2023屆江蘇省蘇州市XX實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)押題卷含解析_第1頁(yè)
2023屆江蘇省蘇州市XX實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)押題卷含解析_第2頁(yè)
2023屆江蘇省蘇州市XX實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)押題卷含解析_第3頁(yè)
2023屆江蘇省蘇州市XX實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)押題卷含解析_第4頁(yè)
2023屆江蘇省蘇州市XX實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)押題卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,下列四個(gè)判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形2.已知二次函數(shù)的圖象如圖所示,則下列說(shuō)法正確的是()A.<0 B.<0 C.<0 D.<03.如圖,正六邊形A1B1C1D1E1F1的邊長(zhǎng)為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進(jìn)行下去,A11B11C11D11E11F11的邊長(zhǎng)為()A. B. C. D.4.下列因式分解正確的是()A. B.C. D.5.如圖是一組有規(guī)律的圖案,它們是由邊長(zhǎng)相同的小正方形組成的,其中部分小正方形涂有陰影,依此規(guī)律,第2018個(gè)圖案中涂有陰影的小正方形個(gè)數(shù)為()A.8073 B.8072 C.8071 D.80706.已知O為圓錐的頂點(diǎn),M為圓錐底面上一點(diǎn),點(diǎn)P在OM上.一只蝸牛從P點(diǎn)出發(fā),繞圓錐側(cè)面爬行,回到P點(diǎn)時(shí)所爬過(guò)的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開(kāi)并展開(kāi),所得側(cè)面展開(kāi)圖是()A. B.C. D.7.如圖,已知反比函數(shù)的圖象過(guò)Rt△ABO斜邊OB的中點(diǎn)D,與直角邊AB相交于C,連結(jié)AD、OC,若△ABO的周長(zhǎng)為,AD=2,則△ACO的面積為()A. B.1 C.2 D.48.如圖,點(diǎn)C是直線AB,DE之間的一點(diǎn),∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°9.下列幾何體中三視圖完全相同的是()A. B. C. D.10.已知關(guān)于x的方程恰有一個(gè)實(shí)根,則滿足條件的實(shí)數(shù)a的值的個(gè)數(shù)為()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.尺規(guī)作圖:過(guò)直線外一點(diǎn)作已知直線的平行線.已知:如圖,直線l與直線l外一點(diǎn)P.求作:過(guò)點(diǎn)P與直線l平行的直線.作法如下:(1)在直線l上任取兩點(diǎn)A、B,連接AP、BP;(2)以點(diǎn)B為圓心,AP長(zhǎng)為半徑作弧,以點(diǎn)P為圓心,AB長(zhǎng)為半徑作弧,如圖所示,兩弧相交于點(diǎn)M;(3)過(guò)點(diǎn)P、M作直線;(4)直線PM即為所求.請(qǐng)回答:PM平行于l的依據(jù)是_____.12.分解因式:ax2-a=______.13.某班有54名學(xué)生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新學(xué)期準(zhǔn)備調(diào)整座位,設(shè)某個(gè)學(xué)生原來(lái)的座位為(m,n),如果調(diào)整后的座位為(i,j),則稱(chēng)該生作了平移[a,b]=[m-i,n-j],并稱(chēng)a+b為該生的位置數(shù).若某生的位置數(shù)為10,則當(dāng)m+n取最小值時(shí),m?n的最大值為_(kāi)____________.14.菱形ABCD中,∠A=60°,AB=9,點(diǎn)P是菱形ABCD內(nèi)一點(diǎn),PB=PD=3,則AP的長(zhǎng)為_(kāi)____.15.已知點(diǎn)P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點(diǎn)P向左平移1個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)Q,點(diǎn)Q也在該函數(shù)y=kx+b的圖象上.(1)k的值是;(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點(diǎn),且與反比例函數(shù)y=圖象交于C,D兩點(diǎn)(點(diǎn)C在第二象限內(nèi)),過(guò)點(diǎn)C作CE⊥x軸于點(diǎn)E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若=,則b的值是.16.分解因式:x3y﹣2x2y+xy=______.17.如圖所示,直線y=x+b交x軸A點(diǎn),交y軸于B點(diǎn),交雙曲線于P點(diǎn),連OP,則OP2﹣OA2=__.三、解答題(共7小題,滿分69分)18.(10分)計(jì)算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|19.(5分)如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過(guò)點(diǎn)B作⊙O的切線交直線AC于點(diǎn)D,點(diǎn)E為CH的中點(diǎn),連接AE并延長(zhǎng)交BD于點(diǎn)F,直線CF交AB的延長(zhǎng)線于G.(1)求證:AE?FD=AF?EC;(2)求證:FC=FB;(3)若FB=FE=2,求⊙O的半徑r的長(zhǎng).20.(8分)已知:如圖,AB為⊙O的直徑,C是BA延長(zhǎng)線上一點(diǎn),CP切⊙O于P,弦PD⊥AB于E,過(guò)點(diǎn)B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點(diǎn),∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點(diǎn)M,求QM的長(zhǎng).21.(10分)如圖,已知⊙O,請(qǐng)用尺規(guī)做⊙O的內(nèi)接正四邊形ABCD,(保留作圖痕跡,不寫(xiě)做法)22.(10分)將一個(gè)等邊三角形紙片AOB放置在平面直角坐標(biāo)系中,點(diǎn)O(0,0),點(diǎn)B(6,0).點(diǎn)C、D分別在OB、AB邊上,DC∥OA,CB=2.(I)如圖①,將△DCB沿射線CB方向平移,得到△D′C′B′.當(dāng)點(diǎn)C平移到OB的中點(diǎn)時(shí),求點(diǎn)D′的坐標(biāo);(II)如圖②,若邊D′C′與AB的交點(diǎn)為M,邊D′B′與∠ABB′的角平分線交于點(diǎn)N,當(dāng)BB′多大時(shí),四邊形MBND′為菱形?并說(shuō)明理由.(III)若將△DCB繞點(diǎn)B順時(shí)針旋轉(zhuǎn),得到△D′C′B,連接AD′,邊D′C′的中點(diǎn)為P,連接AP,當(dāng)AP最大時(shí),求點(diǎn)P的坐標(biāo)及AD′的值.(直接寫(xiě)出結(jié)果即可).23.(12分)如圖,在正方形ABCD的外部,分別以CD,AD為底作等腰Rt△CDE、等腰Rt△DAF,連接AE、CF,交點(diǎn)為O.(1)求證:△CDF≌△ADE;(2)若AF=1,求四邊形ABCO的周長(zhǎng).24.(14分)某商場(chǎng)同時(shí)購(gòu)進(jìn)甲、乙兩種商品共200件,其進(jìn)價(jià)和售價(jià)如表,商品名稱(chēng)甲乙進(jìn)價(jià)(元/件)80100售價(jià)(元/件)160240設(shè)其中甲種商品購(gòu)進(jìn)x件,該商場(chǎng)售完這200件商品的總利潤(rùn)為y元.(1)求y與x的函數(shù)關(guān)系式;(2)該商品計(jì)劃最多投入18000元用于購(gòu)買(mǎi)這兩種商品,則至少要購(gòu)進(jìn)多少件甲商品?若售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是多少元?(3)在(2)的基礎(chǔ)上,實(shí)際進(jìn)貨時(shí),生產(chǎn)廠家對(duì)甲種商品的出廠價(jià)下調(diào)a元(50<a<70)出售,且限定商場(chǎng)最多購(gòu)進(jìn)120件,若商場(chǎng)保持同種商品的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中的條件,設(shè)計(jì)出使該商場(chǎng)獲得最大利潤(rùn)的進(jìn)貨方案.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】A選項(xiàng),∵在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項(xiàng),∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項(xiàng),因?yàn)樘砑訔l件“AD平分∠BAC”結(jié)合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯(cuò)誤;D選項(xiàng),因?yàn)橛商砑拥臈l件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過(guò)證∠EAD=∠CAD=∠EDA證得AE=DE,結(jié)合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.2、B【解析】

根據(jù)拋物線的開(kāi)口方向確定a,根據(jù)拋物線與y軸的交點(diǎn)確定c,根據(jù)對(duì)稱(chēng)軸確定b,根據(jù)拋物線與x軸的交點(diǎn)確定b2-4ac,根據(jù)x=1時(shí),y>0,確定a+b+c的符號(hào).【詳解】解:∵拋物線開(kāi)口向上,∴a>0,∵拋物線交于y軸的正半軸,∴c>0,∴ac>0,A錯(cuò)誤;∵->0,a>0,∴b<0,∴B正確;∵拋物線與x軸有兩個(gè)交點(diǎn),∴b2-4ac>0,C錯(cuò)誤;當(dāng)x=1時(shí),y>0,∴a+b+c>0,D錯(cuò)誤;故選B.【點(diǎn)睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)由拋物線開(kāi)口方向、對(duì)稱(chēng)軸、拋物線與y軸的交點(diǎn)拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.3、A【解析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質(zhì)得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據(jù)切線的性質(zhì)得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長(zhǎng)等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長(zhǎng)=×2,同理可得正六邊形A3B3C3D3E3F3的邊長(zhǎng)=()2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長(zhǎng)=()10×2,然后化簡(jiǎn)即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長(zhǎng)=×2,同理可得正六邊形A3B3C3D3E3F3的邊長(zhǎng)=()2×2,則正六邊形A11B11C11D11E11F11的邊長(zhǎng)=()10×2=.故選A.點(diǎn)睛:本題考查了正多邊形與圓的關(guān)系:把一個(gè)圓分成n(n是大于2的自然數(shù))等份,依次連接各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形,這個(gè)圓叫做這個(gè)正多邊形的外接圓.記住正六邊形的邊長(zhǎng)等于它的半徑.4、C【解析】

依據(jù)因式分解的定義以及提公因式法和公式法,即可得到正確結(jié)論.【詳解】解:D選項(xiàng)中,多項(xiàng)式x2-x+2在實(shí)數(shù)范圍內(nèi)不能因式分解;

選項(xiàng)B,A中的等式不成立;

選項(xiàng)C中,2x2-2=2(x2-1)=2(x+1)(x-1),正確.

故選C.【點(diǎn)睛】本題考查因式分解,解決問(wèn)題的關(guān)鍵是掌握提公因式法和公式法的方法.5、A【解析】

觀察圖形可知第1個(gè)、第2個(gè)、第3個(gè)圖案中涂有陰影的小正方形的個(gè)數(shù),易歸納出第n個(gè)圖案中涂有陰影的小正方形個(gè)數(shù)為:4n+1,由此求解即可.【詳解】解:觀察圖形的變化可知:第1個(gè)圖案中涂有陰影的小正方形個(gè)數(shù)為:5=4×1+1;第2個(gè)圖案中涂有陰影的小正方形個(gè)數(shù)為:9=4×2+1;第3個(gè)圖案中涂有陰影的小正方形個(gè)數(shù)為:13=4×3+1;…發(fā)現(xiàn)規(guī)律:第n個(gè)圖案中涂有陰影的小正方形個(gè)數(shù)為:4n+1;∴第2018個(gè)圖案中涂有陰影的小正方形個(gè)數(shù)為:4n+1=4×2018+1=1.故選:A.【點(diǎn)睛】本題考查了圖形的變化規(guī)律,根據(jù)已有圖形確定其變化規(guī)律是解題的關(guān)鍵.6、D【解析】

此題運(yùn)用圓錐的性質(zhì),同時(shí)此題為數(shù)學(xué)知識(shí)的應(yīng)用,由題意蝸牛從P點(diǎn)出發(fā),繞圓錐側(cè)面爬行,回到P點(diǎn)時(shí)所爬過(guò)的最短,就用到兩點(diǎn)間線段最短定理.【詳解】解:蝸牛繞圓錐側(cè)面爬行的最短路線應(yīng)該是一條線段,因此選項(xiàng)A和B錯(cuò)誤,又因?yàn)槲伵膒點(diǎn)出發(fā),繞圓錐側(cè)面爬行后,又回到起始點(diǎn)P處,那么如果將選項(xiàng)C、D的圓錐側(cè)面展開(kāi)圖還原成圓錐后,位于母線OM上的點(diǎn)P應(yīng)該能夠與母線OM′上的點(diǎn)(P′)重合,而選項(xiàng)C還原后兩個(gè)點(diǎn)不能夠重合.故選D.點(diǎn)評(píng):本題考核立意相對(duì)較新,考核了學(xué)生的空間想象能力.7、A【解析】

在直角三角形AOB中,由斜邊上的中線等于斜邊的一半,求出OB的長(zhǎng),根據(jù)周長(zhǎng)求出直角邊之和,設(shè)其中一直角邊AB=x,表示出OA,利用勾股定理求出AB與OA的長(zhǎng),過(guò)D作DE垂直于x軸,得到E為OA中點(diǎn),求出OE的長(zhǎng),在直角三角形DOE中,利用勾股定理求出DE的長(zhǎng),利用反比例函數(shù)k的幾何意義求出k的值,確定出三角形AOC面積即可.【詳解】在Rt△AOB中,AD=2,AD為斜邊OB的中線,∴OB=2AD=4,由周長(zhǎng)為4+2,得到AB+AO=2,設(shè)AB=x,則AO=2-x,根據(jù)勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,∴AB=+,OA=-,過(guò)D作DE⊥x軸,交x軸于點(diǎn)E,可得E為AO中點(diǎn),∴OE=OA=(-)(假設(shè)OA=+,與OA=-,求出結(jié)果相同),在Rt△DEO中,利用勾股定理得:DE==(+)),∴k=-DE?OE=-(+))×(-))=1.∴S△AOC=DE?OE=,故選A.【點(diǎn)睛】本題屬于反比例函數(shù)綜合題,涉及的知識(shí)有:勾股定理,直角三角形斜邊的中線性質(zhì),三角形面積求法,以及反比例函數(shù)k的幾何意義,熟練掌握反比例的圖象與性質(zhì)是解本題關(guān)鍵.8、B【解析】

延長(zhǎng)AC交DE于點(diǎn)F,根據(jù)所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長(zhǎng)AC交DE于點(diǎn)F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【點(diǎn)睛】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;

②內(nèi)錯(cuò)角相等,兩直線平行;③同旁內(nèi)角互補(bǔ),兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內(nèi),垂直于同一直線的兩條直線互相平行.9、A【解析】

找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯(cuò)誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯(cuò)誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯(cuò)誤;故選A.【點(diǎn)睛】考查三視圖的有關(guān)知識(shí),注意三視圖都相同的常見(jiàn)的幾何體有球和正方體.10、C【解析】

先將原方程變形,轉(zhuǎn)化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個(gè)實(shí)數(shù)根,因此,方程①的根有兩種情況:(1)方程①有兩個(gè)相等的實(shí)數(shù)根,此二等根使x(x-2)≠1;(2)方程①有兩個(gè)不等的實(shí)數(shù)根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對(duì)每一種情況,分別求出a的值及對(duì)應(yīng)的原方程的根.【詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個(gè)相等的實(shí)數(shù)根,即△=9﹣3×2(3﹣a)=1.解得a=.當(dāng)a=時(shí),解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個(gè)不等的實(shí)數(shù)根,而其中一根使原方程分母為零,即方程①有一個(gè)根為1或2.(i)當(dāng)x=1時(shí),代入①式得3﹣a=1,即a=3.當(dāng)a=3時(shí),解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時(shí)方程①的另一個(gè)根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當(dāng)x=2時(shí),代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當(dāng)a=5時(shí),解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實(shí)根;因此,若原分式方程只有一個(gè)實(shí)數(shù)根時(shí),所求的a的值分別是,3,5共3個(gè).故選C.【點(diǎn)睛】考查了分式方程的解法及增根問(wèn)題.由于原分式方程去分母后,得到一個(gè)含有字母的一元二次方程,所以要分情況進(jìn)行討論.理解分式方程產(chǎn)生增根的原因及一元二次方程解的情況從而正確進(jìn)行分類(lèi)是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、兩組對(duì)邊分別相等的四邊形是平行四邊形;平行四邊形對(duì)邊平行;兩點(diǎn)確定一條直線.【解析】

利用畫(huà)法得到PM=AB,BM=PA,則利用平行四邊形的判定方法判斷四邊形ABMP為平行四邊形,然后根據(jù)2平行四邊形的性質(zhì)得到PM∥AB.【詳解】解:由作法得PM=AB,BM=PA,∴四邊形ABMP為平行四邊形,∴PM∥AB.故答案為:兩組對(duì)邊分別相等的四邊形是平行四邊形;平行四邊形對(duì)邊平行;兩點(diǎn)確定一條直線.【點(diǎn)睛】本題考查基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個(gè)角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過(guò)一點(diǎn)作已知直線的垂線).也考查了平行四邊形的判定與性質(zhì).12、【解析】

先提公因式,再套用平方差公式.【詳解】ax2-a=a(x2-1)=故答案為:【點(diǎn)睛】掌握因式分解的一般方法:提公因式法,公式法.13、36【解析】

10=a+b=(m-i)+(n-j)=(m+n)-(i+j)所以:m+n=10+i+j當(dāng)(m+n)取最小值時(shí),(i+j)也必須最小,所以i和j都是2,這樣才能(i+j)才能最小,因此:m+n=10+2=12也就是:當(dāng)m+n=12時(shí),m·n最大是多少?這就容易了:m·n<=36所以m·n的最大值就是3614、3或6【解析】

分成P在OA上和P在OC上兩種情況進(jìn)行討論,根據(jù)△ABD是等邊三角形,即可求得OA的長(zhǎng)度,在直角△OBP中利用勾股定理求得OP的長(zhǎng),則AP即可求得.【詳解】設(shè)AC和BE相交于點(diǎn)O.當(dāng)P在OA上時(shí),∵AB=AD,∠A=60°,∴△ABD是等邊三角形,∴BD=AB=9,OB=OD=BD=.則AO=.在直角△OBP中,OP=.則AP=OA-OP-;當(dāng)P在OC上時(shí),AP=OA+OP=.故答案是:3或6.【點(diǎn)睛】本題考查了菱形的性質(zhì),注意到P在AC上,應(yīng)分兩種情況進(jìn)行討論是解題的關(guān)鍵.15、(1)-2;(2)【解析】

(1)設(shè)點(diǎn)P的坐標(biāo)為(m,n),則點(diǎn)Q的坐標(biāo)為(m?1,n+2),依題意得:,解得:k=?2.故答案為?2.(2)∵BO⊥x軸,CE⊥x軸,∴BO∥CE,∴△AOB∽△AEC.又∵,∴令一次函數(shù)y=?2x+b中x=0,則y=b,∴BO=b;令一次函數(shù)y=?2x+b中y=0,則0=?2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且,∴,∴AE=,AO=,CE=BO=b,OE=AE?AO=.∵OE?CE=|?4|=4,即=4,解得:b=,或b=?(舍去).故答案為.16、xy(x﹣1)1【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】解:原式=xy(x1-1x+1)=xy(x-1)1.故答案為:xy(x-1)1【點(diǎn)睛】此題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.17、1【解析】解:∵直線y=x+b與雙曲線(x>0)交于點(diǎn)P,設(shè)P點(diǎn)的坐標(biāo)(x,y),∴x﹣y=﹣b,xy=8,而直線y=x+b與x軸交于A點(diǎn),∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案為1.三、解答題(共7小題,滿分69分)18、-4【解析】分析:第一項(xiàng)根據(jù)乘方的意義計(jì)算,第二項(xiàng)非零數(shù)的零次冪等于1,第三項(xiàng)根據(jù)特殊角銳角三角函數(shù)值計(jì)算,第四項(xiàng)根據(jù)絕對(duì)值的意義化簡(jiǎn).詳解:原式=-4+1-2×+-1=-4點(diǎn)睛:本題考查了實(shí)數(shù)的運(yùn)算,熟練掌握乘方的意義,零指數(shù)冪的意義,及特殊角銳角三角函數(shù),絕對(duì)值的意義是解答本題的關(guān)鍵.19、(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)2.【解析】(1)由BD是⊙O的切線得出∠DBA=90°,推出CH∥BD,證△AEC∽△AFD,得出比例式即可.(2)證△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根據(jù)直角三角形斜邊上中線性質(zhì)得出CF=DF=BF即可.(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,連接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切線,由切割線定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,從而由勾股定理求得AB=BG的長(zhǎng),從而得到⊙O的半徑r.20、(1)證明見(jiàn)解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結(jié)合BQ⊥CP于點(diǎn)Q,PE⊥AB于點(diǎn)E即可由角平分線的性質(zhì)得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設(shè)EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結(jié)合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過(guò)點(diǎn)O作OK⊥HB于點(diǎn)K,結(jié)合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結(jié)合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過(guò)點(diǎn)G作GN⊥QB交QB的延長(zhǎng)線于點(diǎn)N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長(zhǎng)了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點(diǎn)P,又∵BQ⊥CP于點(diǎn)Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點(diǎn)E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設(shè)EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過(guò)點(diǎn)O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(jù)(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過(guò)點(diǎn)G作GN⊥QB交QB的延長(zhǎng)線于點(diǎn)N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點(diǎn)睛:解本題第3小題的要點(diǎn)是:(1)作出如圖所示的輔助線,結(jié)合已知條件和(2)先求得BQ、BG的長(zhǎng)及∠CBQ=∠ABG=60°;(2)再過(guò)點(diǎn)G作GN⊥QB并交QB的延長(zhǎng)線于點(diǎn)N,解出BN和GN的長(zhǎng),這樣即可在Rt△QGN中求得QG的長(zhǎng),最后在△BQG中“由角平分線分線段成比例定理”即可列出比例式求得QM的長(zhǎng)了.21、見(jiàn)解析【解析】

根據(jù)內(nèi)接正四邊形的作圖方法畫(huà)出圖,保留作圖痕跡即可.【詳解】任作一條直徑,再作該直徑的中垂線,順次連接圓上的四點(diǎn)即可.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)圓內(nèi)接正四邊形作圖的應(yīng)用,掌握?qǐng)A內(nèi)接正四邊形的作圖方法是解題的關(guān)鍵.22、(Ⅰ)D′(3+,3);(Ⅱ)當(dāng)BB'=時(shí),四邊形MBND'是菱形,理由見(jiàn)解析;(Ⅲ)P().【解析】

(Ⅰ)如圖①中,作DH⊥BC于H.首先求出點(diǎn)D坐標(biāo),再求出CC′的長(zhǎng)即可解決問(wèn)題;(Ⅱ)當(dāng)BB'=時(shí),四邊形MBND'是菱形.首先證明四邊形MBND′是平行四邊形,再證明BB′=BC′即可解決問(wèn)題;(Ⅲ)在△ABP中,由三角形三邊關(guān)系得,AP<AB+BP,推出當(dāng)點(diǎn)A,B,P三點(diǎn)共線時(shí),AP最大.【詳解】(Ⅰ)如圖①中,作DH⊥BC于H,∵△AOB是等邊三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等邊三角形,∵CB=2,DH⊥CB,∴CH=HB=,DH=3,∴D(6﹣,3),∵C′B=3,∴CC′=2﹣3,∴DD′=CC′=2﹣3,∴D′(3+,3).(Ⅱ)當(dāng)BB'=時(shí),四邊形MBND'是菱形,理由:如圖②中,∵△ABC是等邊三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分線,∴∠NBB′'=∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四邊形MBND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等邊三角形,∴MC=CE',NC=CC',∵B'C'=2,∵四邊形MBND'是菱形,∴BN=BM,∴BB'=B'C'=;(Ⅲ)如圖連接BP,在△ABP中,由三角形三邊關(guān)系得,AP<AB+BP,∴當(dāng)點(diǎn)A,B,P三點(diǎn)共線時(shí),AP最大,如圖③中,在△D'BE'中,由P為D'E的中點(diǎn),得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'==2.此時(shí)P(,﹣).【點(diǎn)睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質(zhì),菱形的性質(zhì),平移和旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,解(2)的關(guān)鍵是四邊形MCND'是平行四邊形,解(3)的關(guān)鍵是判斷出點(diǎn)A,C,P三點(diǎn)共線時(shí),AP最大.23、(1)詳見(jiàn)解析;(2)【解析】

(1)根據(jù)正方形的性質(zhì)和等腰直角三角形的性質(zhì)以及全等三角形的判定得出△CDF≌△ADE;(2)連接AC,利用正方形的性質(zhì)和四邊形周長(zhǎng)解答即可.【詳解】(1)證明:∵四邊形ABCD是正方形∴CD=AD,∠ADC=90°,∵△CDE和△DAF都是等腰直角三角形,∴FD

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論