”推理是這樣的:對于可導函數f(x),如果f'(x0)=0,那么x=x0是函數f(x)的極值點,因為函數f(x)=x3在x=0處的導數值f'(0)=0,所以,x=0是函數f(x)=x3的極值點.以上推理中()
A.大前提錯誤
B.小前提錯誤
C.推理形式錯誤
D.結論正確答案:A22.已知數列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計算該數列的第10項,則判斷框內的條件是()
A.n≤8?
B.n≤9?
C.n≤10?
D.n≤11?
答案:B23.求由曲線圍成的圖形的面積.答案:面積為解析:當,時,方程化成,即.上式表示圓心在,半徑為的圓.所以,當,時,方程表示在第一象限的部分以及軸,軸負半軸上的點,.同理,當,時,方程表示在第四象限的部分以及軸負半軸上的點;當,時,方程表示圓在第二象限的部分以及軸負半軸上的點;當,時,方程表示圓在第三象限部分.以上合起來構成如圖所示的圖形,面積為.24.將5位志愿者分成4組,其中一組為2人,其余各組各1人,到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有______種(用數字作答).答案:由題意,先分組,再到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有C25A44=240種故為:240.25.已知=(-3,2,5),=(1,x,-1),且=2,則x的值為()
A.3
B.4
C.5
D.6答案:C26.不等式|x+3|-|x-1|≤a2-3a對任意實數x恒成立,則實數a的取值范圍為()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A27.如圖,長方體ABCD-A1B1C1D1中,M為DD1的中點,N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.28.在極坐標系中,極點到直線ρcosθ=2的距離為______.答案:直線ρcosθ=2即x=2,極點的直角坐標為(0,0),故極點到直線ρcosθ=2的距離為2,故為2.29.下列關于結構圖的說法不正確的是()
A.結構圖中各要素之間通常表現(xiàn)為概念上的從屬關系和邏輯上的先后關系
B.結構圖都是“樹形”結構
C.簡潔的結構圖能更好地反映主體要素之間關系和系統(tǒng)的整體特點
D.復雜的結構圖能更詳細地反映系統(tǒng)中各細節(jié)要素及其關系答案:B30.在樣本的頻率分布直方圖中,共有11個小長方形,若中間一個長方形的面積等于其他十個小長方形面積的和的14,且樣本容量是160,則中間一組的頻數為()A.32B.0.2C.40D.0.25答案:設間一個長方形的面積S則其他十個小長方形面積的和為4S,所以頻率分布直方圖的總面積為5S所以中間一組的頻率為S5S=0.2所以中間一組的頻數為160×0.2=32故選A31.為了了解1200名學生對學校某項教改試驗的意見,打算從中抽取一個容量為40的樣考慮用系統(tǒng)抽樣,則分段的間隔k為______答案:由題意知本題是一個系統(tǒng)抽樣,總體中個體數是1200,樣本容量是40,根據系統(tǒng)抽樣的步驟,得到分段的間隔K=120040=30,故為:30.32.某地位于甲、乙兩條河流的交匯處,根據統(tǒng)計資料預測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設備正在該地工作,為了保護設備,施工部門提出以下三種方案:
方案1:運走設備,此時需花費4000元;
方案2:建一保護圍墻,需花費1000元,但圍墻只能抵御一個河流發(fā)生的洪水,當兩河流同時發(fā)生洪水時,設備仍將受損,損失約56
000元;
方案3:不采取措施,此時,當兩河流都發(fā)生洪水時損失達60000元,只有一條河流發(fā)生洪水時,損失為10000元.
(1)試求方案3中損失費ξ(隨機變量)的分布列;
(2)試比較哪一種方案好.答案:(1)在方案3中,記“甲河流發(fā)生洪水”為事件A,“乙河流發(fā)生洪水”為事件B,則P(A)=0.25,P(B)=0.18,所以,有且只有一條河流發(fā)生洪水的概率為P(A?.B+.A?B)=P(A)?P(.B)+P(.A)?P(B)=0.34,兩河流同時發(fā)生洪水的概率為P(A?B)=0.045,都不發(fā)生洪水的概率為P(.A?.B)=0.75×0.82=0.615,設損失費為隨機變量ξ,則ξ的分布列為:(2)對方案1來說,花費4000元;對方案2來說,建圍墻需花費1000元,它只能抵御一條河流的洪水,但當兩河流都發(fā)生洪水時,損失約56000元,而兩河流同時發(fā)生洪水的概率為P=0.25×0.18=0.045.所以,該方案中可能的花費為:1000+56000×0.045=3520(元).對于方案來說,損失費的數學期望為:Eξ=10000×0.34+60000×0.045=6100(元),比較可知,方案2最好,方案1次之,方案3最差.33.若隨機向一個半徑為1的圓內丟一粒豆子(假設該豆子一定落在圓內),則豆子落在此圓內接正三角形內的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內接正三角形的邊長為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內的概率P=334π=334π故為:334π34.已知向量a、b的夾角為60°,且|a|=2,|b|=1,則|a+2b|=______;向量a與向量a+2b的夾角的大小為______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,設向量a與向量a+2b的夾角的大小為θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故為23,30°.35.某程序框圖如圖所示,該程序運行后輸出的k的值是()A.4B.5C.6D.7答案:根據流程圖所示的順序,程序的運行過程中各變量值變化如下表:是否繼續(xù)循環(huán)
S
K循環(huán)前/0
0第一圈
是
1
1第二圈
是
3
2第三圈
是
11
3第四圈
是
20594第五圈
否∴最終輸出結果k=4故為A36.對于實數x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.37.(幾何證明選講)如圖,點A、B、C都在⊙O上,過點C的切線交AB的延長線于點D,若AB=5,BC=3,CD=6,則線段AC的長為______.答案:∵過點C的切線交AB的延長線于點D,∴DC是圓的切線,DBA是圓的割線,根據切割線定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由題意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故為:4.538.圓ρ=2sinθ的圓心到直線2ρcosθ+ρsinθ+1=0的距離是______.答案:由ρ=2sinθ,化為直角坐標方程為x2+y2-2y=0,其圓心是A(0,1),由2ρcosθ+ρsinθ+1=0得:化為直角坐標方程為2x+y+1=0,由點到直線的距離公式,得+d=|1+1|5=255.故為255.39.參數方程,(θ為參數)表示的曲線是()
A.直線
B.圓
C.橢圓
D.拋物線答案:C40.隨機地向某個區(qū)域拋撒了100粒種子,在面積為10m2的地方有2粒種子發(fā)芽,假設種子的發(fā)芽率為100%,則整個撒種區(qū)域的面積大約有______m2.答案:設整個撒種區(qū)域的面積大約xm2,由于假設種子的發(fā)芽率為100%,所以在面積為10m2的地方有2粒種子發(fā)芽,意味著在面積為10m2的地方有2粒種子,從而有:100x=210,∴x=500,故為:500.41.已知
p:所有國產手機都有陷阱消費,則¬p是()
A.所有國產手機都沒有陷阱消費
B.有一部國產手機有陷阱消費
C.有一部國產手機沒有陷阱消費
D.國外產手機沒有陷阱消費答案:C42.設a>0,f(x)=ax2+bx+c,曲線y=f(x)在點P(x0,f(x0))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對稱軸距離的取值范圍為()
A.[0,]
B.[0,]
C.[0,||]
D.[0,||]答案:B43.已知0<a<1,loga(1-x)<logax則()
A.0<x<1
B.x<
C.0<x<
D.<x<1答案:C44.已知集合M={1,2,3},N={1,2,3,4},定義函數f:M→N.若點A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且
則滿足條件的函數f(x)有()
A.6個
B.10個
C.12個
D.16個答案:C45.設a=log32,b=log23,c=,則()
A.c<b<a
B.a<c<b
C.c<a<b
D.b<c<a答案:C46.已知空間兩點A(4,a,-b),B(a,a,2),則向量AB=()A.(a-4,0,2+b)B.(4-a,0,-b-2)C.(0,a-4,2+b)D.(a-4,0,-b-2)答案:∵A(4,a,-b),B(a,a,2)∴AB=(a-4,a-a,2-(-b))=(a-4,0,2+b)故選A47.三棱錐P-ABC中,M為BC的中點,以為基底,則可表示為()
A.
B.
C.
D.答案:D48.用系統(tǒng)抽樣法要從160名學生中抽取容量為20的樣本,將160名學生隨機地從1~160編號,按編號順序平均分成20組(1~8號,9~16號,…,153~160號),若第16組抽出的號碼為126,則第1組中用抽簽的方法確定的號碼是______.答案:不妨設在第1組中隨機抽到的號碼為x,則在第16組中應抽出的號碼為120+x.設第1組抽出的號碼為x,則第16組應抽出的號碼是8×15+x=126,∴x=6.故為:6.49.設復數z=cosθ+sinθi,0≤θ≤π,則|z+1|的最大值為______.答案:復數z=cosθ+sinθi,0≤θ≤π,則|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故為:2.50.已知棱長都相等的正三棱錐內接于一個球,某學生畫出四個過球心的平面截球與正三棱錐所得的圖形,如圖所示,則()A.以上四個圖形都是正確的B.只有(2)(4)是正確的C.只有(4)是錯誤的D.只有(1)(2)是正確的答案:(1)當平行于三棱錐一底面,過球心的截面如(1)圖所示;(2)過三棱錐的一條棱和圓心所得截面如(2)圖所示;(3)過三棱錐的一個頂點(不過棱)和球心所得截面如(3)圖所示;(4)棱長都相等的正三棱錐和球心不可能在同一個面上,所以(4)是錯誤的.故選C.第3卷一.綜合題(共50題)1.算法:第一步
x=a;第二步
若b>x則x=b;第三步
若c>x,則x=c;
第四步
若d>x,則x=d;
第五步
輸出x.則輸出的x表示()A.a,b,c,d中的最大值B.a,b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數,故選A.2.設雙曲線的漸近線方程為2x±3y=0,則雙曲線的離心率為______.答案:∵雙曲線的漸近線方程是2x±3y=0,∴知焦點是在x軸時,ba=23,設a=3k,b=2k,則c=13k,∴e=133.焦點在y軸時ba=32,設a=2k,b=3k,則c=13k,∴e=132.故為:133或1323.已知直線的參數方程為x=1+ty=3+2t.(t為參數),圓的極坐標方程為ρ=2cosθ+4sinθ.
(I)求直線的普通方程和圓的直角坐標方程;
(II)求直線被圓截得的弦長.答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長L=2r2-d2=4305(10分)4.平面向量a與b的夾角為,若a=(2,0),|b|=1,則|a+2b|=()
A.
B.2
C.4
D.12答案:B5.選修4-2:矩陣與變換
已知矩陣M=0110,N=0-110.在平面直角坐標系中,設直線2x-y+1=0在矩陣MN對應的變換作用下得到曲線F,求曲線F的方程.答案:由題設得MN=01100-111=100-1.…(3分)設(x,y)是直線2x-y+1=0上任意一點,點(x,y)在矩陣MN對應的變換作用下變?yōu)椋▁′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因為點(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.
…(10分)6.設a=log32,b=log23,c=,則()
A.c<b<a
B.a<c<b
C.c<a<b
D.b<c<a答案:C7.對于空間中的三個向量,
,
,它們一定是()
A.共面向量
B.共線向量
C.不共面向量
D.以上均不對答案:A8.下列圖形中不一定是平面圖形的是(
)
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B9.一個盒子裝有10個紅、白兩色同一型號的乒乓球,已知紅色乒乓球有3個,若從盒子里隨機取出3個乒乓球,則其中含有紅色乒乓球個數的數學期望是______.答案:由題設知含有紅色乒乓球個數ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×
2140+2×740+3×1120=910.故為:910.10.設a,b是非負實數,求證:a3+b3≥ab(a2+b2).答案:證明:由a,b是非負實數,作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)[(a)5-(b)5].當a≥b時,a≥b,從而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;當a<b時,a<b,從而(a)5<(b)5,得(a-b)[(a)5-(b)5]>0.所以a3+b3≥ab(a2+b2).11.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線的三點是()
A.A,B,C
B.A,B,D
C.A,C,D
D.B,C,D答案:C12.已知R為實數集,Q為有理數集.設函數f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數f[f(x)]恒等于0D.函數f[f(x)]的導函數恒等于0答案:函數y=f(x)的圖象是兩條平行直線上的一些孤立的點,故A不正確;函數f(x)的極限只有唯一的值,左右極限不等,則該函數不存在極限,故B不正確;若x是無理數,則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數f[f(x)]的導函數恒等于0,故D正確;故選D.13.橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為()
A.
B.
C.2
D.4答案:A14.大熊貓活到十歲的概率是0.8,活到十五歲的概率是0.6,若現(xiàn)有一只大熊貓已經十歲了,則他活到十五歲的概率是()
A.0.8
B.0.75
C.0.6
D.0.48答案:B15.已知點M的極坐標為,下列所給四個坐標中能表示點M的坐標是()
A.
B.
C.
D.答案:D16.不等式的解集是(
)
A.
B.
C.
D.答案:D17.①點P在△ABC所在的平面內,且②點P為△ABC內的一點,且使得取得最小值;③點P是△ABC所在平面內一點,且,上述三個點P中,是△ABC的重心的有()
A.0個
B.1個
C.2個
D.3個答案:D18.若圓C過點M(0,1)且與直線l:y=-1相切,設圓心C的軌跡為曲線E,A、B為曲線E上的兩點,點P(0,t)(t>0),且滿足AP=λPB(λ>1).
(I)求曲線E的方程;
(II)若t=6,直線AB的斜率為12,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;
(III)分別過A、B作曲線E的切線,兩條切線交于點Q,若點Q恰好在直線l上,求證:t與QA?QB均為定值.答案:【解】(Ⅰ)依題意,點C到定點M的距離等于到定直線l的距離,所以點C的軌跡為拋物線,曲線E的方程為x2=4y.(Ⅱ)直線AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以拋物線x2=4y在點A處切線的斜率為y'|x=6=3.直線NA的方程為y-9=-13(x-6),即y=-13x+11.①線段AB的中點坐標為(1,132),線段AB中垂線方程為y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圓C的方程為(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)設A(x1,x124),B(x2,x224),Q(a,-1).過點A的切線方程為y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直線AB的方程為y-x124=x1+x24(x-x
1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA?QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.19.扇形周長為10,則扇形面積的最大值是()A.52B.254C.252D.102答案:設半徑為r,弧長為l,則周長為2r+l=10,面積為s=12lr,因為10=2r+l≥22rl,所以rl≤252,所以s≤254故選B20.設a=log132,b=log1213,c=(12)0.3,則()A.a<b<cB.a<c<bC.b<c<aD.b<a<c答案:解;∵a=log132<log131=0,b=log1213>log1212=1,c=(12)0.3∈(0,1)∴b>c>a.故選B.21.數學歸納法證明“2n+1≥n2+n+2(n∈N*)”時,第一步驗證的表達式為______.答案:根據數學歸納法的步驟,首先要驗證證明當n取第一個值時命題成立;結合本題,要驗證n=1時,2n+1≥n2+n+2的成立;即21+1≥12+1+2成立;故為:21+1≥12+1+2(22≥4或4≥4也算對).22.已知x與y之間的一組數據:
x0123y1357則y與x的線性回歸方程為y=bx+a必過點______.答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4,∴本組數據的樣本中心點是(1.5,4),∴y與x的線性回歸方程為y=bx+a必過點(1.5,4)故為:(1.5,4)23.若不等式的解集,則實數=___________.答案:-424.已知,向量與向量的夾角是,則x的值為()
A.±3
B.±
C.±9
D.3答案:D25.函數y=(43)x,x∈N+是()A.增函數B.減函數C.奇函數D.偶函數答案:由正整數指數函數不具有奇偶性,可排除C、D;因為函數y=(43)x,x∈N+的底數43大于1,所以此函數是增函數.故選A.26.給出下列問題:
(1)求面積為1的正三角形的周長;
(2)求鍵盤所輸入的三個數的算術平均數;
(3)求鍵盤所輸入兩個數的最小數;
(4)求函數f(x)=2xx2(x≥3)(x<3)當自變量取相應值時的函數值.
其中不需要用條件語句描述的算法的問題有()A.1個B.2個C.3個D.4個答案:(1)求面積為1的正三角形的周長用順序結構即可,故不需要用條件語句描述;(2)求鍵盤所輸入的三個數的算術平均數用順序結構即可解決問題,不需要用條件語句描述;(3)求鍵盤所輸入兩個數的最小數,由于要作出判斷,找出最小數,故本問題的解決要用到條件語句描述;(4)求函數f(x)=2xx2(x≥3)(x<3)當自變量取相應值時的函數值,由于此函數是一個分段函數,所以要用條件結構選擇相應的函數解析式,需要用條件語句描述.綜上,(3)(4)兩個問題要用到條件語句描述,(1),(2)不需要用條件語句描述故選B27.如圖,一個正方體內接于一個球,過球心作一個截面,則截面的可能圖形為(
)
A.①③
B.②④
C.①②③
D.②③④答案:C28.設平面α內兩個向量的坐標分別為(1,2,1)、(-1,1,2),則下列向量中是平面的法向量的是()
A.(-1,-2,5)
B.(-1,1,-1)
C.(1,1,1)
D.(1,-1,-1)答案:B29.定義直線關于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點A(3,0);②直線y=x關于圓C的圓心距單位λ=2,試寫出一個滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標為3,設圓心的縱坐標為r,則半徑為|r|>0,則圓心的坐標為(3,r).設圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=130.已知x+2y+3z=1,則x2+y2+z2取最小值時,x+y+z的值為______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32)故x2+y2+z2≥114,當且僅當x1=y2=z3取等號,此時y=2x,z=3x,x+2y+3z=14x=1,∴x=114,y=214,x=314,x+y+z=614=37.故為:37.31.盒中有10只螺絲釘,其中有3只是壞的,現(xiàn)從盒中隨機地抽取4只,那么310為()A.恰有1只壞的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只壞的概率答案:∵盒中有10只螺絲釘∴盒中隨機地抽取4只的總數為:C104=210,∵其中有3只是壞的,∴所可能出現(xiàn)的事件有:恰有1只壞的,恰有2只壞的,恰有3只壞的,4只全是好的,至多2只壞的取法數分別為:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只壞的概率分別為:105210=12,,恰有2只好的概率為63210=310,,4只全是好的概率為35210=16,至多2只壞的概率為203210=2930;故A,C,D不正確,B正確故選B32.設xi,yi
(i=1,2,…,n)是實數,且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一個排列.求證:n
i-1(xi-yi)2≥n
i-1(xi-zi)2.答案:證明:要證ni-1(xi-yi)2≥ni-1(xi-zi)2,只需證
ni=1
yi2-2ni=1
xi?yi≥ni=1
zi2-2ni=1
xi?zi,由于ni=1
yi2=ni=1
zi2,故只需證ni=1
xi?zi≤ni=1
xi?yi
①.而①的左邊為亂序和,右邊為順序和,根據排序不等式可得①成立,故要證的不等式成立.33.讀下面的程序:
上面的程序在執(zhí)行時如果輸入6,那么輸出的結果為()
A.6
B.720
C.120
D.1答案:B34.有一個正四棱錐,它的底面邊長與側棱長均為a,現(xiàn)用一張正方形包裝紙將其完全包?。ú荒懿眉艏?,但可以折疊),那么包裝紙的最小邊長應為()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由題意可知:當正四棱錐沿底面將側面都展開時如圖所示:分析易知當以PP′為正方形的對角線時,所需正方形的包裝紙的面積最小,此時邊長最?。O此時的正方形邊長為x則:(PP′)2=2x2,又因為PP′=a+2×32a=a+3a,∴(
a+3a)2=2x2,解得:x=6+22a.故選A35.已知x,y的取值如下表:
x0134y2.24.34.86.7從散點圖分析,y與x線性相關,則回歸方程為.y=bx+a必過點______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點的坐標為(2,92).故為:(2,92).36.在空間直角坐標系中,點,過點P作平面xOy的垂線PQ,則Q的坐標為()
A.
B.
C.
D.答案:D37.若向量的起點與終點M、A、B、C互不重合且無三點共線,且滿足下列關系(O為空間任一點),則能使向量成為空間一組基底的關系是()
A.
B.
C.
D.答案:C38.已知當m∈R時,函數f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點,求實數a的取值范圍.答案:(1)m=0時,f(x)=x-a是一次函數,它的圖象恒與x軸相交,此時a∈R.(2)m≠0時,由題意知,方程mx2+x-(m+a)=0恒有實數解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時,a∈R;m≠0時,a∈[-1,1].39.為提高廣東中小學生的健康素質和體能水平,廣東省教育廳要求廣東各級各類中小學每年都要在體育教學中實施“體能素質測試”,測試總成績滿分為100分.根據廣東省標準,體能素質測試成績在[85,100]之間為優(yōu)秀;在[75,85]之間為良好;在[65,75]之間為合格;在(0,60)之間,體能素質為不合格.
現(xiàn)從佛山市某校高一年級的900名學生中隨機抽取30名學生的測試成績如下:
65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.
(1)在答題卷上完成頻率分布表和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 六年級語文下冊教學計劃蘇教版
- 婦科病普查計劃
- 2025年上學期幼兒園園務工作計劃范例
- 幼兒園12月份計劃
- 2025年口腔科工作計劃模板
- 五年級上冊語文復習計劃怎么寫
- 《計算機文件基礎 Windows 7+Office +Internet項目式教程》課件-第2章
- 2020版 滬教版 高中音樂 必修5音樂與舞蹈 上篇《第二單元 天下歌舞》大單元整體教學設計2020課標
- 合同案訴訟費收費標準
- 體檢費用合同模板
- 家族財富傳承法商
- 皖北煤電集團總醫(yī)院經開區(qū)分院建設項目環(huán)境影響報告
- 畫法幾何與機械制圖全套PPT完整教學課件
- 信用修復申請文書(當事人適用)
- 小型水閘委托管理協(xié)議書
- 專項資金支出明細表參考模板范本
- 八年級化學魯教版(五四學制)全一冊第二單元探秘水世界知識點梳理
- 工藝研發(fā)工程師崗位說明書
- 中國聯(lián)通機房標準化規(guī)范
- 2023年電大期末考試勞動與社會保障法
- GB/T 41805-2022光學元件表面疵病定量檢測方法顯微散射暗場成像法
評論
0/150
提交評論