版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年青海衛(wèi)生職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知三角形ABC的一個(gè)頂點(diǎn)A(2,3),AB邊上的高所在的直線方程為x-2y+3=0,角B的平分線所在的直線方程為x+y-4=0,求此三角形三邊所在的直線方程.答案:由題意可得AB邊的斜率為-2,由點(diǎn)斜式求得AB邊所在的直線方程為y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0
求得x=3y=1,故點(diǎn)B的坐標(biāo)為(3,1).設(shè)點(diǎn)A關(guān)于角B的平分線所在的直線方程為x+y-4=0的對(duì)稱點(diǎn)為M(a,b),則M在BC邊所在的直線上.則由b-3a-2=-1a+22+b+32-4=0
求得a=1b=2,故點(diǎn)M(1,2),由兩點(diǎn)式求得BC的方程為y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得點(diǎn)C的坐標(biāo)為(2,52),由此可得得AC的方程為x=2.2.設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:
(1)xn>2,且xn+1xn<1(n=1,2…);
(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當(dāng)n=1時(shí),∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12
-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設(shè)n=k時(shí),結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當(dāng)n=1時(shí)成立假設(shè)不等式當(dāng)n=k(k≥1)時(shí)成立當(dāng)n=k+1時(shí),由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設(shè)知,上面最后一個(gè)不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對(duì)所有的正整數(shù)n成立3.一圓形紙片的圓心為點(diǎn)O,點(diǎn)Q是圓內(nèi)異于O點(diǎn)的一定點(diǎn),點(diǎn)A是圓周上一點(diǎn).把紙片折疊使點(diǎn)A與Q重合,然后展平紙片,折痕與OA交于P點(diǎn).當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是()A.圓B.橢圓C.雙曲線D.拋物線答案:如圖所示,由題意可知:折痕l為線段AQ的垂直平分線,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是以點(diǎn)O,D為焦點(diǎn),長軸長為R的橢圓.故選B.4.若log
23(x-2)≥0,則x的范圍是______.答案:由log
23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故為(2,3].5.以雙曲線x24-y216=1的右焦點(diǎn)為圓心,且被其漸近線截得的弦長為6的圓的方程為______.答案:雙曲線x24-y216=1的右焦點(diǎn)為F(25,0),一條漸近線為2x+y=0.∴所求圓的圓心為(25,0).∵所求圓被漸近線2x+y=0截得的弦長為6,∴圓心為(25,0)到漸近線2x+y=0的距離d=455=4,圓半徑r=9+16=5,∴所求圓的方程是(x-25)2+y2=25.故為(x-25)2+y2=25.6.命題:“方程x2-1=0的解是x=±1”,其使用邏輯聯(lián)結(jié)詞的情況是()A.使用了邏輯聯(lián)結(jié)詞“且”B.使用了邏輯聯(lián)結(jié)詞“或”C.使用了邏輯聯(lián)結(jié)詞“非”D.沒有使用邏輯聯(lián)結(jié)詞答案:“x=±1”可以寫成“x=1或x=-1”,故選B.7.設(shè)a、b、c均為正數(shù).求證:≥.答案:證明略解析:證明
方法一
∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥
(·+·+·)2=.∴+≥.方法二
令,則∴左邊=≥=.∴原不等式成立.8.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點(diǎn),在以A、B、C、D、E、F為端點(diǎn)的有向線段中所表示的向量中,
(1)與向量FE共線的有
______.
(2)與向量DF的模相等的有
______.
(3)與向量ED相等的有
______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.9.設(shè)a=log32,b=log23,c=,則()
A.c<b<a
B.a(chǎn)<c<b
C.c<a<b
D.b<c<a答案:C10.點(diǎn)M(2,-3,1)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的點(diǎn)是()
A.(-2,3,-1)
B.(-2,-3,-1)
C.(2,-3,-1)
D.(-2,3,1)答案:A11.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實(shí)數(shù)k的取值范圍為______.答案:∵當(dāng)(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實(shí)數(shù)k的取值范圍為k≠±1.故為:k≠±1.12.設(shè)四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個(gè)四邊形是
______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對(duì)角線相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.13.已知命題p、q,若命題“p∨q”與命題“¬p”都是真命題,則()A.命題q一定是真命題B.命題q不一定是真命題C.命題p不一定是假命題D.命題p與命題q的真值相等答案:∵命題“¬p”與命題“p∨q”都是真命題,∴命題p為假命題,q為真命題.故選A.14.點(diǎn)(1,2)到直線x+2y+5=0的距離為______.答案:點(diǎn)(1,2)到直線x+2y+5=0的距離為d=|1+2×2+5|12+22=25故為:2515.如圖,PA切圓O于點(diǎn)A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)600到OD,則PD的長為()
A.3
B.
C.
D.
答案:D16.在用樣本頻率估計(jì)總體分布的過程中,下列說法正確的是()A.總體容量越大,估計(jì)越精確B.總體容量越小,估計(jì)越精確C.樣本容量越大,估計(jì)越精確D.樣本容量越小,估計(jì)越精確答案:∵用樣本頻率估計(jì)總體分布的過程中,估計(jì)的是否準(zhǔn)確與總體的數(shù)量無關(guān),只與樣本容量在總體中所占的比例有關(guān),∴樣本容量越大,估計(jì)的月準(zhǔn)確,故選C.17.已知△ABC∽△DEF,且相似比為3:4,S△ABC=2cm2,則S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比為3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故為:329.18.三棱錐A-BCD中,平面ABD與平面BCD的法向量分別為n1,n2,若<n1,n2>=,則二面角A-BD-C的大小為()
A.
B.
C.或
D.或答案:C19.α為第一象限角是sinαcosα>0的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:若α為第一象限角,則sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,則①sinα>0,cosα>0,此時(shí)α為第一象限角.或②sinα<0,cosα<0,此時(shí)α為第三象限角.所以α為第一象限角是sinαcosα>0的充分不必要條件.故選A.20.到兩互相垂直的異面直線的距離相等的點(diǎn),在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是()
A.直線
B.橢圓
C.拋物線
D.雙曲線答案:D21.閱讀下面的程序框圖,該程序運(yùn)行后輸出的結(jié)果為______.答案:循環(huán)前,S=0,A=1,第1次判斷后循環(huán),S=1,A=2,第2次判斷并循環(huán),S=3,A=3,第3次判斷并循環(huán),S=6,A=4,第4次判斷并循環(huán),S=10,A=5,第5次判斷并循環(huán),S=15,A=6,第6次判斷并退出循環(huán),輸出S=15.故為:15.22.設(shè)、、是三角形的邊長,求證:
≥答案:證明見解析解析:證明:由不等式的對(duì)稱性,不防設(shè)≥≥,則≥左式-右式≥≥≥023.意大利數(shù)學(xué)家菲波拉契,在1202年出版的一書里提出了這樣的一個(gè)問題:一對(duì)兔子飼養(yǎng)到第二個(gè)月進(jìn)入成年,第三個(gè)月生一對(duì)小兔,以后每個(gè)月生一對(duì)小兔,所生小兔能全部存活并且也是第二個(gè)月成年,第三個(gè)月生一對(duì)小兔,以后每月生一對(duì)小兔.問這樣下去到年底應(yīng)有多少對(duì)兔子?試畫出解決此問題的程序框圖,并編寫相應(yīng)的程序.答案:見解析解析:解:根據(jù)題意可知,第一個(gè)月有對(duì)小兔,第二個(gè)月有對(duì)成年兔子,第三個(gè)月有兩對(duì)兔子,從第三個(gè)月開始,每個(gè)月的兔子對(duì)數(shù)是前面兩個(gè)月兔子對(duì)數(shù)的和,設(shè)第個(gè)月有對(duì)兔子,第個(gè)月有對(duì)兔子,第個(gè)月有對(duì)兔子,則有,一個(gè)月后,即第個(gè)月時(shí),式中變量的新值應(yīng)變第個(gè)月兔子的對(duì)數(shù)(的舊值),變量的新值應(yīng)變?yōu)榈趥€(gè)月兔子的對(duì)數(shù)(的舊值),這樣,用求出變量的新值就是個(gè)月兔子的數(shù),依此類推,可以得到一個(gè)數(shù)序列,數(shù)序列的第項(xiàng)就是年底應(yīng)有兔子對(duì)數(shù),我們可以先確定前兩個(gè)月的兔子對(duì)數(shù)均為,以此為基準(zhǔn),構(gòu)造一個(gè)循環(huán)程序,讓表示“第×個(gè)月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結(jié)果.流程圖和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND24.某班從6名班干部(其中男生4人,女生2人)中選3人參加學(xué)校學(xué)生會(huì)的干部競(jìng)選.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率.答案:(1)ξ的所有可能取值為0,1,2.依題意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列為ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)設(shè)“男生甲被選中的情況下,女生乙也被選中”為事件C,“男生甲被選中”為事件A,“女生乙被選中”為事件B從4個(gè)男生、2個(gè)女生中選3人,男生甲被選中的種數(shù)為n(A)=C52=10,男生甲被選中,女生乙也被選中的種數(shù)為n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被選中的情況下,女生乙也被選中的概率為25.25.雙曲線x2n-y2=1(n>1)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,P在雙曲線上,且滿足|PF1|+|PF2|=2n+2,則△PF1F2的面積為______.答案:令|PF1|=x,|PF2|=y,依題意可知x+y=2n+2x-y=2n解得x=n+2+n,y=n+2-n,∴x2+y2=(2n+2+n)2+(2n+2-n)2=4n+4∵|F1F2|=2n+1∴|F1F2|2=4n+4∴x2+y2|F1F2|2∴△PF1F2為直角三角形∴△PF1F2的面積為12xy=(2n+2+n)(n+2-n)=1故為:1.26.已知點(diǎn)O為△ABC外接圓的圓心,且有,則△ABC的內(nèi)角A等于()
A.30°
B.60°
C.90°
D.120°答案:A27.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共線;④共線向量一定相等;⑤長度相等的向量是相等向量;⑥平行于同一個(gè)向量的兩個(gè)向量是共線向量,其中正確的命題是______.答案:∵平行向量即為共線向量其定義是方向相同或相反;相等向量的定義是模相等、方向相同;①平行向量不一定相等;故錯(cuò);②不相等的向量也可能不平行;故錯(cuò);③相等向量一定共線;正確;④共線向量不一定相等;故錯(cuò);⑤長度相等的向量方向相反時(shí)不是相等向量;故錯(cuò);⑥平行于零向量的兩個(gè)向量是不一定是共線向量,故錯(cuò).其中正確的命題是③.故為:③.28.從單詞“equation”選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排列共有()A.120個(gè)B.480個(gè)C.720個(gè)D.840個(gè)答案:要選取5個(gè)字母時(shí)首先從其它6個(gè)字母中選3個(gè)有C63種結(jié)果,再與“qu“組成的一個(gè)元素進(jìn)行全排列共有C63A44=480,故選B.29.若橢圓x225+y216=1上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離是______.答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故為430.
已知橢圓(θ為參數(shù))上的點(diǎn)P到它的兩個(gè)焦點(diǎn)F1、F2的距離之比,
且∠PF1F2=α(0<α<),則α的最大值為()
A.
B.
C.
D.答案:A31.用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個(gè)能被2整除”,那么反設(shè)的內(nèi)容是______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的步驟,應(yīng)先假設(shè)要證命題的否定成立,而要證命題的否定為:“a,b都不能被2整除”,故為:a、b都不能被2整除.32.參數(shù)方程,(θ為參數(shù))表示的曲線是()
A.直線
B.圓
C.橢圓
D.拋物線答案:C33.甲、乙兩人進(jìn)行乒乓球比賽,比賽規(guī)則為“3局2勝”,即以先贏2局者為勝.根據(jù)經(jīng)驗(yàn),每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(
)
A.0.216
B.0.36
C.0.432
D.0.648答案:D34.若向量a=(4,2,-4),b=(6,-3,2),則(2a-3b)?(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)?(a+2b)=-10×16+13×(-4)=-212故為-21235.執(zhí)行如圖所示的程序框圖,輸出的M的值為()
A.17
B.53
C.161
D.485
答案:C36.與向量a=(12,5)平行的單位向量為()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:設(shè)與向量a=(12,5)平行的單位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故選C.37.如圖是從甲、乙兩個(gè)班級(jí)各隨機(jī)選出9名同學(xué)進(jìn)行測(cè)驗(yàn)成績的莖葉圖,從圖中看,平均成績較高的是______班.答案:∵莖葉圖的數(shù)據(jù)得到甲同學(xué)成績:46,58,61,64,71,74,75,84,87;莖葉圖的數(shù)據(jù)得到乙同學(xué)成績:57,62,65,75,79,81,84,87,89.∴甲平均成績?yōu)?9;乙平均成績?yōu)?5;故為:乙.38.已知實(shí)數(shù)x、y滿足(x-2)2+y2+(x+2)2+y2=6,則2x+y的最大值等于______.答案:∵實(shí)數(shù)x、y滿足(x-2)2+y2+(x+2)2+y2=6,∴點(diǎn)(x,y)的軌跡是橢圓,其方程為x29+y25=1,所以可設(shè)x=3cosθ,y=5sinθ,則z=6cosθ+5sinθ=41sin(θ+
β)≤41,∴2x+y的最大值等于41.故為:4139.下列向量組中,能作為表示它們所在平面內(nèi)所有向量的基底的是()A.a(chǎn)=(0,0),b=(1,-2)B.a(chǎn)=(1,-2),b=(2,-4)C.a(chǎn)=(3,5),b=(6,10)D.a(chǎn)=(2,-3),b=(6,9)答案:可以作為基底的向量需要是不共線的向量,A中一個(gè)向量是零向量,兩個(gè)向量共線,不合要求B中兩個(gè)向量是a=12b,兩個(gè)向量共線,C項(xiàng)中的兩個(gè)向量也共線,故選D.40.設(shè)A(1,-1,1),B(3,1,5),則線段AB的中點(diǎn)在空間直角坐標(biāo)系中的位置是()
A.在y軸上
B.在xOy面內(nèi)
C.在xOz面內(nèi)
D.在yOz面內(nèi)答案:C41.參數(shù)方程x=2cosαy=3sinα(a為參數(shù))化成普通方程為______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:參數(shù)方程x=2cosαy=3sinα化成普通方程為:x24+y29=1.故為:x24+y29=1.42.過橢圓4x2+y2=1的一個(gè)焦點(diǎn)F1的直線與橢圓交于A,B兩點(diǎn),則A與B和橢圓的另一個(gè)焦點(diǎn)F1構(gòu)成的△ABF2的周長為()
A.2
B.2
C.4
D.8答案:C43.如圖過拋物線y2=2px(p>0)的焦點(diǎn)F的直線依次交拋物線及準(zhǔn)線于點(diǎn)A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為()
A.y2=x
B.y2=9x
C.y2=x
D.y2=3x
答案:D44.已知原點(diǎn)O(0,0),則點(diǎn)O到直線4x+3y+5=0的距離等于
______.答案:利用點(diǎn)到直線的距離公式得到d=|5|42+32=1,故為1.45.如圖,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點(diǎn)D、E.求∠DAC的度數(shù)與線段AE的長.答案:如圖,連接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因?yàn)椤螦CB=90°,得∠CAB=30°,那么∠EAB=60°,從而∠ABE=30°,于是AE=12AB=3.(10分)46.對(duì)某種花卉的開放花期追蹤調(diào)查,調(diào)查情況如表:
花期(天)11~1314~1617~1920~22個(gè)數(shù)20403010則這種卉的平均花期為______天.答案:由表格知,花期平均為12天的有20個(gè),花期平均為15天的有40個(gè),花期平均為18天的有30個(gè),花期平均為21天的有10個(gè),∴這種花卉的評(píng)價(jià)花期是12×20+15×40+18×30+21×10100=16,故為:1647.一平面截球面產(chǎn)生的截面形狀是______;它截圓柱面所產(chǎn)生的截面形狀是______.答案:根據(jù)球的幾何特征,一平面截球面產(chǎn)生的截面形狀是圓;當(dāng)平面與圓柱的底面平行時(shí),截圓柱面所產(chǎn)生的截面形狀為圓;當(dāng)平面與圓柱的底面不平行時(shí),截圓柱面所產(chǎn)生的截面形狀為橢圓;故為:圓,圓或橢圓48.已知x、y的取值如下表所示:
x0134y2.24.34.86.7若從散點(diǎn)圖分析,y與x線性相關(guān),且
y=0.95x+
a,則
a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴這組數(shù)據(jù)的樣本中心點(diǎn)是(2,4.5)∵y與x線性相關(guān),且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故選A.49.已知指數(shù)函數(shù)f(x)的圖象過點(diǎn)(3,8),求f(6)的值.答案:設(shè)指數(shù)函數(shù)為:f(x)=ax,因?yàn)橹笖?shù)函數(shù)f(x)的圖象過點(diǎn)(3,8),所以8=a3,∴a=2,所求指數(shù)函數(shù)為f(x)=2x;所以f(6)=26=64所以f(6)的值為64.50.一個(gè)盒子裝有10個(gè)紅、白兩色同一型號(hào)的乒乓球,已知紅色乒乓球有3個(gè),若從盒子里隨機(jī)取出3個(gè)乒乓球,則其中含有紅色乒乓球個(gè)數(shù)的數(shù)學(xué)期望是______.答案:由題設(shè)知含有紅色乒乓球個(gè)數(shù)ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×
2140+2×740+3×1120=910.故為:910.第2卷一.綜合題(共50題)1.將命題“正數(shù)a的平方大于零”改寫成“若p,則q”的形式,并寫出它的逆命題、否命題與逆否命題.答案:原命題可以寫成:若a是正數(shù),則a的平方大于零;逆命題:若a的平方大于零,則a是正數(shù);否命題:若a不是正數(shù),則a的平方不大于零;逆否命題:若a的平方不大于零,則a不是正數(shù).2.離心率e=23,短軸長為85的橢圓標(biāo)準(zhǔn)方程為______.答案:離心率e=23,短軸長為85,所以ca=23;b=45又a2=b2+c2解得a2=144,b2=80所以橢圓標(biāo)準(zhǔn)方程為x2144+y280=1或y2144+x280=1故為x2144+y280=1或y2144+x280=13.若關(guān)于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,則實(shí)數(shù)a的取值范圍是
A.[-1,1]
B.[-1,3]
C.(-1,1)
D.(-1,3)答案:D4.已知橢圓C的左右焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),離心率22,直線y=x-1與橢圓C交于不同的兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)求弦AB的長度.答案:(本小題滿分13分)(1)依題意可設(shè)橢圓C的方程為x2a2+y2b2=1(a>b>0)…(1分)則c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴橢圓C的方程為x28+y24=1…(6分)(2)設(shè)A(x1,y1),B(x2,y2)…(7分)聯(lián)立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1?x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]
=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)5.袋中有4個(gè)形狀大小一樣的球,編號(hào)分別為1,2,3,4,從中任取2個(gè)球,則這2個(gè)球的編號(hào)之和為偶數(shù)的概率為()A.16B.23C.12D.13答案:根據(jù)題意,從4個(gè)球中取出2個(gè),其編號(hào)的情況有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6種;其中編號(hào)之和為偶數(shù)的有(1,3),(2,4),共2種;則2個(gè)球的編號(hào)之和為偶數(shù)的概率P=26=13;故選D.6.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時(shí),應(yīng)選用()
A.散點(diǎn)圖
B.莖葉圖
C.頻率分布直方圖
D.頻率分布折線圖答案:A7.扇形周長為10,則扇形面積的最大值是()A.52B.254C.252D.102答案:設(shè)半徑為r,弧長為l,則周長為2r+l=10,面積為s=12lr,因?yàn)?0=2r+l≥22rl,所以rl≤252,所以s≤254故選B8.在下列4個(gè)命題中,是真命題的序號(hào)為()
①3≥3;
②100或50是10的倍數(shù);
③有兩個(gè)角是銳角的三角形是銳角三角形;
④等腰三角形至少有兩個(gè)內(nèi)角相等.
A.①
B.①②
C.①②③
D.①②④答案:D9.點(diǎn)P(,)與圓x2+y2=1的位置關(guān)系是()
A.在圓內(nèi)
B.在圓外
C.在圓上
D.與t有關(guān)答案:C10.在平行六面體ABCD-A′B′C′D′中,向量是()
A.有相同起點(diǎn)的向量
B.等長的向量
C.共面向量
D.不共面向量答案:C11.已知某種從太空飛船中帶回的植物種子每粒成功發(fā)芽的概率都為,某植物研究所分兩個(gè)小組分別獨(dú)立開展該種子的發(fā)芽試驗(yàn),每次試驗(yàn)種一粒種子,假定某次試驗(yàn)種子發(fā)芽,則稱該次試驗(yàn)是成功的,如果種子沒有發(fā)芽,則稱該次試驗(yàn)是失敗的.
(1)第一個(gè)小組做了三次試驗(yàn),求至少兩次試驗(yàn)成功的概率;
(2)第二個(gè)小組進(jìn)行試驗(yàn),到成功了4次為止,求在第四次成功之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.答案:(1)(2)解析:(1)第一個(gè)小組做了三次試驗(yàn),至少兩次試驗(yàn)成功的概率是P(A)=·+=.(2)第二個(gè)小組在第4次成功前,共進(jìn)行了6次試驗(yàn),其中三次成功三次失敗,且恰有兩次連續(xù)失敗,其中各種可能的情況種數(shù)為=12.因此所求的概率為P(B)=12×·=.12.棱長為1的正方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)都在球O的表面上,E,F(xiàn)分別是棱AA1,DD1的中點(diǎn),則直線EF被球O截得的線段長為()
A.
B.1
C.1+
D.答案:D13.已知大于1的正數(shù)x,y,z滿足x+y+z=33.
(1)求證:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.
(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴l(xiāng)og3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3當(dāng)且僅當(dāng)x=y=z=3時(shí),等號(hào)成立.故所求的最小值是3.14.與函數(shù)y=x相等的函數(shù)是()A.f(x)=(x)2B.f(x)=x2xC.f(x)=x2D.f(x)=3x3答案:對(duì)于A,f(x)=x(x≥0),不符合;對(duì)于B,f(x)=x(x≠0),不符合;對(duì)于C,f(x)=|x|(x∈R),不符合;對(duì)于D,f(x)=x(x∈R),符合;故選D.15.某商人將彩電先按原價(jià)提高40%,然后在廣告中寫上“大酬賓,八折優(yōu)惠”,結(jié)果是每臺(tái)彩電比原價(jià)多賺了270元,則每臺(tái)彩電原價(jià)是______元.答案:設(shè)每臺(tái)彩電的原價(jià)是x元,則有:(1+40%)x×0.8-x=270,解得:x=2250,故為:2250.16.以原點(diǎn)為圓心,且截直線3x+4y+15=0所得弦長為8的圓的方程是()A.x2+y2=5B.x2+y2=16C.x2+y2=4D.x2+y2=25答案:弦心距是:1525=3,弦長為8,所以半徑是5所求圓的方程是:x2+y2=25故選D.17.如圖,設(shè)P,Q為△ABC內(nèi)的兩點(diǎn),且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB
所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:4518.已知關(guān)于x的方程2kx2-2x-3k-2=0的兩實(shí)根一個(gè)小于1,另一個(gè)大于1,求實(shí)數(shù)k的取值范圍。答案:解:令,為使方程f(x)=0的兩實(shí)根一個(gè)小于1,另一個(gè)大于1,只需或,即或,解得k>0或k<-4,故k的取值范圍是k>0或k<-4.19.如圖所示,正方體的棱長為1,點(diǎn)A是其一棱的中點(diǎn),則點(diǎn)A在空間直角坐標(biāo)系中的坐標(biāo)是()
A.(,,1)
B.(1,1,)
C.(,1,)
D.(1,,1)
答案:B20.否定結(jié)論“至少有一個(gè)解”的說法中,正確的是()
A.至多有一個(gè)解
B.至少有兩個(gè)解
C.恰有一個(gè)解
D.沒有解答案:D21.x>1是x>2的()A.充分但不必要條件B.充要條件C.必要但不充分條件D.既不充分又不必要條件答案:由x>1,我們不一定能得出x>2,比如x=1.5,所以x>1不是x>2的充分條件;∵x>2>1,∴由x>2,能得出x>1,∴x>1是x>2的必要條件∴x>1是x>2的必要但不充分條件故選C.22.已知在一場(chǎng)比賽中,甲運(yùn)動(dòng)員贏乙、丙的概率分別為0.8,0.7,比賽沒有平局.若甲分別與乙、丙各進(jìn)行一場(chǎng)比賽,則甲取得一勝一負(fù)的概率是______.答案:根據(jù)題意,甲取得一勝一負(fù)包含兩種情況,甲勝乙負(fù)丙,概率為:0.8×0.3=0.24;甲勝丙負(fù)乙,概率為:0.2×0.7=0.14;∴甲取得一勝一負(fù)的概率為0.24+0.14=0.38故為0.3823.關(guān)于x的方程ax+b=0,當(dāng)a,b滿足條件______
時(shí),方程的解集是有限集;滿足條件______
時(shí),方程的解集是無限集;滿足條件______
時(shí),方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個(gè)解時(shí),為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時(shí),方程有無數(shù)組解,方程的解集是無限集;滿足條件
a=0,b≠0
時(shí),方程無解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;
a=0,b≠0.24.已知三個(gè)數(shù)a=60.7,b=0.76,c=log0.76,則a,b,c從小到大的順序?yàn)開_____.答案:因?yàn)閍=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故為c<b<a.25.在某路段檢測(cè)點(diǎn)對(duì)200輛汽車的車速進(jìn)行檢測(cè),檢測(cè)結(jié)果表示為如圖所示的頻率分布直方圖,則車速不小于90km/h的汽車有輛.()A.60B.90C.120D.150答案:頻率=頻率組距×組距=(0.02+0.01)×10=0.3,頻數(shù)=頻率×樣本總數(shù)=200×0.3=60(輛).故選A.26.已知點(diǎn)A(-1,-2),B(2,3),若直線l:x+y-c=0與線段AB有公共點(diǎn),則直線l在y軸上的截距的取值范圍是()
A.[-3,5]
B.[-5,3]
C.[3,5]
D.[-5,-3]答案:A27.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一個(gè)動(dòng)點(diǎn),F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設(shè)A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負(fù)值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p28.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個(gè)矩陣變換,其中O是坐標(biāo)原點(diǎn),n∈N*.已知OP1=(2,0),則OP2011的坐標(biāo)為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標(biāo)不變,縱坐標(biāo)構(gòu)成以0為首項(xiàng),2為公差的等差數(shù)列∴OP2011的坐標(biāo)為(2,4020)故為:(2,4020)29.若a為實(shí)數(shù),,則a等于()
A.
B.-
C.2
D.-2答案:B30.口袋中有5只球,編號(hào)為1,2,3,4,5,從中任取3球,以ξ表示取出的球的最大號(hào)碼,則Eξ的值是()A.4B.4.5C.4.75D.5答案:由題意,ξ的取值可以是3,4,5ξ=3時(shí),概率是1C35=110ξ=4時(shí),概率是C23C35=310(最大的是4其它兩個(gè)從1、2、3里面隨機(jī)?。│?5時(shí),概率是C24C35=610(最大的是5,其它兩個(gè)從1、2、3、4里面隨機(jī)取)∴期望Eξ=3×110+4×310+5×610=4.5故選B.31.在△ABC中,D為AB上一點(diǎn),M為△ABC內(nèi)一點(diǎn),且滿足AD=34AB,AM=AD+35BC,則△AMD與△ABC的面積比為()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故選D.32.平面向量的夾角為,則等于(
)
A.
B.3
C.7
D.79答案:A33.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點(diǎn),且OA⊥OB,OA=2,C為OA的中點(diǎn),連接BC并延長交圓O于點(diǎn)D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點(diǎn),∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.34.用數(shù)學(xué)歸納法證明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:證明:(1)當(dāng)n=1時(shí),左邊=12=1,右邊=1×2×36=1,等式成立.(4分)(2)假設(shè)當(dāng)n=k時(shí),等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,當(dāng)n=k+1時(shí),12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6這就是說,當(dāng)n=k+1時(shí)等式也成立.(10分)根據(jù)(1)和(2),可知等式對(duì)任何n∈N*都成立.(12分)35.若由一個(gè)2*2列聯(lián)表中的數(shù)據(jù)計(jì)算得k2=4.013,那么有()把握認(rèn)為兩個(gè)變量有關(guān)系.
A.95%
B.97.5%
C.99%
D.99.9%答案:A36.已知圓臺(tái)的上下底面半徑分別是2cm、5cm,高為3cm,求圓臺(tái)的體積.答案:∵圓臺(tái)的上下底面半徑分別是2cm、5cm,高為3cm,∴圓臺(tái)的體積V=13×3×(4π+4π?25π+25π)=39πcm3.37.點(diǎn)P(x,y)是橢圓2x2+3y2=12上的一個(gè)動(dòng)點(diǎn),則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標(biāo)準(zhǔn)方程,得x26+y24=1,∴這個(gè)橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.38.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G.
(1)求證:圓心O在直線AD上.
(2)求證:點(diǎn)C是線段GD的中點(diǎn).答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線∴圓心O在直線AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點(diǎn)F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點(diǎn)C是線段GD的中點(diǎn).(10分)39.設(shè)計(jì)一個(gè)計(jì)算1×3×5×7×9×11×13的算法.圖中給出了程序的一部分,則在橫線①上不能填入的數(shù)是()
A.13
B.13.5
C.14
D.14.5答案:A40.化簡的結(jié)果是()
A.a(chǎn)2
B.a(chǎn)
C.a(chǎn)
D.a(chǎn)答案:C41.已知三個(gè)向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:實(shí)數(shù)λ,μ,使p=λq+μr,則a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在實(shí)數(shù),,使p=λq+μr,故向量p、q、r共面.42.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()
A.2
B.3
C.4
D.5答案:C43.若直線l經(jīng)過原點(diǎn)和點(diǎn)A(-2,-2),則它的斜率為()
A.-1
B.1
C.1或-1
D.0答案:B44.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點(diǎn)為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.45.已知拋物線y=14x2,則過其焦點(diǎn)垂直于其對(duì)稱軸的直線方程為______.答案:拋物線y=14x2的標(biāo)準(zhǔn)方程為x2=4y的焦點(diǎn)F(0,1),對(duì)稱軸為y軸所以拋物線y=14x2,則過其焦點(diǎn)垂直于其對(duì)稱軸的直線方程為y=1故為y=1.46.已知直線經(jīng)過點(diǎn)A(0,4)和點(diǎn)B(1,2),則直線AB的斜率為()
A.3
B.-2
C.2
D.不存在答案:B47.如圖,已知⊙O是△ABC的外接圓,AB為直徑,若PA⊥AB,PO過AC的中點(diǎn)M,求證:PC是⊙O的切線.答案:證明:連接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO過AC的中點(diǎn)M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO與△PCO中有OA=OC,∠AOP=∠COP,PO=PO.∴△PAO≌△PCO.(6分)∴∠PCO=∠PA0=90°.即PC是⊙O的切線.(7分)48.如圖,在⊙O中,弦CD垂直于直徑AB,求證:CBCO=CDCA.答案:證明:連接AD,如圖所示:由垂徑定理得:AD=AC又∵OC=OB∴∠ADC=∠OBC=∠ACD=∠OCB∴△CAD∽△COB∴CBCO=CDCA.49.若隨機(jī)向一個(gè)半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π50.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()
A.3
B.
C.
D.4答案:B第3卷一.綜合題(共50題)1.如圖程序框圖表達(dá)式中N=______.答案:該程序按如下步驟運(yùn)行①N=1×2,此時(shí)i變成3,滿足i≤5,進(jìn)入下一步循環(huán);②N=1×2×3,此時(shí)i變成4,滿足i≤5,進(jìn)入下一步循環(huán);③N=1×2×3×4,此時(shí)i變成5,滿足i≤5,進(jìn)入下一步循環(huán);④N=1×2×3×4×5,此時(shí)i變成6,不滿足i≤5,結(jié)束循環(huán)體并輸出N的值因此,最終輸出的N等于1×2×3×4×5=120故為:1202.如圖,F(xiàn)是定直線l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點(diǎn),過A、B分別作l的垂線與圓C過F的切線相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線的同一條拋物線上.
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線的方程;
(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:“若過拋物線焦點(diǎn)F的直線與拋物線相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線的準(zhǔn)線l相切”請(qǐng)問:此命題是正確?試證明你的判斷;
(Ⅲ)請(qǐng)選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))答案:(Ⅰ)過F作l的垂線交l于K,以KF的中點(diǎn)為原點(diǎn),KF所在直線為x軸建立平面直角坐標(biāo)系如圖1,并設(shè)|KF|=p,則可得該拋物線的方程為
y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設(shè)PQ中點(diǎn)為M,P、Q、M在拋物線準(zhǔn)線l上的射影分別為A、B、D,∵PQ是拋物線過焦點(diǎn)F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M(jìn)是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類比(Ⅱ)所寫出的命題為:“過橢圓一焦點(diǎn)F的直線與橢圓交于P、Q兩點(diǎn),則以PQ為直徑的圓與橢圓相應(yīng)的準(zhǔn)線l相離”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準(zhǔn)線l相離.選擇雙曲線類比(Ⅱ)所寫出的命題為:“過雙曲線一焦點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn),則以PQ為直徑的圓與雙曲線相應(yīng)的準(zhǔn)線l相交”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則e>1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準(zhǔn)線l相交.3.用行列式討論關(guān)于x,y
的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時(shí),D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時(shí),D=0,Dx≠0,方程組無解;…(2分)(3)當(dāng)m=1時(shí),D=Dx=Dy=0,方程組有無窮多組解,此時(shí)方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)4.如圖所示,面積為S的平面凸四邊形的第i條邊的邊長記為ai(i=1,2,3,4),此四邊形內(nèi)任一點(diǎn)P到第i條邊的距離記為hi(i=1,2,3,4),若a11=a22=a33=a44=k,則4
i=1(ihi)=2Sk.類比以上性質(zhì),體積為V的三棱錐的第i個(gè)面的面積記為Si(i=1,2,3,4),此三棱錐內(nèi)任一點(diǎn)Q到第i個(gè)面的距離記為Hi(i=1,2,3,4),若S11=S22=S33=S44=K,則4
i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根據(jù)三棱錐的體積公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故選B.5.國旗上的正五角星的每一個(gè)頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.6.直線y=3的一個(gè)單位法向量是______.答案:直線y=3的方向向量是(a,0)(a≠0),不妨?。?,0)設(shè)直線y=3的法向量為n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直線y=3的一個(gè)單位法向量是(0,1)故為:(0,1)7.在大小相同的5個(gè)球中,2個(gè)是紅球,3個(gè)是白球,若從中任取2個(gè),則所取的2個(gè)球中至少有一個(gè)紅球的概率是______.答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的基本事件有C52=10種結(jié)果,其中至少有一個(gè)紅球的事件包括C22+C21C31=7個(gè)基本事件,根據(jù)古典概型公式得到P=710,故為:710.8.選修4-2:矩陣與變換
已知矩陣A=33cd,若矩陣A屬于特征值6的一個(gè)特征向量為α1=11,屬于特征值1的一個(gè)特征向量為α2=3-2.求矩陣A的逆矩陣.答案:由矩陣A屬于特征值6的一個(gè)特征向量為α1=11,可得33cd11=611,即c+d=6;由矩陣A屬于特征值1的一個(gè)特征向量為α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩陣是23-12-1312.9.一圓形紙片的圓心為O,點(diǎn)Q是圓內(nèi)異于O點(diǎn)的一個(gè)定點(diǎn),點(diǎn)A是圓周上一動(dòng)點(diǎn),把紙片折疊使得點(diǎn)A與點(diǎn)Q重合,然后抹平紙片,折痕CD與OA交于點(diǎn)P,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)P的軌跡為()
A.橢圓
B.雙曲線
C.拋物線
D.圓答案:A10.在空間有三個(gè)向量AB、BC、CD,則AB+BC+CD=()A.ACB.ADC.BDD.0答案:如圖:AB+BC+CD=AC+CD=AD.故選B.11.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點(diǎn),
cos〈,〉=.
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.答案:(1)點(diǎn)E的坐標(biāo)是(1,1,1)(2)F是AD的中點(diǎn)時(shí)滿足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設(shè)P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點(diǎn)E的坐標(biāo)是(1,1,1).(2)∵F∈平面PAD,∴可設(shè)F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點(diǎn)的坐標(biāo)為(1,0,0)即點(diǎn)F是AD的中點(diǎn)時(shí)滿足EF⊥平面PCB.12.在空間直角坐標(biāo)系中,已知點(diǎn)A(1,0,2),B(1,-3,1),點(diǎn)M在y軸上,且M到A與到B的距離相等,則M的坐標(biāo)是______.答案:設(shè)M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故為:(0,-1,0).13.已知直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為三邊長的三角形()
A.是銳角三角形
B.是鈍角三角形
C.是直角三角形
D.不存在答案:C14.在四邊形ABCD中有AC=AB+AD,則它的形狀一定是______.答案:由向量加法的平行四邊形法則及AC=AB+AD,知四邊形ABCD為平行四邊形,故為:平行四邊形.15.在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(-1,1),若取原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,則在下列選項(xiàng)中,不是點(diǎn)P極坐標(biāo)的是()
A.()
B.()
C.()
D.()答案:D16.下列命題:
①用相關(guān)系數(shù)r來刻畫回歸的效果時(shí),r的值越大,說明模型擬合的效果越好;
②對(duì)分類變量X與Y的隨機(jī)變量的K2觀測(cè)值來說,K2越小,“X與Y有關(guān)系”可信程度越大;
③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;
其中正確命題的序號(hào)是
______.(寫出所有正確命題的序號(hào))答案:①是由于r可能是負(fù)值,要改為|r|的值越大,說明模型擬合的效果越好,故①錯(cuò)誤,②對(duì)分類變量X與Y的隨機(jī)變量的K2觀測(cè)值來說,K2越大,“X與Y有關(guān)系”可信程度越大;故②正確③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;故③正確,故為:③17.“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù)(大前提),而y=(12)x是指數(shù)函數(shù)(小前提),所以函數(shù)y=(12)x是增函數(shù)(結(jié)論)”,上面推理的錯(cuò)誤在于______(大前提、小前提、結(jié)論).答案:∵當(dāng)a>1時(shí),函數(shù)是一個(gè)增函數(shù),當(dāng)0<a<1時(shí),指數(shù)函數(shù)是一個(gè)減函數(shù)∴y=ax是增函數(shù)這個(gè)大前提是錯(cuò)誤的,從而導(dǎo)致結(jié)論錯(cuò).故為:大前提.18.用反證法證明“a+b=1”時(shí)的反設(shè)為()
A.a(chǎn)+b>1且a+b<1
B.a(chǎn)+b>1
C.a(chǎn)+b>1或a+b<1
D.a(chǎn)+b<1答案:C19.設(shè)f(x)=ex(x≤0)ln
x(x>0),則f[f(13)]=______.答案:因?yàn)閒(x)=ex(x≤0)ln
x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故為13.20.點(diǎn)(1,-1)在圓(x-a)2+(y-a)2=4的內(nèi)部,則a取值范圍是()
A.-1<a<1
B.0<a<1
C.a(chǎn)<-1或a>1
D.a(chǎn)≠±1答案:A21.在空間中,有如下命題:
①互相平行的兩條直線在同一個(gè)平面內(nèi)的射影必然是互相平行的兩條直線;
②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;
③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β.
其中正確命題的個(gè)數(shù)為()個(gè).
A.0
B.1
C.2
D.3答案:B22.設(shè)P是邊長為23的正△ABC內(nèi)的一點(diǎn),x,y,z是P到三角形三邊的距離,則x+y+z的最大值為______.答案:正三角形的邊長為a=23,可得它的高等于32a=3∵P是正三角形內(nèi)部一點(diǎn)∴點(diǎn)P到三角形三邊的距離之和等于正三角形的高,即x+y+z=3∵(x+y+z)2=(1×x+1×y+1×z)2≤(1+1+1)(x+y+z)=9∴x+y+z≤3,當(dāng)且僅當(dāng)x=y=z=1時(shí),x+y+z的最大值為3故為:323.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時(shí),應(yīng)選用()
A.散點(diǎn)圖
B.莖葉圖
C.頻率分布直方圖
D.頻率分布折線圖答案:A24.如圖:已知圓上的弧
AC=
BD,過C點(diǎn)的圓的切線與BA的延長線交于E點(diǎn),證明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因?yàn)锳C=BD,所以∠BCD=∠ABC.又因?yàn)镋C與圓相切于點(diǎn)C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因?yàn)椤螮CB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)25.某學(xué)生離家去學(xué)校,由于怕遲到,所以一開始就跑步,等跑累了再走余下的路程.
在如圖中縱軸表示離學(xué)校的距離,橫軸表示出發(fā)后的時(shí)間,則如圖中的四個(gè)圖形中較符合該學(xué)生走法的是()A.
B.
C.
D.
答案:由題意可知:由于怕遲到,所以一開始就跑步,所以剛開始離學(xué)校的距離隨時(shí)間的推移應(yīng)該相對(duì)較快.而等跑累了再走余下的路程,則說明離學(xué)校的距離隨時(shí)間的推移在后半段時(shí)間應(yīng)該相對(duì)較慢.所以適合的圖象為:故選B.26.點(diǎn)M的直角坐標(biāo)是,則點(diǎn)M的極坐標(biāo)為()
A.(2,)
B.(2,-)
C.(2,)
D.(2,2kπ+)(k∈Z)答案:C27.已知F是拋物線C:y2=4x的焦點(diǎn),過F且斜率為1的直線交C于A,B兩點(diǎn).設(shè)|FA|>|FB|,則|FA|與|FB|的比值等于______.答案:設(shè)A(x1,y1)B(x2,y2)由y=x-1y2=4x?x2-6x+1=0?x1=3+22,x2=3-22,(x1>x2)∴由拋物線的定義知|FA||FB|=x1+1x2+1=4+224-22=2+22-2=3+22故為:3+2228.下列程序表示的算法是輾轉(zhuǎn)相除法,請(qǐng)?jiān)诳瞻滋幪钌舷鄳?yīng)語句:
(1)處填______;
(2)處填______.答案:∵程序表示的算法是輾轉(zhuǎn)相除法,根據(jù)輾轉(zhuǎn)相除法,先求出m除以n的余數(shù),然后利用輾轉(zhuǎn)相除法,將n的值賦給m,將余數(shù)賦給n,一直算到余數(shù)為零時(shí)m的值即可,∴(1)處應(yīng)該為r=mMODn;(2)處應(yīng)該為r=0.故為r=mMODn;r=0.29.某年級(jí)共有210名同學(xué)參加數(shù)學(xué)期中考試,隨機(jī)抽取10名同學(xué)成績?nèi)缦拢?/p>
成績(分)506173859094人數(shù)221212則總體標(biāo)準(zhǔn)差的點(diǎn)估計(jì)值為______(結(jié)果精確到0.01).答案:由題意知本題需要先做出這組數(shù)據(jù)的平均數(shù)50×2+61×2+73+2×85+90+2×9410=74.9,這組數(shù)據(jù)的總體方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴總體標(biāo)準(zhǔn)差是309.76≈17.60,故為:17.60.30.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()
A.
B.
C.
D.
答案:A31.以下四組向量中,互相平行的是.()
(1)=(1,2,1),=(1,-2,3);
(2)=(8,4,-6),=(4,2,-3);
(3)=(0,1,-1),=(0,-3,3);
(4)=(-3,2,0),=(4,-3,3).
A.(1)(2)
B.(2)(3)
C.(2)(4)
D.(1)(3)答案:B32.已知隨機(jī)變量X的分布列為:P(X=k)=,k=1,2,…,則P(2<X≤4)等于()
A.
B.
C.
D.答案:A33.正方體ABCD-A1B1C1D1的棱長為1,點(diǎn)M是棱AB的中點(diǎn),點(diǎn)P是平面ABCD上的一動(dòng)點(diǎn),且點(diǎn)P到直線A1D1的距離兩倍的平方比到點(diǎn)M的距離的平方大4,則點(diǎn)P的軌跡為()A.圓B.橢圓C.雙曲線D.拋物線答案:在平面ABCD上,以AD為x軸,以AB為y軸建立平面直角坐標(biāo)系,則M(,12,0),設(shè)P(x,y)則|MP|2=y2+(x-12)2點(diǎn)P到直線A1D1的距離為x2+1由題意得4(x2+1)=
y2+(x-12)2+4即3(x+12)2-y2=74選C34.已知圓的方程是(x-2)2+(y-3)2=4,則點(diǎn)P(3,2)滿足()
A.是圓心
B.在圓上
C.在圓內(nèi)
D.在圓外答案:C35.已知集合M={2,a,b},N={2a,2,b2}且M=N.求a、b的值.答案:由M=N及集合中元素的互異性,得a=2ab=b2
①或a=b2b=2a
②解①得:a=0b=1或a=0b=0,解②得:a=14b=12,當(dāng)a=0b=0時(shí),違背了集合中元素的互異性,所以舍去,故a、b的值為a=0b=1或a=14b=12.36.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.37.用演繹法證明y=x2是增函數(shù)時(shí)的大前提是______.答案:∵證明y=x2是增函數(shù)時(shí),依據(jù)的原理就是增函數(shù)的定義,∴用演繹法證明y=x2是增函數(shù)時(shí)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 化學(xué)反應(yīng)與能量變化說課稿
- 紅眼睛綠眼睛說課稿
- 肥胖癥的預(yù)防及其治療
- 電器廠采光井施工合同
- 寵物行業(yè)稅務(wù)管理
- 企業(yè)品牌宣傳租賃合同
- 電商推廣違約承諾書
- 化工原料出口招投標(biāo)實(shí)習(xí)報(bào)告
- 酒店會(huì)議室建設(shè)施工合同建筑膜
- 教育設(shè)施招投標(biāo)流程在線檢驗(yàn)
- 蔬菜栽培的季節(jié)與茬口安排-隴東學(xué)院教學(xué)提綱
- 教研課平行四邊形和梯形的復(fù)習(xí)ppt
- 三年級(jí)《稻草人》閱讀測(cè)試試題附答案
- 《新聞學(xué)概論》第十章
- 超材料(metamaterials)教學(xué)講解課件
- S曲線和技術(shù)進(jìn)化法則TRIZ專題培訓(xùn)課件
- 小學(xué)數(shù)學(xué)北師大四年級(jí)上冊(cè)數(shù)學(xué)好玩 數(shù)圖形的學(xué)問 省一等獎(jiǎng)
- 運(yùn)算放大器知識(shí)介紹課件
- LIS檢驗(yàn)信息系統(tǒng)課件
- 基于PLC的自動(dòng)化生產(chǎn)線的畢業(yè)設(shè)計(jì)
- XRD結(jié)構(gòu)解析基礎(chǔ)課件
評(píng)論
0/150
提交評(píng)論