版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知A(,),B(2,)兩點在雙曲線上,且,則m的取值范圍是()A. B. C. D.2.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m3.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-24.為了盡早適應中考體育項目,小麗同學加強跳繩訓練,并把某周的練習情況做了如下記錄:周一個,周二個,周三個,周四個,周五個則小麗這周跳繩個數(shù)的中位數(shù)和眾數(shù)分別是A.180個,160個 B.170個,160個C.170個,180個 D.160個,200個5.如圖,在矩形ABCD中,AB=2,AD=3,點E是BC邊上靠近點B的三等分點,動點P從點A出發(fā),沿路徑A→D→C→E運動,則△APE的面積y與點P經(jīng)過的路徑長x之間的函數(shù)關系用圖象表示大致是()A. B. C. D.6.下面的幾何圖形是由四個相同的小正方體搭成的,其中主視圖和左視圖相同的是()A.B.C.D.7.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是()A. B. C. D.8.如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結論不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC9.有下列四種說法:①半徑確定了,圓就確定了;②直徑是弦;③弦是直徑;④半圓是弧,但弧不一定是半圓.其中,錯誤的說法有()A.1種 B.2種 C.3種 D.4種10.如圖,菱形中,對角線AC、BD交于點O,E為AD邊中點,菱形ABCD的周長為28,則OE的長等于()A.3.5 B.4 C.7 D.14二、填空題(本大題共6個小題,每小題3分,共18分)11.如果,那么=_____.12.如圖,數(shù)軸上點A所表示的實數(shù)是________________.13.因式分解:____________.14.已知一元二次方程2x2﹣5x+1=0的兩根為m,n,則m2+n2=_____.15.如圖,數(shù)軸上點A表示的數(shù)為a,化簡:a_____.16.一個不透明的袋子中裝有5個球,其中3個紅球、2個黑球,這些球除顏色外無其它差別,現(xiàn)從袋子中隨機摸出一個球,則它是黑球的概率是_____.三、解答題(共8題,共72分)17.(8分)如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6,ADBD=218.(8分)在某校舉辦的2012年秋季運動會結束之后,學校需要為參加運動會的同學們發(fā)紀念品.小王負責到某商場買某種紀念品,該商場規(guī)定:一次性購買該紀念品200個以上可以按折扣價出售;購買200個以下(包括200個)只能按原價出售.小王若按照原計劃的數(shù)量購買紀念品,只能按原價付款,共需要1050元;若多買35個,則按折扣價付款,恰好共需1050元.設小王按原計劃購買紀念品x個.(1)求x的范圍;(2)如果按原價購買5個紀念品與按打折價購買6個紀念品的錢數(shù)相同,那么小王原計劃購買多少個紀念品?19.(8分)在正方形ABCD中,動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.(1)如圖1,當點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數(shù)量關系和位置關系,并說明理由;(2)如圖2,當E,F(xiàn)分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,請你直接寫出△ACE為等腰三角形時CE:CD的值;(3)如圖3,當E,F(xiàn)分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F(xiàn)的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.20.(8分)如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉60°而得,且AB⊥BC,BE=CE,連接DE.(1)求證:△BDE≌△BCE;(2)試判斷四邊形ABED的形狀,并說明理由.21.(8分)小馬虎做一道數(shù)學題,“已知兩個多項式,,試求.”其中多項式的二次項系數(shù)印刷不清楚.小馬虎看答案以后知道,請你替小馬虎求出系數(shù)“”;在(1)的基礎上,小馬虎已經(jīng)將多項式正確求出,老師又給出了一個多項式,要求小馬虎求出的結果.小馬虎在求解時,誤把“”看成“”,結果求出的答案為.請你替小馬虎求出“”的正確答案.22.(10分)某車間的甲、乙兩名工人分別同時生產(chǎn)只同一型號的零件,他們生產(chǎn)的零件(只)與生產(chǎn)時間(分)的函數(shù)關系的圖象如圖所示.根據(jù)圖象提供的信息解答下列問題:(1)甲每分鐘生產(chǎn)零件_______只;乙在提高生產(chǎn)速度之前已生產(chǎn)了零件_______只;(2)若乙提高速度后,乙的生產(chǎn)速度是甲的倍,請分別求出甲、乙兩人生產(chǎn)全過程中,生產(chǎn)的零件(只)與生產(chǎn)時間(分)的函數(shù)關系式;(3)當兩人生產(chǎn)零件的只數(shù)相等時,求生產(chǎn)的時間;并求出此時甲工人還有多少只零件沒有生產(chǎn).23.(12分)進入冬季,某商家根據(jù)市民健康需要,代理銷售一種防塵口罩,進貨價為20元/包,經(jīng)市場銷售發(fā)現(xiàn):銷售單價為30元/包時,每周可售出200包,每漲價1元,就少售出5包.若供貨廠家規(guī)定市場價不得低于30元/包.試確定周銷售量y(包)與售價x(元/包)之間的函數(shù)關系式;試確定商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價x(元/包)之間的函數(shù)關系式,并直接寫出售價x的范圍;當售價x(元/包)定為多少元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大?最大利潤是多少?24.圖1是一商場的推拉門,已知門的寬度米,且兩扇門的大小相同(即),將左邊的門繞門軸向里面旋轉,將右邊的門繞門軸向外面旋轉,其示意圖如圖2,求此時與之間的距離(結果保留一位小數(shù)).(參考數(shù)據(jù):,,)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
∵A(,),B(2,)兩點在雙曲線上,∴根據(jù)點在曲線上,點的坐標滿足方程的關系,得.∵,∴,解得.故選D.【詳解】請在此輸入詳解!2、B【解析】
因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據(jù)正弦來解題,求出∠CAB,進而得出∠C′AB′的度數(shù),然后可以求出魚線B'C'長度.【詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【點睛】此題主要考查了解直角三角形的應用,解本題的關鍵是把實際問題轉化為數(shù)學問題.3、A【解析】試題分析:原方程變形為:x(x-1)=0x1=0,x1=1.故選A.考點:解一元二次方程-因式分解法.4、B【解析】
根據(jù)中位數(shù)和眾數(shù)的定義分別進行解答即可.【詳解】解:把這些數(shù)從小到大排列為160,160,170,180,200,最中間的數(shù)是170,則中位數(shù)是170;160出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是160;故選B.【點睛】此題考查了中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的定義是解題的關鍵;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).5、B【解析】
由題意可知,當時,;當時,;當時,.∵時,;時,.∴結合函數(shù)解析式,可知選項B正確.【點睛】考點:1.動點問題的函數(shù)圖象;2.三角形的面積.6、C【解析】試題分析:觀察可得,只有選項C的主視圖和左視圖相同,都為,故答案選C.考點:簡單幾何體的三視圖.7、B【解析】
根據(jù)菱形的性質得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進而求出即可.【詳解】連接BD,∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設AD、BE相交于點G,設BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF-S△ABD==.故選B.8、C【解析】
解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴選項ABD都一定成立.故選C.9、B【解析】
根據(jù)弦的定義、弧的定義、以及確定圓的條件即可解決.【詳解】解:圓確定的條件是確定圓心與半徑,是假命題,故此說法錯誤;直徑是弦,直徑是圓內(nèi)最長的弦,是真命題,故此說法正確;弦是直徑,只有過圓心的弦才是直徑,是假命題,故此說法錯誤;④半圓是弧,但弧不一定是半圓,圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫半圓,所以半圓是弧.但比半圓大的弧是優(yōu)弧,比半圓小的弧是劣弧,不是所有的弧都是半圓,是真命題,故此說法正確.
其中錯誤說法的是①③兩個.故選B.【點睛】本題考查弦與直徑的區(qū)別,弧與半圓的區(qū)別,及確定圓的條件,不要將弦與直徑、弧與半圓混淆.10、A【解析】
根據(jù)菱形的四條邊都相等求出AB,再根據(jù)菱形的對角線互相平分可得OB=OD,然后判斷出OE是△ABD的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求解即可.【詳解】解:∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD,∵E為AD邊中點,∴OE是△ABD的中位線,∴OE=AB=×7=3.1.故選:A.【點睛】本題考查了菱形的性質,三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質與定理是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題解析:設a=2t,b=3t,故答案為:12、【解析】
A點到-1的距離等于直角三角形斜邊的長度,應用勾股定理求解出直角三角形斜邊長度即可.【詳解】解:直角三角形斜邊長度為,則A點到-1的距離等于,則A點所表示的數(shù)為:﹣1+【點睛】本題考查了利用勾股定理求解數(shù)軸上點所表示的數(shù).13、3(x-2)(x+2)【解析】
先提取公因式3,再根據(jù)平方差公式進行分解即可求得答案.注意分解要徹底.【詳解】原式=3(x2﹣4)=3(x-2)(x+2).故答案為3(x-2)(x+2).【點睛】本題考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式進行二次分解,注意分解要徹底.14、【解析】
先由根與系數(shù)的關系得:兩根和與兩根積,再將m2+n2進行變形,化成和或積的形式,代入即可.【詳解】由根與系數(shù)的關系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案為:.【點睛】本題考查了利用根與系數(shù)的關系求代數(shù)式的值,先將一元二次方程化為一般形式,寫出兩根的和與積的值,再將所求式子進行變形;如、x12+x22等等,本題是??碱}型,利用完全平方公式進行轉化.15、1.【解析】
直接利用二次根式的性質以及結合數(shù)軸得出a的取值范圍進而化簡即可.【詳解】由數(shù)軸可得:0<a<1,則a+=a+=a+(1﹣a)=1.故答案為1.【點睛】本題主要考查了二次根式的性質與化簡,正確得出a的取值范圍是解題的關鍵.16、【解析】
用黑球的個數(shù)除以總球的個數(shù)即可得出黑球的概率.【詳解】解:∵袋子中共有5個球,有2個黑球,∴從袋子中隨機摸出一個球,它是黑球的概率為;故答案為.【點睛】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.三、解答題(共8題,共72分)17、(1)證明見解析;(2)BE=5【解析】試題分析:連接OD.根據(jù)圓周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以證明是切線.(2)根據(jù)已知條件得到△CDA∽△CBD由相似三角形的性質得到CDBD=ADBD.試題解析:(1)連接OD.∵OB=OD,∴∠OBD=∠BDO.∵∠CDA=∠CBD,∴∠CDA=∠ODB.又∵AB是⊙O的直徑,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD.∵OD是⊙O的半徑,∴CD是⊙O的切線;(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,CD∵ADBD=2∵CE,BE是⊙O的切線,∴BE=DE,BE⊥BC,∴BE2+BC2=EC2,即BE2+62=(4+BE)2,解得BE=.18、(1)0<x≤200,且x是整數(shù)(2)175【解析】
(1)根據(jù)商場的規(guī)定確定出x的范圍即可;(2)設小王原計劃購買x個紀念品,根據(jù)按原價購買5個紀念品與按打折價購買6個紀念品的錢數(shù)相同列出分式方程,求出解即可得到結果.【詳解】(1)根據(jù)題意得:0<x≤200,且x為整數(shù);(2)設小王原計劃購買x個紀念品,根據(jù)題意得:,整理得:5x+175=6x,解得:x=175,經(jīng)檢驗x=175是分式方程的解,且滿足題意,則小王原計劃購買175個紀念品.【點睛】此題考查了分式方程的應用,弄清題中的等量關系“按原價購買5個紀念品與按打折價購買6個紀念品的錢數(shù)相同”是解本題的關鍵.19、(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)【解析】試題分析:(1)根據(jù)正方形的性質,由SAS先證得△ADE≌△DCF.由全等三角形的性質得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當AC=CE時,設正方形ABCD的邊長為a,由勾股定理求出AC=CE=a即可;②當AE=AC時,設正方形的邊長為a,由勾股定理求出AC=AE=a,根據(jù)正方形的性質知∠ADC=90°,然后根據(jù)等腰三角形的性質得出DE=CD=a即可;(3)由(1)(2)知:點P的路徑是一段以AD為直徑的圓,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最大,再由勾股定理可得QC的長,再求CP即可.試題解析:(1)AE=DF,AE⊥DF,理由是:∵四邊形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動,∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的結論還成立,有兩種情況:①如圖1,當AC=CE時,設正方形ABCD的邊長為a,由勾股定理得,,則;②如圖2,當AE=AC時,設正方形ABCD的邊長為a,由勾股定理得:,∵四邊形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵點P在運動中保持∠APD=90°,∴點P的路徑是以AD為直徑的圓,如圖3,設AD的中點為Q,連接CQ并延長交圓弧于點P,此時CP的長度最大,∵在Rt△QDC中,∴,即線段CP的最大值是.點睛:此題主要考查了正方形的性質,勾股定理,圓周角定理,全等三角形的性質與判定,等腰三角形的性質,三角形的內(nèi)角和定理,能綜合運用性質進行推擠是解此題的關鍵,用了分類討論思想,難度偏大.20、證明見解析.【解析】
(1)根據(jù)旋轉的性質可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據(jù)垂直可得出∠DBE=∠CBE=30°,繼而可根據(jù)SAS證明△BDE≌△BCE;(2)根據(jù)(1)以及旋轉的性質可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【詳解】(1)證明:∵△BAD是由△BEC在平面內(nèi)繞點B旋轉60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四邊形ABED為菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋轉而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四邊形ABED為菱形.考點:旋轉的性質;全等三角形的判定與性質;菱形的判定.21、(1)-3;(2)“A-C”的正確答案為-7x2-2x+2.【解析】
(1)根據(jù)整式加減法則可求出二次項系數(shù);(2)表示出多項式,然后根據(jù)的結果求出多項式,計算即可求出答案.【詳解】(1)由題意得,,A+2B=(4+)+2-8,4+=1,=-3,即系數(shù)為-3.(2)A+C=,且A=,C=4,AC=【點睛】本題主要考查了多項式加減運算,熟練掌握運算法則是解題關鍵.22、(1)25,150;(2)y甲=25x(0≤x≤20),;(3)x=14,150【解析】
解:(1)甲每分鐘生產(chǎn)=25只;提高生產(chǎn)速度之前乙的生產(chǎn)速度==15只/分,故乙在提高生產(chǎn)速度之前已生產(chǎn)了零件:15×10=150只;(2)結合后圖象可得:甲:y甲=25x(0≤x≤20);乙提速后的速度為50只/分,故乙生產(chǎn)完500只零件還需7分鐘,乙:y乙=15x(0≤x≤10),當10<x≤17時,設y乙=kx+b,把(10,150)、(17,500),代入可得:10k+b=150,17k+b=500,解得:k=50,b=?350,故y乙=50x?350(10≤x≤17).綜上可得:y甲=25x(0≤x≤20);;(3)令y甲=y(tǒng)乙,得25x=50x?350,解得:x=14,此時y甲=y(tǒng)乙=350只,故甲工人還有150只未生產(chǎn).23、(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)當售價定為45元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大,最大利潤是1元.【解析】試題分析:(1)根據(jù)題意可以直接寫出y與x之間的函數(shù)關系式;(2)根據(jù)題意可以直接寫出w與x之間的函數(shù)關系式,由供貨廠家規(guī)定市場價不得低于30元/包,且商場每周完成不少于150包的銷售任務可以確定x的取值范圍;(3)根據(jù)第(2)問中的函數(shù)解析式和x的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【培訓課件】顧問式營銷技術探討
- 產(chǎn)后排尿困難的健康宣教
- 共點力作用下物體的平衡課件
- 孕期陰道炎的健康宣教
- 《論述類總復習》課件
- JJF(陜) 043-2020 非接觸式視頻引伸計校準規(guī)范
- JJF(黔) 80-2024 經(jīng)皮黃疸測試儀校準規(guī)范
- 【大學課件】網(wǎng)絡安全基礎
- 社會實踐活動豐富教研內(nèi)容計劃
- 財務道德在職業(yè)中的重要性計劃
- 泳池合伙協(xié)議
- 倉庫盤點管理流程
- TD-T 1049-2016 礦山土地復墾基礎信息調查規(guī)程
- 計算機應用基礎 Excel制作行業(yè)狀況調查表
- 中國傳統(tǒng)節(jié)日演示文稿
- 重大火災事故隱患檢查表
- 默納克電梯故障代碼(珍藏版)
- 中國臺灣茂迪MT4090 LCR測試儀 數(shù)字式電橋
- 【課件】第三章+第四節(jié)+配合物與超分子高二化學人教版(2019)選擇性必修2
- 高速鐵路客運乘務的畢業(yè)四篇
- GB/T 20221-2006無壓埋地排污、排水用硬聚氯乙烯(PVC-U)管材
評論
0/150
提交評論