2023年菏澤家政職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年菏澤家政職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年菏澤家政職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年菏澤家政職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年菏澤家政職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩40頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年菏澤家政職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.過(guò)拋物線y2=4x的焦點(diǎn)作一條直線與拋物線相交于A、B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線()

A.有且僅有一條

B.有且僅有兩條

C.有無(wú)窮多條

D.不存在答案:B2.已知斜二測(cè)畫(huà)法得到的直觀圖△A′B′C′是正三角形,畫(huà)出原三角形的圖形.答案:由斜二測(cè)法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長(zhǎng)度變?yōu)樵瓉?lái)的2倍,得到OA,由此得到原三角形的圖形ABC.3.直線(3+4)x+(4-6)y-14-2=0(∈R)恒過(guò)定點(diǎn)A,則點(diǎn)A的坐標(biāo)為(

)。答案:(2,-1)4.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.5.設(shè)

是不共線的向量,(k,m∈R),則A、B、C三點(diǎn)共線的充要條件是()

A.k+m=0

B.k=m

C.km+1=0

D.km-1=0答案:D6.一元二次不等式ax2+bx+c≤0的解集是全體實(shí)數(shù)所滿足的條件是(

)

A.

B.

C.

D.答案:D7.設(shè)A(3,3,1),B(1,0,5),C(0,1,0),則AB的中點(diǎn)M到點(diǎn)C的距離為

______.答案:M為AB的中點(diǎn)設(shè)為(x,y,z),∴x=3+12=2,y=32,z=1+52=3,∴M(2,32,3),∵C(0,1,0),∴MC=22+(32-1)

2

+33=532,故為:532.8.設(shè)雙曲線x2a2-y2b2=1(a>b>0)的半焦距為c,直線l過(guò)(a,0),(0,b)兩點(diǎn),已知原點(diǎn)到直線l的距離為34c,則雙曲線的離心率為_(kāi)_____.答案:∵直線l過(guò)(a,0),(0,b)兩點(diǎn),∴直線l的方程為:xa+yb=1,即bx+ay-ab=0,∵原點(diǎn)到直線l的距離為34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴離心率為e=2或e=233;故為2或233.9.(文)函數(shù)f(x)=x+2x(x∈(0

,

2

]

)的值域是______.答案:f(x)=x+2x≥

22當(dāng)且僅當(dāng)x=2時(shí)取等號(hào)該函數(shù)在(0,2)上單調(diào)遞減,在(2,2]上單調(diào)遞增∴當(dāng)x=2時(shí)函數(shù)取最小值22,x趨近0時(shí),函數(shù)值趨近無(wú)窮大故函數(shù)f(x)=x+2x(x∈(0

,

2

]

)的值域是[22,+∞)故為:[22,+∞)10.全稱命題“任意x∈Z,2x+1是整數(shù)”的逆命題是()

A.若2x+1是整數(shù),則x∈Z

B.若2x+1是奇數(shù),則x∈Z

C.若2x+1是偶數(shù),則x∈Z

D.若2x+1能被3整除,則x∈Z

E.若2x+1是整數(shù),則x∈Z答案:A11.一圓臺(tái)上底半徑為5cm,下底半徑為10cm,母線AB長(zhǎng)為20cm,其中A在上底面上,B在下底面上,從AB中點(diǎn)M,拉一條繩子,繞圓臺(tái)的側(cè)面一周轉(zhuǎn)到B點(diǎn),則這條繩子最短長(zhǎng)為_(kāi)_____cm.答案:畫(huà)出圓臺(tái)的側(cè)面展開(kāi)圖,并還原成圓錐展開(kāi)的扇形,且設(shè)扇形的圓心為O.有圖得:所求的最短距離是MB',設(shè)OA=R,圓心角是α,則由題意知,10π=αR

①,20π=α(20+R)

②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,則MB'=50cm.故為:50cm.12.集合{1,2,3}的真子集總共有()A.8個(gè)B.7個(gè)C.6個(gè)D.5個(gè)答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個(gè).故選B.13.設(shè)△ABC是邊長(zhǎng)為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長(zhǎng)為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+

2×12=3,故為:314.利用獨(dú)立性檢驗(yàn)對(duì)兩個(gè)分類變量是否有關(guān)系進(jìn)行研究時(shí),若有99.5%的把握說(shuō)事件A和B有關(guān)系,則具體計(jì)算出的數(shù)據(jù)應(yīng)該是()

A.K2≥6.635

B.K2<6.635

C.K2≥7.879

D.K2<7.879答案:C15.下列說(shuō)法中正確的有()

①平均數(shù)不受少數(shù)幾個(gè)極端值的影響,中位數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響;

②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大

③用樣本的頻率分布估計(jì)總體分布的過(guò)程中,樣本容量越大,估計(jì)越準(zhǔn)確.

④向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.A.①②B.③C.③④D.④答案:中位數(shù)數(shù)不受少數(shù)幾個(gè)極端值的影響,平均數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響,故①不正確,拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”的概率是14“兩枚都是反面朝上的概率是14、“恰好一枚硬幣正面朝上的概率是12”,故②不正確,用樣本的頻率分布估計(jì)總體分布的過(guò)程中,樣本容量越大,估計(jì)越準(zhǔn)確.正確向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是幾何概型,故④不正確,故選B.16.兩個(gè)樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動(dòng)()

A.大

B.相等

C.小

D.無(wú)法確定答案:A17.甲乙兩人在罰球線投球命中的概率為,甲乙兩人在罰球線上各投球一次,則恰好兩人都中的概率為()

A.

B.

C.

D.答案:A18.在極坐標(biāo)系中,過(guò)點(diǎn)(22,π4)作圓ρ=4sinθ的切線,則切線的極坐標(biāo)方程是______.答案:(22,π4)的直角坐標(biāo)為:(2,2),圓ρ=4sinθ的直角坐標(biāo)方程為:x2+y2-4y=0;顯然,圓心坐標(biāo)(0,2),半徑為:2;所以過(guò)(2,2)與圓相切的直線方程為:x=2,所以切線的極坐標(biāo)方程是:ρcosθ=2故為:ρcosθ=219.如圖,直線AB是平面α的斜線,A為斜足,若點(diǎn)P在平面α內(nèi)運(yùn)動(dòng),使得點(diǎn)P到直線AB的距離為定值a(a>0),則動(dòng)點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因?yàn)辄c(diǎn)P到直線AB的距離為定值a,所以,P點(diǎn)在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點(diǎn)P在平面α內(nèi)運(yùn)動(dòng),所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.20.正十邊形的一個(gè)內(nèi)角是多少度?答案:由多邊形內(nèi)角和公式180°(n-2),∴每一個(gè)內(nèi)角的度數(shù)是180°(n-2)n當(dāng)n=10時(shí).得到一個(gè)內(nèi)角為180°(10-2)10=144°21.如圖,正六邊形ABCDEF中,=()

A.

B.

C.

D.

答案:D22.直線L1:x-y=0與直線L2:x+y-10=0的交點(diǎn)坐標(biāo)是()

A.(5,5)

B.(5,-5)

C.(-1,1)

D.(1,1)答案:A23.一個(gè)口袋中有紅球3個(gè),白球4個(gè).

(Ⅰ)從中不放回地摸球,每次摸2個(gè),摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),求恰好第2次中獎(jiǎng)的概率;

(Ⅱ)從中有放回地摸球,每次摸2個(gè),摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),連續(xù)摸4次,求中獎(jiǎng)次數(shù)X的數(shù)學(xué)期望E(X).答案:(I)“恰好第2次中獎(jiǎng)“即為“第一次摸到的2個(gè)白球,第二次至少有1個(gè)紅球”,其概率為C24C27×C23+C13C12C25=935;(II)摸一次中獎(jiǎng)的概率為p=C23+C13C14C27=57,由條件知X~B(4,p),∴EX=np=4×57=207.24.已知函數(shù)f(x)=ax2+(a+3)x+2在區(qū)間[1,+∞)上為增函數(shù),則實(shí)數(shù)a的取值范圍是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函數(shù)f(x)=ax2+x+1在區(qū)間[1,+∞)上為增函數(shù),∴f′(x)=2ax+a+3≥0在區(qū)間[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故為:a≥0.25.在極坐標(biāo)系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()

A.θ=0(ρ∈R)和ρcosθ=2

B.θ=(ρ∈R)和ρcosθ=2

C.θ=(ρ∈R)和ρcosθ=1

D.θ=0(ρ∈R)和ρcosθ=1答案:B26.甲袋中裝有3個(gè)白球和5個(gè)黑球,乙袋中裝有4個(gè)白球和6個(gè)黑球,現(xiàn)從甲袋中隨機(jī)取出一個(gè)球放入乙袋中,充分混合后,再?gòu)囊掖须S機(jī)取出一個(gè)球放回甲袋中,則甲袋中白球沒(méi)有減少的概率為()A.944B.2544C.3544D.3744答案:白球沒(méi)有減少的情況有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率為58+1588=3544,故選C.27.直線2x-y=7與直線3x+2y-7=0的交點(diǎn)是()

A.(3,-1)

B.(-1,3)

C.(-3,-1)

D.(3,1)答案:A28.抽樣方法有()A.隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣B.隨機(jī)數(shù)法、抽簽法和分層抽樣法C.簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣D.系統(tǒng)抽樣、分層抽樣和隨機(jī)數(shù)法答案:我們常用的抽樣方法有:簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣,而抽簽法和隨機(jī)數(shù)法,只是簡(jiǎn)單隨機(jī)抽樣的兩種不同抽取方法故選C29.不論k為何實(shí)數(shù),直線y=kx+1與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:直線y=kx+1恒過(guò)(0,1)點(diǎn),與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),必須定點(diǎn)在圓上或圓內(nèi),即:a2+12

≤4+2a所以,-1≤a≤3故為:-1≤a≤3.30.在直角坐標(biāo)系xOy中,i,j分別是與x軸,y軸平行的單位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,則實(shí)數(shù)m=______.答案:把AB、AC平移,使得點(diǎn)A與原點(diǎn)重合,則AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°時(shí),AB?BC=0,∴(1,1)?(2-1,m-1)=0,得m=0;若∠A=90°時(shí),AB?AC=0,∴(1,1)?(2,m)=0,得m=-2.若∠C=90°時(shí),AC?BC=0,即2+m2-m=0,此方程無(wú)解,綜上,m為-2或0滿足三角形為直角三角形.故為-2或031.已知f(10x)=x,則f(5)=______.答案:令10x=5可得x=lg5所以f(5)=f(10lg5)=lg5故為:lg532.有外形相同的球分裝三個(gè)盒子,每盒10個(gè).其中,第一個(gè)盒子中7個(gè)球標(biāo)有字母A、3個(gè)球標(biāo)有字母B;第二個(gè)盒子中有紅球和白球各5個(gè);第三個(gè)盒子中則有紅球8個(gè),白球2個(gè).試驗(yàn)按如下規(guī)則進(jìn)行:先在第一號(hào)盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號(hào)盒子中任取一個(gè)球;若第一次取得標(biāo)有字母B的球,則在第三號(hào)盒子中任取一個(gè)球.如果第二次取出的是紅球,則稱試驗(yàn)成功,那么試驗(yàn)成功的概率為()

A.0.59

B.0.54

C.0.8

D.0.15答案:A33.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為()

A.0.9

B.0.5

C.0.6

D.0.8答案:D34.若直線3x+4y+m=0與曲線x=1+cosθy=-2+sinθ(θ為參數(shù))沒(méi)有公共點(diǎn),則實(shí)數(shù)m的取值范圍是

______.答案:∵曲線x=1+cosθy=-2+sinθ(θ為參數(shù))的普通方程是(x-1)2+(y+2)2=1則圓心(1,-2)到直線3x+4y+m=0的距離d=|3?1+4(-2)+m|32+42=|m-5|5,令|m-5|5>1,得m>10或m<0.故為:m>10或m<0.35.已知集合A滿足{1,2,3}∪A={1,2,3,4},則集合A的個(gè)數(shù)為_(kāi)_____.答案:∵{1,2,3}∪A={1,2,3,4},∴A={4};{1,4};{2,4};{3,4};{1,2,4};{1,3,4};{2,3,4};{1,2,3,4},則集合A的個(gè)數(shù)為8.故為:836.下列說(shuō)法中正確的是()

A.以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐

B.以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺(tái)

C.圓柱、圓錐、圓臺(tái)的底面都是圓

D.圓錐側(cè)面展開(kāi)圖為扇形,這個(gè)扇形所在圓的半徑等于圓錐的底面圓的半徑答案:C37.教學(xué)大樓共有五層,每層均有兩個(gè)樓梯,由一層到五層的走法有()

A.10種

B.25種

C.52種

D.24種答案:D38.一個(gè)口袋內(nèi)有4個(gè)不同的紅球,6個(gè)不同的白球,

(1)從中任取4個(gè)球,紅球的個(gè)數(shù)不比白球少的取法有多少種?

(2)若取一個(gè)紅球記2分,取一個(gè)白球記1分,從中任取5個(gè)球,使總分不少于7分的取法有多少種?答案:解(1)由題意知本題是一個(gè)分類計(jì)數(shù)問(wèn)題,將取出4個(gè)球分成三類情況取4個(gè)紅球,沒(méi)有白球,有C44種取3個(gè)紅球1個(gè)白球,有C43C61種;取2個(gè)紅球2個(gè)白球,有C42C62,∴C44+C43C61+C42C62=115種(2)設(shè)取x個(gè)紅球,y個(gè)白球,則x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合題意的取法種數(shù)有C42C63+C43C62+C44C61=186種39.以橢圓x23+y2=1的右焦點(diǎn)為焦點(diǎn),且頂點(diǎn)在原點(diǎn)的拋物線標(biāo)準(zhǔn)方程為_(kāi)_____.答案:∵橢圓x23+y2=1的右焦點(diǎn)F(2,0),∴以F(2,0)為焦點(diǎn),頂點(diǎn)在原點(diǎn)的拋物線標(biāo)準(zhǔn)方程為y2=42x.故為:y2=42x.40.已知拋物線C的參數(shù)方程為x=8t2y=8t(t為參數(shù)),設(shè)拋物線C的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數(shù)方程x=8t2y=8t(t為參數(shù)),消去參數(shù)化為普通方程為y2=8x.故焦點(diǎn)F(2,0),準(zhǔn)線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設(shè)準(zhǔn)線和x軸的交點(diǎn)為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點(diǎn)A(0,43),把y=43代入拋物線求得x=6,∴點(diǎn)P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.41.已知A(3,0),B(0,3),O為坐標(biāo)原點(diǎn),點(diǎn)C在第一象限內(nèi),且∠AOC=60°,設(shè)OC=OA+λOB

(λ∈R),則λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=

3tan60°=33又∵|OB|=3∴λ=3故選D.42.命題“p:任意x∈R,都有x≥2”的否定是______.答案:命題“任意x∈R,都有x≥2”是全稱命題,否定時(shí)將量詞對(duì)任意的x∈R變?yōu)榇嬖趯?shí)數(shù)x,再將不等號(hào)≥變?yōu)椋技纯桑蕿椋捍嬖趯?shí)數(shù)x,使得x<2.43.(Ⅰ)解關(guān)于x的不等式(lgx)2-lgx-2>0;

(Ⅱ)若不等式(lgx)2-(2+m)lgx+m-1>0對(duì)于|m|≤1恒成立,求x的取值范圍.答案:(Ⅰ)∵(lgx)2-lgx-2>0,∴(lgx+1)(lgx-2)>0.∴l(xiāng)gx<-1或lgx>2.∴0<x<110或x>102.(Ⅱ)設(shè)y=lgx,則原不等式可化為y2-(2+m)y+m-1>0,∴y2-2y-my+m-1>0.∴(1-y)m+(y2-2y-1)>0.當(dāng)y=1時(shí),不等式不成立.設(shè)f(m)=(1-y)m+(y2-2y-1),則f(x)是m的一次函數(shù),且一次函數(shù)為單調(diào)函數(shù).當(dāng)-1≤m≤1時(shí),若要f(m)>0?f(1)>0f(-1)>0.?y2-2y-1+1-y>0y2-2y-1+y-1>0.?y2-3y>0y2-y-2>0.?y<0或y>3y<-1或y>2.則y<-1或y>3.∴l(xiāng)gx<-1或lgx>3.∴0<x<110或x>103.∴x的取值范圍是(0,110)∪(103,+∞).44.下列關(guān)于結(jié)構(gòu)圖的說(shuō)法不正確的是()

A.結(jié)構(gòu)圖中各要素之間通常表現(xiàn)為概念上的從屬關(guān)系和邏輯上的先后關(guān)系

B.結(jié)構(gòu)圖都是“樹(shù)形”結(jié)構(gòu)

C.簡(jiǎn)潔的結(jié)構(gòu)圖能更好地反映主體要素之間關(guān)系和系統(tǒng)的整體特點(diǎn)

D.復(fù)雜的結(jié)構(gòu)圖能更詳細(xì)地反映系統(tǒng)中各細(xì)節(jié)要素及其關(guān)系答案:B45.袋中有4只紅球3只黑球,從袋中任取4只球,取到1只紅球得1分,取到1只黑球得3分,設(shè)得分為隨機(jī)變量ξ,則P(ξ≤6)=______.答案:取出的4只球中紅球個(gè)數(shù)可能為4,3,2,1個(gè),黑球相應(yīng)個(gè)數(shù)為0,1,2,3個(gè).其分值為ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故為:1335.46.已知O是空間任意一點(diǎn),A、B、C、D四點(diǎn)滿足任三點(diǎn)均不共線,但四點(diǎn)共面,且=2x+3y+4z,則2x+3y+4z=(

)答案:﹣147.在直角坐標(biāo)系內(nèi),坐標(biāo)軸上的點(diǎn)構(gòu)成的集合可表示為()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同時(shí)為零}答案:在x軸上的點(diǎn)(x,y),必有y=0;在y軸上的點(diǎn)(x,y),必有x=0,∴xy=0.∴直角坐標(biāo)系中,x軸上的點(diǎn)的集合{(x,y)|y=0},直角坐標(biāo)系中,y軸上的點(diǎn)的集合{(x,y)|x=0},∴坐標(biāo)軸上的點(diǎn)的集合可表示為{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故選C.48.已知P(x,y)是橢圓x24+y2=1上的點(diǎn),求M=x+2y的取值范圍.答案:∵x24+y2=1的參數(shù)方程是x=2cosθy=sinθ(θ是參數(shù))∴設(shè)P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)

(7分)∴M=x+2y的取值范圍是[-22,22].(10分)49.已知A、B、M三點(diǎn)不共線,對(duì)于平面ABM外的任意一點(diǎn)O,確定在下列條件下,點(diǎn)P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據(jù)空間向量共面的推論,P位于平面ABM內(nèi)的充要條件是,∴P與A、B、M不共面.50.設(shè)向量a=(32,sinθ),b=(cosθ,13),其中θ∈(0,π2),若a∥b,則θ=______.答案:若a∥b,則sinθcosθ=12,即2sinθcosθ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.故為:π4.第2卷一.綜合題(共50題)1.某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為()

A.35

B.25

C.15

D.7答案:C2.已知隨機(jī)變量x服從二項(xiàng)分布x~B(6,),則P(x=2)=()

A.

B.

C.

D.答案:D3.如果:在10進(jìn)制中2004=4×100+0×101+0×102+2×103,那么類比:在5進(jìn)制中數(shù)碼2004折合成十進(jìn)制為()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故選B.4.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y為:x*y=ax+by+cxy,其中a,b,c為常數(shù),等式右端運(yùn)算為通常的實(shí)數(shù)加法和乘法,現(xiàn)已知1*2=3,2*3=4,并且有一個(gè)非零實(shí)數(shù)m,使得對(duì)于任意的實(shí)數(shù)都有x*m=x,則d的值為(

A.4

B.1

C.0

D.不確定答案:A5.已知拋物線C:y2=4x的焦點(diǎn)為F,點(diǎn)A在拋物線C上運(yùn)動(dòng).

(1)當(dāng)點(diǎn)A,P滿足AP=-2FA,求動(dòng)點(diǎn)P的軌跡方程;

(2)設(shè)M(m,0),其中m為常數(shù),m∈R+,點(diǎn)A到M的距離記為d,求d的最小值.答案:(1)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),點(diǎn)A的坐標(biāo)為(xA,yA),則AP=(x-xA,y-yA),因?yàn)镕的坐標(biāo)為(1,0),所以FA=(xA-1,yA),因?yàn)锳P=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到動(dòng)點(diǎn)P的軌跡方程為y2=8-4x;(2)由題意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0時(shí),dmin=m;m-2>0,即m>2,xA=m-2時(shí),dmin=-4-4m.6.若lga,lgb是方程2x2-4x+1=0的兩個(gè)根,則的值等于

A.2

B.

C.4

D.答案:A7.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是

______.答案:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故為:若a+b不是偶數(shù),則a,b不都是奇數(shù).8.到兩定點(diǎn)A(0,0),B(3,4)距離之和為5的點(diǎn)的軌跡是()

A.橢圓

B.AB所在直線

C.線段AB

D.無(wú)軌跡答案:C9.若a=(1,2,-2),b=(1,0,2),則(a-b)?(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)?(a+2b)=0×3+2×2-4×2=-4.故為-4.10.已知P(B|A)=,P(A)=,則P(AB)=()

A.

B.

C.

D.答案:D11.小李在一旅游景區(qū)附近租下一個(gè)小店面賣(mài)紀(jì)念品和T恤,由于經(jīng)營(yíng)條件限制,他最多進(jìn)50件T恤和30件紀(jì)念品,他至少需要T恤和紀(jì)念品40件才能維持經(jīng)營(yíng),已知進(jìn)貨價(jià)為T(mén)恤每件36元,紀(jì)念品每件50元,現(xiàn)在他有2400元可進(jìn)貨,假設(shè)每件T恤的利潤(rùn)是18元,每件紀(jì)念品的利潤(rùn)是20元,問(wèn)怎樣進(jìn)貨才能使他的利潤(rùn)最大,最大利潤(rùn)為多少?答案:設(shè)進(jìn)T恤x件,紀(jì)念品y件,可得利潤(rùn)為z元,由題意得x、y滿足的約束條件為:

0≤x≤50

0≤y≤30

x+y≥4036x+48y≤2400,且x、y∈N*目標(biāo)函數(shù)z=18x+20y約束條件的可行域如圖所示:五邊形ABCDE的各個(gè)頂點(diǎn)坐標(biāo)分別為:A(40,0),B(50,0),C(50,252),D(803,30),E(10,30),當(dāng)直線l:z=18x+20y經(jīng)過(guò)C(50,252)時(shí)取最大值,∵x,y必為整數(shù),∴當(dāng)x=50,y=12時(shí),z取最大值即進(jìn)50件T恤,12件紀(jì)念品時(shí),可獲最大利潤(rùn),最大利潤(rùn)為1140元.12.下列程序表示的算法是輾轉(zhuǎn)相除法,請(qǐng)?jiān)诳瞻滋幪钌舷鄳?yīng)語(yǔ)句:

(1)處填______;

(2)處填______.答案:∵程序表示的算法是輾轉(zhuǎn)相除法,根據(jù)輾轉(zhuǎn)相除法,先求出m除以n的余數(shù),然后利用輾轉(zhuǎn)相除法,將n的值賦給m,將余數(shù)賦給n,一直算到余數(shù)為零時(shí)m的值即可,∴(1)處應(yīng)該為r=mMODn;(2)處應(yīng)該為r=0.故為r=mMODn;r=0.13.給出下列說(shuō)法:①球的半徑是球面上任意一點(diǎn)與球心的連線段;②球的直徑是球面上任意兩點(diǎn)的連線段;③用一個(gè)平面截一個(gè)球面,得到的是一個(gè)圓;④球常用表示球心的字母表示.其中說(shuō)法正確的是______.答案:根據(jù)球的定義直接判斷①正確;②錯(cuò)誤;;③用一個(gè)平面截一個(gè)球面,得到的是一個(gè)圓;可以是小圓,也可能是大圓,正確;④球常用表示球心的字母表示.滿足球的定義正確;故為:①③④14.把方程化為以參數(shù)的參數(shù)方程是(

)A.B.C.D.答案:D解析:,取非零實(shí)數(shù),而A,B,C中的的范圍有各自的限制15.一條直線的傾斜角的余弦值為32,則此直線的斜率為()A.3B.±3C.33D.±33答案:設(shè)直線的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線的斜率k=tanα=33故選:C16.命題“若A∪B=A,則A∩B=B”的否命題是()A.若A∪B≠A,則A∩B≠BB.若A∩B=B,則A∪B=AC.若A∩B≠A,則A∪B≠BD.若A∪B=B,則A∩B=A答案:“若A∪B=A,則A∩B=B”的否命題:“若A∪B≠A則A∩B≠B”故選A.17.如圖程序輸出的結(jié)果是()

a=3,

b=4,

a=b,

b=a,

PRINTa,b

END

A.3,4

B.4,4

C.3,3

D.4,3答案:B18.”m>n>0”是”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”的(

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件答案:C19.根據(jù)學(xué)過(guò)的知識(shí),試把“推理與證明”這一章的知識(shí)結(jié)構(gòu)圖畫(huà)出來(lái).答案:根據(jù)“推理與證明”這一章的知識(shí)可得結(jié)構(gòu)圖,如圖所示.20.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,0),B(-2,0),C(-2,1).設(shè)k為非零實(shí)數(shù),矩陣M=.k001.,N=.0110.,點(diǎn)A、B、C在矩陣MN對(duì)應(yīng)的變換下得到點(diǎn)分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,

(1)求k的值.

(2)判斷變換MN是否可逆,如果可逆,求矩陣MN的逆矩陣;如不可逆,說(shuō)明理由.答案:(1)由題設(shè)得MN=k0010110=01k0,由01k000-20-21=000-2k-2,可知A1(0,0)、B1(0,-2)、C1(k,-2).計(jì)算得△ABC面積的面積是1,△A1B1C1的面積是|k|,則由題設(shè)知:|k|=2×1=2.所以k的值為2或-2.(2)令MN=A,設(shè)B=abcd是A的逆矩陣,則AB=0k10abcd=1001?ckdkab=1001?ck=1dk=0a=0b=1①當(dāng)k≠0時(shí),上式?a=0b=1c=1kd=0,MN可逆,(8分)所以MN的逆矩陣是B=011k0.(10分)②當(dāng)k≠0時(shí),上式不可能成立,MN不可逆,(11分).21.若直線過(guò)點(diǎn)(1,2),(),則此直線的傾斜角是()

A.60°

B.45°

C.30°

D.90°答案:C22.設(shè)O是正△ABC的中心,則向量AO,BO.CO是()

A.相等向量

B.模相等的向量

C.共線向量

D.共起點(diǎn)的向量答案:B23.直線L1:x-y=0與直線L2:x+y-10=0的交點(diǎn)坐標(biāo)是()

A.(5,5)

B.(5,-5)

C.(-1,1)

D.(1,1)答案:A24.節(jié)假日時(shí),國(guó)人發(fā)手機(jī)短信問(wèn)候親友已成為一種時(shí)尚,若小李的40名同事中,給其發(fā)短信問(wèn)候的概率為1,0.8,0.5,0的人數(shù)分別是8,15,14,3(人),通常情況下,小李應(yīng)收到同事問(wèn)候的信息條數(shù)為()

A.27

B.37

C.38

D.8答案:A25.下列圖形中不一定是平面圖形的是(

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B26.雙曲線的中心在坐標(biāo)原點(diǎn),離心率等于2,一個(gè)焦點(diǎn)的坐標(biāo)為(2,0),則此雙曲線的漸近線方程是______.答案:∵離心率等于2,一個(gè)焦點(diǎn)的坐標(biāo)為(2,0),∴ca=2,

c=2且焦點(diǎn)在x軸上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以雙曲線的漸進(jìn)方程為y=±3x.故為y=±3x27.平面上一動(dòng)點(diǎn)到兩定點(diǎn)距離差為常數(shù)2a(a>0)的軌跡是否是雙曲線,若a>c是否為雙曲線?答案:由題意,設(shè)兩定點(diǎn)間的距離為2c,則2a<2c時(shí),軌跡為雙曲線的一支2a=2c時(shí),軌跡為一條射線2a>2c時(shí),無(wú)軌跡.28.如圖,點(diǎn)O是正六邊形ABCDEF的中心,則以圖中點(diǎn)A、B、C、D、E、F、O中的任意一點(diǎn)為始點(diǎn),與始點(diǎn)不同的另一點(diǎn)為終點(diǎn)的所有向量中,除向量外,與向量共線的向量共有()

A.2個(gè)

B.3個(gè)

C.6個(gè)

D.9個(gè)

答案:D29.列舉兩種證明兩個(gè)三角形相似的方法.答案:三邊對(duì)應(yīng)成比例,兩個(gè)三角形相似,兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩個(gè)三角形相似.30.已知△ABC的三個(gè)頂點(diǎn)為A(1,-2,5),B(-1,0,1),C(3,-4,5),則邊BC上的中線長(zhǎng)為_(kāi)_____.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中點(diǎn)為D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故為:2.31.一位運(yùn)動(dòng)員投擲鉛球的成績(jī)是14m,當(dāng)鉛球運(yùn)行的水平距離是6m時(shí),達(dá)到最大高度4m.若鉛球運(yùn)行的路線是拋物線,則鉛球出手時(shí)距地面的高度是()

A.2.25m

B.2.15m

C.1.85m

D.1.75m

答案:D32.已知直線方程l1:2x-4y+7=0,l2:x-2y+5=0,則l1與l2的關(guān)系()

A.平行

B.重合

C.相交

D.以上答案都不對(duì)答案:A33.已知直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為三邊長(zhǎng)的三角形()

A.是銳角三角形

B.是鈍角三角形

C.是直角三角形

D.不存在答案:C34.A、B是直線l上的兩點(diǎn),AB=4,AC⊥l于A,BD⊥l于B,AC=BD=3,又AC與BD成60°的角,則C、D兩點(diǎn)間的距離是______答案:CD=CA+AB+BD,|CD|=|

CA+AB+BD|,CD=32+32+42+2×

3×3cosθ,θ=120°或60°,CD=32+32+42±32.CD=5或43故為:5或4335.若點(diǎn)M,A,B,C對(duì)空間任意一點(diǎn)O都滿足則這四個(gè)點(diǎn)()

A.不共線

B.不共面

C.共線

D.共面答案:D36.若a<b<c,x<y<z,則下列各式中值最大的一個(gè)是()

A.a(chǎn)x+cy+bz

B.bx+ay+cz

C.bx+cy+az

D.a(chǎn)x+by+cz答案:D37.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得Χ2≈3.918,經(jīng)查對(duì)臨界值表知P(Χ2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號(hào)是______

(1)有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”

(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒

(3)這種血清預(yù)防感冒的有效率為95%

(4)這種血清預(yù)防感冒的有效率為5%答案:查對(duì)臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”950/0僅是指“血清與預(yù)防感冒”可信程度,但也有“在100個(gè)使用血清的人中一個(gè)患感冒的人也沒(méi)有”的可能.故為:(1).38.若矩陣M=1101,則直線x+y+2=0在M對(duì)應(yīng)的變換作用下所得到的直線方程為_(kāi)_____.答案:設(shè)直線x+y+2=0上任意一點(diǎn)(x0,y0),(x,y)是所得的直線上一點(diǎn),[1

1][x]=[x0][0

1][y]=[y0]∴x+y=x0y=y0,∴代入直線x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故為:x+2y+2=0.39.已知過(guò)點(diǎn)A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()

A.0

B.-8

C.2

D.10答案:B40.如圖的矩形,長(zhǎng)為5,寬為2,在矩形內(nèi)隨機(jī)地撒300顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為138顆,則我們可以估計(jì)出陰影部分的面積為

______.答案:根據(jù)題意:黃豆落在陰影部分的概率是138300矩形的面積為10,設(shè)陰影部分的面積為s則有s10=138300∴s=235故為:23541.不等式﹣2x+1>0的解集是(

).答案:{x|x<}42.向量b與a=(2,-1,2)共線,且a?b=-18,則b的坐標(biāo)為_(kāi)_____.答案:因?yàn)橄蛄縝與a=(2,-1,2)共線,所以設(shè)b=ma,因?yàn)榍襛?b=-18,所以ma2=-18,因?yàn)閨a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故為:(-4,2,-4).43.設(shè)圓O1和圓O2是兩個(gè)定圓,動(dòng)圓P與這兩個(gè)定圓都相切,則圓P的圓心軌跡不可能是()

A.

B.

C.

D.

答案:A44.擲一顆均勻的骰子,若隨機(jī)事件A表示“出現(xiàn)奇數(shù)點(diǎn)”,則A的對(duì)立事件B表示______.答案:擲一顆均勻的骰子,結(jié)果只有2種:出現(xiàn)奇數(shù)點(diǎn)、出現(xiàn)偶數(shù)點(diǎn).若隨機(jī)事件A表示“出現(xiàn)奇數(shù)點(diǎn)”,則A的對(duì)立事件B表示:“出現(xiàn)偶數(shù)點(diǎn)”,故為出現(xiàn)偶數(shù)點(diǎn).45.拋物線x2+y=0的焦點(diǎn)位于()

A.y軸的負(fù)半軸上

B.y軸的正半軸上

C.x軸的負(fù)半軸上

D.x軸的正半軸上答案:A46.寫(xiě)出1×2×3×4×5×6的一個(gè)算法.答案:按照逐一相乘的程序進(jìn)行第一步:計(jì)算1×2,得到2;第二步:將第一步的運(yùn)算結(jié)果2與3相乘,得到6;第三步:將第二步的運(yùn)算結(jié)果6與4相乘,得到24;第四步:將第三步的運(yùn)算結(jié)果24與5相乘,得到120;第五步:將第四的運(yùn)算結(jié)果120與6相乘,得到720;第六步:輸出結(jié)果.47.下列點(diǎn)在x軸上的是()

A.(0.1,0.2,0.3)

B.(0,0,0.001)

C.(5,0,0)

D.(0,0.01,0)答案:C48.下列各式中錯(cuò)誤的是()

A.||2=2

B.||=||

C.0?=0

D.m(n)=mn(m,n∈R)答案:C49.若圓x2+y2=4與圓x2+y2+2ay-6=0(a>0)的公共弦的長(zhǎng)為23,則a=______.答案:由已知x2+y2+2ay-6=0的半徑為6+a2,由圖可知6+a2-(-a-1)2=(3)2,解之得a=1.故為:1.50.直線的參數(shù)方程為,l上的點(diǎn)P1對(duì)應(yīng)的參數(shù)是t1,則點(diǎn)P1與P(a,b)之間的距離是(

A.|t1|

B.2|t1|

C.

D.答案:C第3卷一.綜合題(共50題)1.已知A(0,1),B(3,7),C(x,15)三點(diǎn)共線,則x的值是()

A.5

B.6

C.7

D.8答案:C2.設(shè)F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且·=0,則|PF1|·|PF2|值等于()

A.2

B.2

C.4

D.8答案:A3.四面體ABCD中,設(shè)M是CD的中點(diǎn),則化簡(jiǎn)的結(jié)果是()

A.

B.

C.

D.答案:A4.在直角三角形ABC中,∠ACB=90°,CD、CE分別為斜邊AB上的高和中線,且∠BCD與∠ACD之比為3:1,求證CD=DE.

答案:證明:∵∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B又∵CE是直角△ABC的斜邊AB上的中線∴CE=EB∠B=∠ECB,∠ACD=∠ECB但∵∠BCD=3∠ACD,∠ECD=2∠ACD=12∠ACB=12×90°=45°,△EDC為等腰直角三角形∴CE=DE.5.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點(diǎn)F是AE的中點(diǎn).求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點(diǎn)B為原點(diǎn),BA、BC、BE所在的直線分別為x,y,z軸,建立如圖所示的空間直角坐標(biāo)系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(xiàn)(1,0,1).∴=(0,2,1),=(1,-2,0).設(shè)平面BDF的一個(gè)法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設(shè)AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.6.點(diǎn)P(2,1)到直線

3x+4y+10=0的距離為()A.1B.2C.3D.4答案:由P(2,1),直線方程為3x+4y+10=0,則P到直線的距離d=|6+4+10|32+42=4.故選D7.如圖,⊙O是Rt△ABC的外接圓,點(diǎn)O在AB上,BD⊥AB,點(diǎn)B是垂足,OD∥AC,連接CD.

求證:CD是⊙O的切線.答案:證明:連接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切線.(10分)8.已知平面內(nèi)的向量a,b,c兩兩所成的角相等,且|a|=2,|b|=3,|c|=5,則|a+b+c|的值的集合為_(kāi)_____.答案:設(shè)平面內(nèi)的向量a,b,c兩兩所成的角為α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,當(dāng)α=0°時(shí),|a+b+c|2=100,|a+b+c|=10,當(dāng)α=120°時(shí),|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合為{7,10}.故為:{7,10}.9.已知直線l經(jīng)過(guò)點(diǎn)P(3,1),且被兩平行直線l1;x+y+1=0和l2:x+y+6=0截得的線段之長(zhǎng)為5,求直線l的方程.答案:解法一:若直線l的斜率不存在,則直線l的方程為x=3,此時(shí)與l1、l2的交點(diǎn)分別為A′(3,-4)或B′(3,-9),截得的線段AB的長(zhǎng)|AB|=|-4+9|=5,符合題意.若直線l的斜率存在,則設(shè)直線l的方程為y=k(x-3)+1.解方程組y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程組y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直線方程為y=1.綜上可知,所求l的方程為x=3或y=1.解法二:由題意,直線l1、l2之間的距離為d=|1-6|2=522,且直線L被平行直線l1、l2所截得的線段AB的長(zhǎng)為5,設(shè)直線l與直線l1的夾角為θ,則sinθ=5225=22,故θ=45°.由直線l1:x+y+1=0的傾斜角為135°,知直線l的傾斜角為0°或90°,又由直線l過(guò)點(diǎn)P(3,1),故直線l的方程為:x=3或y=1.解法三:設(shè)直線l與l1、l2分別相交A(x1,y1)、B(x2,y2),則x1+y1+1=0,x2+y2+6=0.兩式相減,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②聯(lián)立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直線l的傾斜角分別為0°或90°.故所求的直線方程為x=3或y=1.10.直線2x-y=7與直線3x+2y-7=0的交點(diǎn)是()

A.(3,-1)

B.(-1,3)

C.(-3,-1)

D.(3,1)答案:A11.如圖是2010年青年歌手大獎(jiǎng)賽中,七位評(píng)委為甲、乙兩名選手打出的分?jǐn)?shù)的莖葉圖(其中m為數(shù)字0~9中的

一個(gè)),去掉一個(gè)最高分和一個(gè)最低分后,甲、乙兩名選手得分的平均數(shù)分別為a1,a2,則一定有()A.a(chǎn)1>a2B.a(chǎn)2>a1C.a(chǎn)1=a2D.a(chǎn)1,a2的大小與m的值有關(guān)答案:由題意知去掉一個(gè)最高分和一個(gè)最低分以后,兩組數(shù)據(jù)都有五個(gè)數(shù)據(jù),代入數(shù)據(jù)可以求得甲和乙的平均分a1=1+4+5×35+80=84,a2=4×3+6+75+80=85,∴a2>a1故選B12.mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為_(kāi)_____.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在兩坐標(biāo)軸上的截距分別為1m,1n.則mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為12|mn|.故為12|mn|.13.設(shè)集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件答案:B14.方程x2+ky2=2表示焦點(diǎn)在y軸的橢圓,那么實(shí)數(shù)k的取值范圍是

______.答案:橢圓方程化為x22+y22k=1.焦點(diǎn)在y軸上,則2k>2,即k<1.又k>0,∴0<k<1.故為:0<k<115.如圖,從圓O外一點(diǎn)P作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=______.答案:由割線長(zhǎng)定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD為正三角形,∠CBD=12∠COD=30°.16.用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n?1?2?…?(2n-1)”(n∈N+)時(shí),從“n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是______.答案:當(dāng)n=k時(shí),左邊等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),當(dāng)n=k+1時(shí),左邊等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故從“k”到“k+1”的證明,左邊需增添的代數(shù)式是(2k+1)(2k+2)(k+1)=2(2k+1),故為:2(2k+1).17.直線2x-3y+10=0的法向量的坐標(biāo)可以是答案:C18.從某校隨機(jī)抽取了100名學(xué)生,將他們的體重(單位:kg)數(shù)據(jù)繪制成頻率分布直方圖(如圖),由圖中數(shù)據(jù)可知m=______,所抽取的學(xué)生中體重在45~50kg的人數(shù)是______.答案:由頻率分步直方圖知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的體重在45~50kg的人數(shù)是0.1×5×100=50人,故為:0.1;5019.圓的極坐標(biāo)方程是ρ=2cosθ+2sinθ,則其圓心的極坐標(biāo)是()

A.(2,)

B.(2,)

C.(1,)

D.(1,)答案:A20.若一個(gè)底面為正三角形、側(cè)棱與底面垂直的棱柱的三視圖如下圖所示,則這個(gè)棱柱的體積為()A.123B.363C.273D.6答案:此幾何體為一個(gè)三棱柱,棱柱的高是4,底面正三角形的高是33,設(shè)底面邊長(zhǎng)為a,則32a=33,∴a=6,故三棱柱體積V=12?62?32?4=363.故選B21.規(guī)定符號(hào)“△”表示一種運(yùn)算,即a△b=ab+a+b,其中a、b∈R+;若1△k=3,則函數(shù)f(x)=k△x的值域______.答案:1△k=k+1+k=3,解得k=1,∴k=1∴f(x)=k△x=kx+k+x=x+x+1對(duì)于x需x≥0,∴對(duì)于f(x)=x+x+1=(x+12)2+34≥1故函數(shù)f(x)的值域?yàn)閇1,+∞)故為:[1,+∞)22.已知A、B、C三點(diǎn)共線,A分的比為λ=-,A,B的縱坐標(biāo)分別為2,5,則點(diǎn)C的縱坐標(biāo)為()

A.-10

B.6

C.8

D.10答案:D23.不等式的解集是(

A.(-3,2)

B.(2,+∞)

C.(-∞,-3)∪(2,+∞)

D.(-∞,-3)∪(3,+∞)答案:C24.用數(shù)學(xué)歸納法證明:1n+1+1n+2+1n+3+…+1n+n>1124

(n∈N,n≥1)答案:證明:(1)當(dāng)n=1時(shí),左邊=12>1124,∴n=1時(shí)成立(2分)(2)假設(shè)當(dāng)n=k(k≥1)時(shí)成立,即1k+1+1k+2+1k+3+…+1k+k>1124那么當(dāng)n=k+1時(shí),左邊=1k+2+1k+3+…+1k+k

+1K+1+k+1k+1+k+1=1k+1+1k+2+1k+3+…+1k+k+1k+k+1

+1k+1+k+1-1k+1>1124+12k+1-12k+2>1124.∴n=k+1時(shí)也成立(7分)根據(jù)(1)(2)可得不等式對(duì)所有的n≥1都成立(8分)25.與

向量

=(2,-1,2)共線且滿足方程=-18的向量為()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D26.曲線xy=1的參數(shù)方程不可能是()

A.

B.

C.

D.答案:B27.已知A(3,4,5),B(0,2,1),O(0,0,0),若,則C的坐標(biāo)是()

A.(-,-,-)

B.(,-,-)

C.(-,-,)

D.(,,)答案:A28.(本小題滿分10分)如圖,D、E分別是AB、AC邊上的點(diǎn),且不與頂點(diǎn)重合,已知為方程的兩根

(1)證明四點(diǎn)共圓

(2)若求四點(diǎn)所在圓的半徑答案:(1)見(jiàn)解析;(2)解析:解:(Ⅰ)如圖,連接DE,依題意在中,,由因?yàn)樗?,?四點(diǎn)C、B、D、E共圓。(Ⅱ)當(dāng)時(shí),方程的根因而,取CE中點(diǎn)G,BD中點(diǎn)F,分別過(guò)G,F做AC,AB的垂線,兩垂線交于點(diǎn)H,連接DH,因?yàn)樗狞c(diǎn)C、B、D、E共圓,所以,H為圓心,半徑為DH.,,所以,,點(diǎn)評(píng):此題考查平面幾何中的圓與相似三角形及方程等概念和性質(zhì)。注意把握判定與性質(zhì)的作用。29.設(shè)全集U={1,2,3,4,5},A∩C∪B={1,2},則集合C∪A∩B的所有子集個(gè)數(shù)最多為()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴當(dāng)集合C∪A∩B的所有子集個(gè)數(shù)最多時(shí),集合B中最多有三個(gè)元素:3,4,5,且A∩B=?,作出文氏圖∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集個(gè)數(shù)為:23=8.故選D.30.函數(shù)y=ax+b和y=bax(a≠0,b>0,且b≠1)的圖象只可能是()A.

B.

C.

D.

答案:對(duì)于A:函數(shù)y=ax+b遞增可得a>0,0<b<1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0故A正確對(duì)于B:函數(shù)y=ax+b遞增可得a>0,b>1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0,矛盾,故B不正確對(duì)于C:函數(shù)y=ax+b遞減可得a<0,0<b<1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0,矛盾,故C不正確對(duì)于D:函數(shù)y=ax+b遞減可得a<0,b>1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞增可得b>1且a>0,矛盾,故D不正確故選A31.若直線y=x+b與圓x2+y2=2相切,則b的值為

______.答案:由題意知,直線y=x+b與圓x2+y2=2相切,∴2=|b|2,解得b=±2.故為:±2.32.設(shè)A、B、C表示△ABC的三個(gè)內(nèi)角的弧度數(shù),a,b,c表示其對(duì)邊,求證:aA+bB+cCa+b+c≥π3.答案:證明:法一、不妨設(shè)A>B>C,則有a>b>c由排序原理:順序和≥亂序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨設(shè)A>B>C,則有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+b+c3,即aA+bB+cC≥π3(a+b+c),∴aA+bB+cCa+b+c≥π3.33.函數(shù)數(shù)列{fn(x)}滿足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時(shí),f1(x)=x1+x22,已知,顯然成立②假設(shè)當(dāng)n=K(K∈N*)4時(shí),猜想成立,即fk(x)=x1+kx2則當(dāng)n=K+1時(shí),fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對(duì)n=K+1時(shí),猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對(duì)一切n∈N*都成立.34.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準(zhǔn)線,C上的點(diǎn)O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點(diǎn)O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線C的方程;

(2)為了降低修路成本,必須使修建的兩條公路總長(zhǎng)最小,請(qǐng)給出修建方案(作出圖形,在圖中標(biāo)出此時(shí)碼頭Q的位置),并求公路總長(zhǎng)的最小值(精確到0.001千米)答案:(1)過(guò)點(diǎn)O作準(zhǔn)線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點(diǎn)為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長(zhǎng)=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線段PF與拋物線C的交點(diǎn)時(shí),公路總長(zhǎng)最小,最小值為9.806千米…(16分)35.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)

=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.36.平面上動(dòng)點(diǎn)M到定點(diǎn)F(3,0)的距離比M到直線l:x+1=0的距離大2,則動(dòng)點(diǎn)M滿足的方程()

A.x2=6y

B.x2=12y

C.y2=6x

D.y2=12x答案:D37.某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸直線方程y=0.68x+54.6

表中有一個(gè)數(shù)據(jù)模糊不清,請(qǐng)你推斷出該數(shù)據(jù)的值為()A.68B.68.2C.69D.75答案:設(shè)表中

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論