版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.2.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內(nèi)切 B.相交 C.外切 D.相離3.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)4.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.5.黨的十九大報告明確提出:在共享經(jīng)濟等領(lǐng)域培育增長點、形成新動能.共享經(jīng)濟是公眾將閑置資源通過社會化平臺與他人共享,進(jìn)而獲得收入的經(jīng)濟現(xiàn)象.為考察共享經(jīng)濟對企業(yè)經(jīng)濟活躍度的影響,在四個不同的企業(yè)各取兩個部門進(jìn)行共享經(jīng)濟對比試驗,根據(jù)四個企業(yè)得到的試驗數(shù)據(jù)畫出如下四個等高條形圖,最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.6.已知復(fù)數(shù),滿足,則()A.1 B. C. D.57.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.設(shè)M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.9.設(shè),是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則10.已知為圓的一條直徑,點的坐標(biāo)滿足不等式組則的取值范圍為()A. B.C. D.11.設(shè)雙曲線的左右焦點分別為,點.已知動點在雙曲線的右支上,且點不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.12.臺球是一項國際上廣泛流行的高雅室內(nèi)體育運動,也叫桌球(中國粵港澳地區(qū)的叫法)、撞球(中國臺灣地區(qū)的叫法)控制撞球點、球的旋轉(zhuǎn)等控制母球走位是擊球的一項重要技術(shù),一次臺球技術(shù)表演節(jié)目中,在臺球桌上,畫出如圖正方形ABCD,在點E,F(xiàn)處各放一個目標(biāo)球,表演者先將母球放在點A處,通過擊打母球,使其依次撞擊點E,F(xiàn)處的目標(biāo)球,最后停在點C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm二、填空題:本題共4小題,每小題5分,共20分。13.在中,已知,則的最小值是________.14.如圖,在菱形ABCD中,AB=3,,E,F(xiàn)分別為BC,CD上的點,,若線段EF上存在一點M,使得,則____________,____________.(本題第1空2分,第2空3分)15.在數(shù)列中,,,曲線在點處的切線經(jīng)過點,下列四個結(jié)論:①;②;③;④數(shù)列是等比數(shù)列;其中所有正確結(jié)論的編號是______.16.曲線在點(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實數(shù)=____。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦點在軸上,且順次連接四個頂點恰好構(gòu)成了一個邊長為且面積為的菱形.(1)求橢圓的方程;(2)設(shè),過橢圓右焦點的直線交于、兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.18.(12分)已知函數(shù),.(1)當(dāng)時,①求函數(shù)在點處的切線方程;②比較與的大小;(2)當(dāng)時,若對時,,且有唯一零點,證明:.19.(12分)已知函數(shù).(1)若是函數(shù)的極值點,求的單調(diào)區(qū)間;(2)當(dāng)時,證明:20.(12分)已知矩陣不存在逆矩陣,且非零特低值對應(yīng)的一個特征向量,求的值.21.(12分)設(shè)數(shù)列,其前項和,又單調(diào)遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項公式;(Ⅱ)若,求數(shù)列的前n項和,并求證:.22.(10分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據(jù)直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎(chǔ)題.2.B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r3.C【解析】
利用導(dǎo)數(shù)求得在上遞增,結(jié)合與圖象,判斷出的大小關(guān)系,由此比較出的大小關(guān)系.【詳解】因為,所以在上單調(diào)遞增;在同一坐標(biāo)系中作與圖象,,可得,故.故選:C【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性比較大小,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.4.B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.5.D【解析】根據(jù)四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果,故選D.6.A【解析】
首先根據(jù)復(fù)數(shù)代數(shù)形式的除法運算求出,求出的模即可.【詳解】解:,,故選:A【點睛】本題考查了復(fù)數(shù)求模問題,考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.7.B【解析】
由兩直線垂直求得則或,再根據(jù)充要條件的判定方法,即可求解.【詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【點睛】本題主要考查了兩直線的位置關(guān)系,及必要不充分條件的判定,其中解答中利用兩直線的位置關(guān)系求得的值,同時熟記充要條件的判定方法是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.8.B【解析】
設(shè),通過,再利用向量的加減運算可得,結(jié)合條件即可得解.【詳解】設(shè),則有.又,所以,有.故選B.【點睛】本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.9.D【解析】試題分析:,,故選D.考點:點線面的位置關(guān)系.10.D【解析】
首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點與圓心距離,數(shù)形結(jié)合即可得到答案.【詳解】作出可行域如圖所示設(shè)圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點睛】本題考查與線性規(guī)劃相關(guān)的取值范圍問題,涉及到向量的線性運算、數(shù)量積、點到直線的距離等知識,考查學(xué)生轉(zhuǎn)化與劃歸的思想,是一道中檔題.11.A【解析】
依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于中檔題.12.D【解析】
過點做正方形邊的垂線,如圖,設(shè),利用直線三角形中的邊角關(guān)系,將用表示出來,根據(jù),列方程求出,進(jìn)而可得正方形的邊長.【詳解】過點做正方形邊的垂線,如圖,設(shè),則,,則,因為,則,整理化簡得,又,得,.即該正方形的邊長為.故選:D.【點睛】本題考查直角三角形中的邊角關(guān)系,關(guān)鍵是要構(gòu)造直角三角形,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結(jié)合余弦定理整理為,再由cosC的余弦定理得到a,b的關(guān)系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當(dāng)a=b時取到等號,故cosC的最小值為.點睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運用,能正確轉(zhuǎn)化是解題關(guān)鍵.屬于中檔題.14.【解析】
根據(jù)題意,設(shè),則,所以,解得,所以,從而有.15.①③④【解析】
先利用導(dǎo)數(shù)求得曲線在點處的切線方程,由此求得與的遞推關(guān)系式,進(jìn)而證得數(shù)列是等比數(shù)列,由此判斷出四個結(jié)論中正確的結(jié)論編號.【詳解】∵,∴曲線在點處的切線方程為,則.∵,∴,則是首項為1,公比為的等比數(shù)列,從而,,.故所有正確結(jié)論的編號是①③④.故答案為:①③④【點睛】本小題主要考查曲線的切線方程的求法,考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查等比數(shù)列通項公式和前項和公式,屬于基礎(chǔ)題.16.或1【解析】
利用導(dǎo)數(shù)的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點,由三角形的面積公式可得所求值.【詳解】的導(dǎo)數(shù)為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點為,,切線與的交點為,可得,解得或。【點睛】本題主要考查利用導(dǎo)數(shù)求切線方程,以及直線方程的運用,三角形的面積求法。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)由已知條件列出關(guān)于和的方程,并計算出和的值,jike得到橢圓的方程.(2)設(shè)出點和點坐標(biāo),運用點坐標(biāo)計算出,分類討論直線的斜率存在和不存在兩種情況,求解出的最小值.【詳解】(1)由己知得:,解得,所以,橢圓的方程(2)設(shè),.當(dāng)直線垂直于軸時,,且此時,,當(dāng)直線不垂直于軸時,設(shè)直線由,得.,.要使恒成立,只需,即最小值為【點睛】本題考查了求解橢圓方程以及直線與橢圓的位置關(guān)系,求解過程中需要分類討論直線的斜率存在和不存在兩種情況,并運用根與系數(shù)的關(guān)系轉(zhuǎn)化為只含一個變量的表達(dá)式進(jìn)行求解,需要掌握解題方法,并且有一定的計算量.18.(1)①見解析,②見解析;(2)見解析【解析】
(1)①把代入函數(shù)解析式,求出函數(shù)的導(dǎo)函數(shù)得到,再求出,利用直線方程的點斜式求函數(shù)在點處的切線方程;②令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時,;當(dāng)時,;當(dāng)時,.(2)由題意,,在上有唯一零點.利用導(dǎo)數(shù)可得當(dāng)時,在上單調(diào)遞減,當(dāng),時,在,上單調(diào)遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調(diào)遞減,進(jìn)一步得到在上單調(diào)遞增,由此可得.【詳解】解:(1)①當(dāng)時,,,,又,切線方程為,即;②令,則,在上單調(diào)遞減.又,當(dāng)時,,即;當(dāng)時,,即;當(dāng)時,,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點.當(dāng)時,,在上單調(diào)遞減,當(dāng),時,,在,上單調(diào)遞增..在恒成立,且有唯一解,,即,消去,得,即.令,則,在上恒成立,在上單調(diào)遞減,又,,.在上單調(diào)遞增,.【點睛】本題考查利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查邏輯思維能力與推理論證能力,屬難題.19.(1)遞減區(qū)間為(-1,0),遞增區(qū)間為(2)見解析【解析】
(1)根據(jù)函數(shù)解析式,先求得導(dǎo)函數(shù),由是函數(shù)的極值點可求得參數(shù).求得函數(shù)定義域,并根據(jù)導(dǎo)函數(shù)的符號即可判斷單調(diào)區(qū)間.(2)當(dāng)時,.代入函數(shù)解析式放縮為,代入證明的不等式可化為,構(gòu)造函數(shù),并求得,由函數(shù)單調(diào)性及零點存在定理可知存在唯一的,使得成立,因而求得函數(shù)的最小值,由對數(shù)式變形化簡可證明,即成立,原不等式得證.【詳解】(1)函數(shù)可求得,則解得所以,定義域為,在單調(diào)遞增,而,∴當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,此時是函數(shù)的極小值點,的遞減區(qū)間為,遞增區(qū)間為(2)證明:當(dāng)時,,因此要證當(dāng)時,,只需證明,即令,則,在是單調(diào)遞增,而,∴存在唯一的,使得,當(dāng),單調(diào)遞減,當(dāng),單調(diào)遞增,因此當(dāng)時,函數(shù)取得最小值,,,故,從而,即,結(jié)論成立.【點睛】本題考查了由函數(shù)極值求參數(shù),并根據(jù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)區(qū)間,利用導(dǎo)數(shù)證明不等式恒成立,構(gòu)造函數(shù)法的綜合應(yīng)用,屬于難題.20.【解析】
由不存在逆矩陣,可得,再利用特征多項式求出特征值3,0,,利用矩陣乘法運算即可.【詳解】因為不存在逆矩陣,,所以.矩陣的特征多項式為,令,則或,所以,即,所以,所以【點睛】本題考查矩陣的乘法及特征值、特征向量有關(guān)的問題,考查學(xué)生的運算能力,是一道容易題.21.(1),;(2)詳見解析.【解析】
(1)當(dāng)時,,當(dāng)時,,當(dāng)時,也滿足,∴,∵等比數(shù)列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,顯然數(shù)列是遞增數(shù)列,∴,即.)22.(1);(2)證明見解析【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院老人康復(fù)理療師考核獎懲制度
- 【地球課件】地基基礎(chǔ)設(shè)計理論與荷載
- 九年級歷史期末試卷答題卡-教案課件-初中歷史九年級上冊部編版
- 房屋租賃的合同(2篇)
- 《食品安全和營養(yǎng)》課件
- 2025年拉薩貨運從業(yè)資格證模擬試題題庫及答案大全
- 2025年揚州貨運從業(yè)資格證考些什么內(nèi)容
- 2024年土地承包合同終止后的土地經(jīng)營權(quán)租賃協(xié)議6篇
- 中國古代禮儀文明課件-婚禮
- 2025年沈陽經(jīng)營性道路客貨運輸駕駛員從業(yè)資格考試
- 2023年04月2023年內(nèi)蒙古鄂爾多斯生態(tài)環(huán)境職業(yè)學(xué)院教師招考聘用筆試題庫含答案解析
- 部編版三年級語文上期末專項訓(xùn)練 作文總復(fù)習(xí)(八個單元含范文)優(yōu)質(zhì)
- 配電線路缺陷管理
- 2023年國航股份招聘筆試參考題庫附帶答案詳解
- 精英中學(xué)-高三物理一輪10.7組合、復(fù)合場六個應(yīng)用 提綱 - 副本
- 2022年10月西藏昌都市招考大學(xué)生村(居)鄉(xiāng)村振興專干、科技專干、醫(yī)務(wù)人員、農(nóng)業(yè)農(nóng)村工作專員和鄉(xiāng)村幼教人員筆試題庫含答案解析
- 卡拉瓦喬課件
- 涉詐風(fēng)險賬戶審查表
- 物控部(PMC課)年終總結(jié)報告PPT模板主要展示工作數(shù)據(jù)
- 宣布處分決定講話
評論
0/150
提交評論