甘肅省通渭縣第二中學2022年高三第六次模擬考試數學試卷含解析_第1頁
甘肅省通渭縣第二中學2022年高三第六次模擬考試數學試卷含解析_第2頁
甘肅省通渭縣第二中學2022年高三第六次模擬考試數學試卷含解析_第3頁
甘肅省通渭縣第二中學2022年高三第六次模擬考試數學試卷含解析_第4頁
甘肅省通渭縣第二中學2022年高三第六次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.2.在平行六面體中,M為與的交點,若,,則與相等的向量是()A. B. C. D.3.已知等差數列的前項和為,,,則()A.25 B.32 C.35 D.404.已知實數滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.115.給出以下四個命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點,有且只有一個平面;③空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個數是()A.0 B.1 C.2 D.36.若復數滿足(是虛數單位),則的虛部為()A. B. C. D.7.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉到交圓于點,則的最大值為()A.3 B.2 C. D.8.如果,那么下列不等式成立的是()A. B.C. D.9.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.10.根據黨中央關于“精準”脫貧的要求,我市某農業(yè)經濟部門派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.11.如圖,中,點D在BC上,,將沿AD旋轉得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關系是()A. B.C.,兩種情況都存在 D.存在某一位置使得12.設函數,的定義域都為,且是奇函數,是偶函數,則下列結論正確的是()A.是偶函數 B.是奇函數C.是奇函數 D.是奇函數二、填空題:本題共4小題,每小題5分,共20分。13.某次足球比賽中,,,,四支球隊進入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.14.成都市某次高三統(tǒng)考,成績X經統(tǒng)計分析,近似服從正態(tài)分布,且,若該市有人參考,則估計成都市該次統(tǒng)考中成績大于分的人數為_____.15.已知集合,若,且,則實數所有的可能取值構成的集合是________.16.已知數列遞增的等比數列,若,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,點在橢圓上.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線交橢圓于兩點,線段的中點在直線上,求證:線段的中垂線恒過定點.18.(12分)已知三棱柱中,,是的中點,,.(1)求證:;(2)若側面為正方形,求直線與平面所成角的正弦值.19.(12分)設橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.(1)求橢圓的標準方程.(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.20.(12分)如圖,在中,,,點在線段上.(1)若,求的長;(2)若,,求的面積.21.(12分)已知函數.(1)當a=2時,求不等式的解集;(2)設函數.當時,,求的取值范圍.22.(10分)如圖,在四棱錐中,底面是矩形,四條側棱長均相等.(1)求證:平面;(2)求證:平面平面.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數基礎題.2.D【解析】

根據空間向量的線性運算,用作基底表示即可得解.【詳解】根據空間向量的線性運算可知因為,,則即,故選:D.【點睛】本題考查了空間向量的線性運算,用基底表示向量,屬于基礎題.3.C【解析】

設出等差數列的首項和公差,即可根據題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數列的通項公式的求法和應用,涉及等差數列的前項和公式的應用,屬于容易題.4.A【解析】

根據約束條件畫出可行域,再將目標函數化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候為過點的時候,解得所以,此時故選A項【點睛】本題考查線性規(guī)劃求一次相加的目標函數,屬于常規(guī)題型,是簡單題.5.B【解析】

用空間四邊形對①進行判斷;根據公理2對②進行判斷;根據空間角的定義對③進行判斷;根據空間直線位置關系對④進行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯誤.②中,由公理2知道,過不在同一條直線上的三點,有且只有一個平面,故②正確.③中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補,故③錯誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯誤.故選:B【點睛】本小題考查空間點,線,面的位置關系及其相關公理,定理及其推論的理解和認識;考查空間想象能力,推理論證能力,考查數形結合思想,化歸與轉化思想.6.A【解析】

由得,然后分子分母同時乘以分母的共軛復數可得復數,從而可得的虛部.【詳解】因為,所以,所以復數的虛部為.故選A.【點睛】本題考查了復數的除法運算和復數的概念,屬于基礎題.復數除法運算的方法是分子分母同時乘以分母的共軛復數,轉化為乘法運算.7.C【解析】

設射線OA與x軸正向所成的角為,由三角函數的定義得,,,利用輔助角公式計算即可.【詳解】設射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【點睛】本題考查正弦型函數的最值問題,涉及到三角函數的定義、輔助角公式等知識,是一道容易題.8.D【解析】

利用函數的單調性、不等式的基本性質即可得出.【詳解】∵,∴,,,.故選:D.【點睛】本小題主要考查利用函數的單調性比較大小,考查不等式的性質,屬于基礎題.9.C【解析】

由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質的應用,其中解答中熟記雙曲線的幾何性質,準確運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.10.A【解析】

每個縣區(qū)至少派一位專家,基本事件總數,甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數,由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家基本事件總數:甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數:甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.11.A【解析】

根據題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設,則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關系,考查三角函數的圖象和性質,意在考查學生對這些知識的理解掌握水平.12.C【解析】

根據函數奇偶性的性質即可得到結論.【詳解】解:是奇函數,是偶函數,,,,故函數是奇函數,故錯誤,為偶函數,故錯誤,是奇函數,故正確.為偶函數,故錯誤,故選:.【點睛】本題主要考查函數奇偶性的判斷,根據函數奇偶性的定義是解決本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.0.18【解析】

根據表中信息,可得勝C的概率;分類討論B或D進入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進入決賽,B勝D的概率為,則A勝B的概率為;若D進入決賽,D勝B的概率為,則A勝D的概率為;由相應的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點睛】本題考查了獨立事件的概率應用,互斥事件的概率求法,屬于基礎題.14..【解析】

根據正態(tài)分布密度曲線性質,結合求得,即可得解.【詳解】根據正態(tài)分布,且,所以故該市有人參考,則估計成都市該次統(tǒng)考中成績大于分的人數為.故答案為:.【點睛】此題考查正態(tài)分布密度曲線性質的理解辨析,根據曲線的對稱性求解概率,根據總人數求解成績大于114的人數.15..【解析】

化簡集合,由,以及,即可求出結論.【詳解】集合,若,則的可能取值為,0,2,3,又因為,所以實數所有的可能取值構成的集合是.故答案為:.【點睛】本題考查集合與元素的關系,理解題意是解題的關鍵,屬于基礎題.16.【解析】

,建立方程組,且,求出,進而求出的公比,即可求出結論.【詳解】數列遞增的等比數列,,,解得,所以的公比為,.

故答案為:.【點睛】本題考查等比數列的性質、通項公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ)把點代入橢圓方程,結合離心率得到關于的方程,解方程即可;(Ⅱ)聯(lián)立直線與橢圓方程得到關于的一元二次方程,利用韋達定理和中垂線的定義求出線段的中垂線方程即可證明.【詳解】(Ⅰ)由已知橢圓過點得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達定理可得,,設的中點為,得,即,,的中垂線方程為,即,故得中垂線恒過點.【點睛】本題考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系及橢圓中的定值問題;考查運算求解能力和知識的綜合運用能力;正確求出橢圓方程和利用中垂線的定義正確表示出中垂線方程是求解本題的關鍵;屬于中檔題.18.(1)證明見解析(2)【解析】

(1)取的中點,連接,,證明平面得出,再得出;(2)建立空間坐標系,求出平面的法向量,計算,即可得出答案.【詳解】(1)證明:取的中點,連接,,,,,,,故,又,,平面,平面,,,分別是,的中點,,.(2)解:四邊形是正方形,,又,,平面,平面,在平面內作直線的垂線,以為原點,以,,為所在直線為坐標軸建立空間直角坐標系,則,0,,,1,,,2,,,0,,,1,,,2,,,1,,設平面的法向量為,,,則,即,令可得:,,,,.直線與平面所成角的正弦值為,.【點睛】本題主要考查了線面垂直的判定與性質,考查空間向量與空間角的計算,屬于中檔題.19.(1);(2)證明見解析,.【解析】

(1)根據離心率和的面積是得到方程組,計算得到答案.(2)先排除斜率為0時的情況,設,,聯(lián)立方程組利用韋達定理得到,,根據化簡得到,代入直線方程得到答案.【詳解】(1)由題意可得,解得,,則橢圓的標準方程是.(2)當直線的斜率為0時,直線與直線關于軸對稱,則直線與直線的斜率之和為零,與題設條件矛盾,故直線的斜率不為0.設,,直線的方程為聯(lián)立,整理得則,.因為直線與直線的斜率之和為1,所以,所以,將,代入上式,整理得.所以,即,則直線的方程為.故直線恒過定點.【點睛】本題考查了橢圓的標準方程,直線過定點問題,計算出是解題的關鍵,意在考查學生的計算能力和轉化能力.20.(1)(2)【解析】

(1)先根據平方關系求出,再根據正弦定理即可求出;(2)分別在和中,根據正弦定理列出兩個等式,兩式相除,利用題目條件即可求出,再根據余弦定理求出,即可根據求出的面積.【詳解】(1)由,得,所以.由正弦定理得,,即,得.(2)由正弦定理,在中,,①在中,,②又,,,由得,由余弦定理得,即,解得,所以的面積.【點睛】本題主要考查正余弦定理在解三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論