2023屆福建省福州市平潭縣市級名校中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁
2023屆福建省福州市平潭縣市級名校中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁
2023屆福建省福州市平潭縣市級名校中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁
2023屆福建省福州市平潭縣市級名校中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁
2023屆福建省福州市平潭縣市級名校中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,把△ABC剪成三部分,邊AB,BC,AC放在同一直線上,點O都落在直線MN上,直線MN∥AB,則點O是△ABC的()A.外心 B.內(nèi)心 C.三條中線的交點 D.三條高的交點2.已知函數(shù)y=ax2+bx+c的圖象如圖所示,則關(guān)于x的方程ax2+bx+c﹣4=0的根的情況是A.有兩個相等的實數(shù)根 B.有兩個異號的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根3.如圖,比例規(guī)是一種畫圖工具,它由長度相等的兩腳AC和BD交叉構(gòu)成,利用它可以把線段按一定的比例伸長或縮短.如果把比例規(guī)的兩腳合上,使螺絲釘固定在刻度3的地方(即同時使OA=3OC,OB=3OD),然后張開兩腳,使A,B兩個尖端分別在線段a的兩個端點上,當CD=1.8cm時,則AB的長為()A.7.2cm B.5.4cm C.3.6cm D.0.6cm4.如圖,點ABC在⊙O上,OA∥BC,∠OAC=19°,則∠AOB的大小為()A.19° B.29° C.38° D.52°5.如圖,已知E,B,F(xiàn),C四點在一條直線上,,,添加以下條件之一,仍不能證明≌的是A. B. C. D.6.下列各式正確的是()A. B.C. D.7.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為()A.1:2 B.1:3 C.1:4 D.1:18.有15位同學(xué)參加歌詠比賽,所得的分數(shù)互不相同,取得分前8位同學(xué)進入決賽.某同學(xué)知道自己的分數(shù)后,要判斷自己能否進入決賽,他只需知道這15位同學(xué)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差9.如圖,四邊形ABCE內(nèi)接于⊙O,∠DCE=50°,則∠BOE=()A.100° B.50° C.70° D.130°10.如圖,甲從A點出發(fā)向北偏東70°方向走到點B,乙從點A出發(fā)向南偏西15°方向走到點C,則∠BAC的度數(shù)是()A.85° B.105° C.125° D.160°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在梯形中,,E、F分別是邊的中點,設(shè),那么等于__________(結(jié)果用的線性組合表示).12.計算:的結(jié)果是_____.13.如圖,在□ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG,若AD=5,DE=6,則AG的長是________.14.如圖,從一塊直徑是8m的圓形鐵皮上剪出一個圓心角為90°的扇形,將剪下的扇形圍成一個圓錐,圓錐的高是_________m.15.若,則=.16.若代數(shù)式有意義,則x的取值范圍是__.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系xOy中,直線與函數(shù)的圖象的兩個交點分別為A(1,5),B.(1)求,的值;(2)過點P(n,0)作x軸的垂線,與直線和函數(shù)的圖象的交點分別為點M,N,當點M在點N下方時,寫出n的取值范圍.18.(8分)如圖所示,AC=AE,∠1=∠2,AB=AD.求證:BC=DE.19.(8分)圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH為3.4m.當起重臂AC長度為9m,張角∠HAC為118°時,求操作平臺C離地面的高度(結(jié)果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)20.(8分)“綠水青山就是金山銀山”,北京市民積極參與義務(wù)植樹活動.小武同學(xué)為了了解自己小區(qū)300戶家庭在2018年4月份義務(wù)植樹的數(shù)量,進行了抽樣調(diào)查,隨即抽取了其中30戶家庭,收集的數(shù)據(jù)如下(單位:棵):112323233433433534344545343456(1)對以上數(shù)據(jù)進行整理、描述和分析:①繪制如下的統(tǒng)計圖,請補充完整;②這30戶家庭2018年4月份義務(wù)植樹數(shù)量的平均數(shù)是______,眾數(shù)是______;(2)“互聯(lián)網(wǎng)+全民義務(wù)植樹”是新時代首都全民義務(wù)植樹組織形式和盡責方式的一大創(chuàng)新,2018年首次推出義務(wù)植樹網(wǎng)上預(yù)約服務(wù),小武同學(xué)所調(diào)查的這30戶家庭中有7戶家庭采用了網(wǎng)上預(yù)約義務(wù)植樹這種方式,由此可以估計該小區(qū)采用這種形式的家庭有______戶.21.(8分)某校航模小組借助無人飛機航拍校園,如圖,無人飛機從A處水平飛行至B處需10秒,A在地面C的北偏東12°方向,B在地面C的北偏東57°方向.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)22.(10分)如圖,在中,點是的中點,點是線段的延長線上的一動點,連接,過點作的平行線,與線段的延長線交于點,連接、.求證:四邊形是平行四邊形.若,,則在點的運動過程中:①當______時,四邊形是矩形;②當______時,四邊形是菱形.23.(12分)已知P是的直徑BA延長線上的一個動點,∠P的另一邊交于點C、D,兩點位于AB的上方,=6,OP=m,,如圖所示.另一個半徑為6的經(jīng)過點C、D,圓心距.(1)當m=6時,求線段CD的長;(2)設(shè)圓心O1在直線上方,試用n的代數(shù)式表示m;(3)△POO1在點P的運動過程中,是否能成為以O(shè)O1為腰的等腰三角形,如果能,試求出此時n的值;如果不能,請說明理由.24.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經(jīng)過點E,且交BC于點F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

利用平行線間的距離相等,可知點到、、的距離相等,然后可作出判斷.【詳解】解:如圖,過點作于,于,于.圖1,(夾在平行線間的距離相等).如圖:過點作于,作于E,作于.由題意可知:,,,∴,∴圖中的點是三角形三個內(nèi)角的平分線的交點,點是的內(nèi)心,故選B.【點睛】本題考查平行線間的距離,角平分線定理,三角形的內(nèi)心,解題的關(guān)鍵是判斷出.2、A【解析】

根據(jù)拋物線的頂點坐標的縱坐標為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數(shù)y=ax2+bx+c的圖象與直線y=4交點的情況.【詳解】∵函數(shù)的頂點的縱坐標為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數(shù)根,故選A.【點睛】本題考查了二次函數(shù)與一元二次方程,熟練掌握一元二次方程與二次函數(shù)間的關(guān)系是解題的關(guān)鍵.3、B【解析】【分析】由已知可證△ABO∽CDO,故,即.【詳解】由已知可得,△ABO∽CDO,所以,,所以,,所以,AB=5.4故選B【點睛】本題考核知識點:相似三角形.解題關(guān)鍵點:熟記相似三角形的判定和性質(zhì).4、C【解析】

由AO∥BC,得到∠ACB=∠OAC=19°,根據(jù)圓周角定理得到∠AOB=2∠ACB=38°.【詳解】∵AO∥BC,∴∠ACB=∠OAC,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故選:C.【點睛】本題考查了圓周角定理與平行線的性質(zhì).解題的關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半定理的應(yīng)用是解此題的關(guān)鍵.5、B【解析】

由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應(yīng)相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】添加,根據(jù)AAS能證明≌,故A選項不符合題意.B.添加與原條件滿足SSA,不能證明≌,故B選項符合題意;C.添加,可得,根據(jù)AAS能證明≌,故C選項不符合題意;D.添加,可得,根據(jù)AAS能證明≌,故D選項不符合題意,故選B.【點睛】本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.6、A【解析】∵,則B錯;,則C;,則D錯,故選A.7、B【解析】

根據(jù)中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質(zhì)求解.【詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【點睛】本題考查三角形中位線定理及相似三角形的判定與性質(zhì).8、B【解析】

由中位數(shù)的概念,即最中間一個或兩個數(shù)據(jù)的平均數(shù);可知15人成績的中位數(shù)是第8名的成績.根據(jù)題意可得:參賽選手要想知道自己是否能進入前8名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】解:由于15個人中,第8名的成績是中位數(shù),故小方同學(xué)知道了自己的分數(shù)后,想知道自己能否進入決賽,還需知道這十五位同學(xué)的分數(shù)的中位數(shù).故選B.【點睛】此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.9、A【解析】

根據(jù)圓內(nèi)接四邊形的任意一個外角等于它的內(nèi)對角求出∠A,根據(jù)圓周角定理計算即可.【詳解】四邊形ABCE內(nèi)接于⊙O,,由圓周角定理可得,,故選:A.【點睛】本題考查的知識點是圓的內(nèi)接四邊形性質(zhì),解題關(guān)鍵是熟記圓內(nèi)接四邊形的任意一個外角等于它的內(nèi)對角(就是和它相鄰的內(nèi)角的對角).10、C【解析】

首先求得AB與正東方向的夾角的度數(shù),即可求解.【詳解】根據(jù)題意得:∠BAC=(90°﹣70°)+15°+90°=125°,故選:C.【點睛】本題考查了方向角,正確理解方向角的定義是關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】

作AH∥EF交BC于H,首先證明四邊形EFHA是平行四邊形,再利用三角形法則計算即可.【詳解】作AH∥EF交BC于H.∵AE∥FH,∴四邊形EFHA是平行四邊形,∴AE=HF,AH=EF.∵AE=ED=HF,∴.∵BC=2AD,∴2.∵BF=FC,∴,∴.∵.故答案為:.【點睛】本題考查了平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考??碱}型.12、【解析】試題分析:先進行二次根式的化簡,然后合并同類二次根式即可,考點:二次根式的加減13、2【解析】試題解析:連接EG,

∵由作圖可知AD=AE,AG是∠BAD的平分線,

∴∠1=∠2,

∴AG⊥DE,OD=DE=1.

∵四邊形ABCD是平行四邊形,

∴CD∥AB,

∴∠2=∠1,

∴∠1=∠1,

∴AD=DG.

∵AG⊥DE,

∴OA=AG.

在Rt△AOD中,OA==4,

∴AG=2AO=2.

故答案為2.14、【解析】分析:首先連接AO,求出AB的長度是多少;然后求出扇形的弧長弧BC為多少,進而求出扇形圍成的圓錐的底面半徑是多少;最后應(yīng)用勾股定理,求出圓錐的高是多少即可.詳解:如圖1,連接AO,∵AB=AC,點O是BC的中點,∴AO⊥BC,又∵∴∴∴弧BC的長為:(m),∴將剪下的扇形圍成的圓錐的半徑是:(m),∴圓錐的高是:故答案為.點睛:考查圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來扇形之間的關(guān)系式解決本題的關(guān)鍵.15、1.【解析】試題分析:有意義,必須,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案為1.考點:二次根式有意義的條件.16、x3【解析】

由代數(shù)式有意義,得

x-30,

解得x3,

故答案為:x3.【點睛】本題考查了分式有意義的條件,從以下三個方面透徹理解分式的概念:分式無意義:分母為零;分式有意義:分母不為零;分式值為零:分子為零且分母不為零.三、解答題(共8題,共72分)17、(1),;(2)0<n<1或者n>1.【解析】

(1)利用待定系數(shù)法即可解決問題;(2)利用圖象法即可解決問題;【詳解】解:(1)∵A(1,1)在直線上,∴,∵A(1,1)在的圖象上,∴.(2)觀察圖象可知,滿足條件的n的值為:0<n<1或者n>1.【點睛】此題考查待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式,解題關(guān)鍵在于利用數(shù)形結(jié)合的思想求解.18、證明見解析.【解析】試題分析:由可得則可證明,因此可得試題解析:即,在和中,考點:三角形全等的判定.19、操作平臺C離地面的高度為7.6m.【解析】分析:作CE⊥BD于F,AF⊥CE于F,如圖2,易得四邊形AHEF為矩形,則EF=AH=3.4m,∠HAF=90°,再計算出∠CAF=28°,則在Rt△ACF中利用正弦可計算出CF,然后計算CF+EF即可.詳解:作CE⊥BD于F,AF⊥CE于F,如圖2,易得四邊形AHEF為矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH-∠HAF=118°-90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平臺C離地面的高度為7.6m.點睛:本題考查了解直角三角形的應(yīng)用:先將實際問題抽象為數(shù)學(xué)問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題),然后利用勾股定理和三角函數(shù)的定義進行幾何計算.20、(1)3.4棵、3棵;(2)1.【解析】

(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,據(jù)此補全圖形可得;②根據(jù)平均數(shù)和眾數(shù)的定義求解可得;(2)用總戶數(shù)乘以樣本中采用了網(wǎng)上預(yù)約義務(wù)植樹這種方式的戶數(shù)所占比例可得.【詳解】解:(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,補全圖形如下:②這30戶家庭2018年4月份義務(wù)植樹數(shù)量的平均數(shù)是(棵),眾數(shù)為3棵,故答案為:3.4棵、3棵;(2)估計該小區(qū)采用這種形式的家庭有戶,故答案為:1.【點睛】此題考查條形統(tǒng)計圖,加權(quán)平均數(shù),眾數(shù),解題關(guān)鍵在于利用樣本估計總體.21、29.8米.【解析】

作,,根據(jù)題意確定出與的度數(shù),利用銳角三角函數(shù)定義求出與的長度,由求出的長度,即可求出的長度.【詳解】解:如圖,作,,由題意得:米,米,則米,答:這架無人飛機的飛行高度為米.【點睛】此題考查了解直角三角形的應(yīng)用﹣仰角俯角問題,熟練掌握銳角三角函數(shù)定義是解本題的關(guān)鍵.22、(1)、證明過程見解析;(2)、①、2;②、1.【解析】

(1)、首先證明△BEF和△DCF全等,從而得出DC=BE,結(jié)合DC和AB平行得出平行四邊形;(2)、①、根據(jù)矩形得出∠CEB=90°,結(jié)合∠ABC=120°得出∠CBE=60°,根據(jù)直角三角形的性質(zhì)得出答案;②、根據(jù)菱形的性質(zhì)以及∠ABC=120°得出△CBE是等邊三角形,從而得出答案.【詳解】(1)、證明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵點F是BC的中點,∴BF=CF,在△DCF和△EBF中,∠CDF=∠FEB,∠DCF=∠EBF,F(xiàn)C=BF,∴△EBF≌△DCF(AAS),∴DC=BE,∴四邊形BECD是平行四邊形;(2)、①BE=2;∵當四邊形BECD是矩形時,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=BC=2,②BE=1,∵四邊形BECD是菱形時,BE=EC,∵∠ABC=120°,∴∠CBE=60°,∴△CBE是等邊三角形,∴BE=BC=1.【點睛】本題主要考查的是平行四邊形的性質(zhì)以及矩形、菱形的判定定理,屬于中等難度的題型.理解平行四邊形的判定定理以及矩形和菱形的性質(zhì)是解決這個問題的關(guān)鍵.23、(1)CD=;(2)m=;(3)n的值為或【解析】分析:(1)過點作⊥,垂足為點,連接.解Rt△,得到的長.由勾股定理得的長,再由垂徑定理即可得到結(jié)論;(2)解Rt△,得到和Rt△中,由勾股定理即可得到結(jié)論;(3)△成為等腰三角形可分以下幾種情況討論:①當圓心、在弦異側(cè)時,分和.②當圓心、在弦同側(cè)時,同

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論