2023屆遼寧省營口市重點名校中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第1頁
2023屆遼寧省營口市重點名校中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第2頁
2023屆遼寧省營口市重點名校中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第3頁
2023屆遼寧省營口市重點名校中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第4頁
2023屆遼寧省營口市重點名校中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.統(tǒng)計學(xué)校排球隊員的年齡,發(fā)現(xiàn)有12、13、14、15等四種年齡,統(tǒng)計結(jié)果如下表:年齡(歲)12131415人數(shù)(個)2468根據(jù)表中信息可以判斷該排球隊員年齡的平均數(shù)、眾數(shù)、中位數(shù)分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、152.如圖,已知BD與CE相交于點A,ED∥BC,AB=8,AC=12,AD=6,那么AE的長等于()A.4 B.9 C.12 D.163.如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿在A→B→C→D路徑勻速運動到點D,設(shè)△PAD的面積為y,P點的運動時間為x,則y關(guān)于x的函數(shù)圖象大致為()A.B.C.D.4.我國古代數(shù)學(xué)著作《孫子算經(jīng)》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五,屈繩量之,不足一尺,問木長幾何?!贝笾乱馑际牵骸坝靡桓K子去量一根木條,繩長剩余4.5尺,將繩子對折再量木條,木條剩余一尺,問木條長多少尺”,設(shè)繩子長尺,木條長尺,根據(jù)題意所列方程組正確的是()A. B. C. D.5.下列基本幾何體中,三視圖都是相同圖形的是()A. B. C. D.6.tan45o的值為()A. B.1 C. D.7.如圖,函數(shù)y1=x3與y2=在同一坐標(biāo)系中的圖象如圖所示,則當(dāng)y1<y2時()A.﹣1<x<l B.0<x<1或x<﹣1C.﹣1<x<I且x≠0 D.﹣1<x<0或x>18.已知函數(shù),則使y=k成立的x值恰好有三個,則k的值為()A.0 B.1 C.2 D.39.如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.10.在0.3,﹣3,0,﹣這四個數(shù)中,最大的是()A.0.3 B.﹣3 C.0 D.﹣二、填空題(本大題共6個小題,每小題3分,共18分)11.若式子有意義,則實數(shù)x的取值范圍是_______.12.在我國著名的數(shù)學(xué)書九章算術(shù)中曾記載這樣一個數(shù)學(xué)問題:“今有共買羊,人出五,不足四十五;人出七,不足三,問人數(shù)、羊價各幾何?”其大意是:今有人合伙買羊,若每人出5錢,還差45錢;若每人出7錢,還差3錢,問合伙人數(shù)、羊價各是多少?設(shè)羊價為x錢,則可列關(guān)于x的方程為______.13.如果某數(shù)的一個平方根是﹣5,那么這個數(shù)是_____.14.如果兩個相似三角形的面積的比是4:9,那么它們對應(yīng)的角平分線的比是_____.15.若m2﹣2m﹣1=0,則代數(shù)式2m2﹣4m+3的值為.16.如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P與點B,C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點F處;過點P作∠BPF的角平分線交AB于點E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是()三、解答題(共8題,共72分)17.(8分)在數(shù)學(xué)上,我們把符合一定條件的動點所形成的圖形叫做滿足該條件的點的軌跡.例如:動點P的坐標(biāo)滿足(m,m﹣1),所有符合該條件的點組成的圖象在平面直角坐標(biāo)系xOy中就是一次函數(shù)y=x﹣1的圖象.即點P的軌跡就是直線y=x﹣1.(1)若m、n滿足等式mn﹣m=6,則(m,n﹣1)在平面直角坐標(biāo)系xOy中的軌跡是;(2)若點P(x,y)到點A(0,1)的距離與到直線y=﹣1的距離相等,求點P的軌跡;(3)若拋物線y=上有兩動點M、N滿足MN=a(a為常數(shù),且a≥4),設(shè)線段MN的中點為Q,求點Q到x軸的最短距離.18.(8分)關(guān)于x的一元二次方程x2﹣(2m﹣3)x+m2+1=1.(1)若m是方程的一個實數(shù)根,求m的值;(2)若m為負(fù)數(shù),判斷方程根的情況.19.(8分)如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點E為AB的中點,DE∥BC.(1)求證:BD平分∠ABC;(2)連接EC,若∠A=30°,DC=,求EC的長.20.(8分)如圖,在?ABCD中,∠BAC=90°,對角線AC,BD相交于點P,以AB為直徑的⊙O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.(1)求證:EF是⊙O的切線;(2)求證:=4BP?QP.21.(8分)在汕頭市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元,求每臺電腦、每臺電子白板各多少萬元?22.(10分)已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.(1)如圖1,求證:KE=GE;(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.23.(12分)某商場將進(jìn)價40元一個的某種商品按50元一個售出時,每月能賣出500個.商場想了兩個方案來增加利潤:方案一:提高價格,但這種商品每個售價漲價1元,銷售量就減少10個;方案二:售價不變,但發(fā)資料做廣告.已知當(dāng)這種商品每月的廣告費用為m(千元)時,每月銷售量將是原銷售量的p倍,且p=.試通過計算,請你判斷商場為賺得更大的利潤應(yīng)選擇哪種方案?請說明你判斷的理由!24.如圖,在Rt△ABC中,,CD⊥AB于點D,BE⊥AB于點B,BE=CD,連接CE,DE.(1)求證:四邊形CDBE為矩形;(2)若AC=2,,求DE的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)加權(quán)平均數(shù)、眾數(shù)、中位數(shù)的計算方法求解即可.【詳解】,15出現(xiàn)了8次,出現(xiàn)的次數(shù)最多,故眾數(shù)是15,從小到大排列后,排在10、11兩個位置的數(shù)是14,14,故中位數(shù)是14.故選B.【點睛】本題考查了平均數(shù)、眾數(shù)與中位數(shù)的意義.?dāng)?shù)據(jù)x1、x2、……、xn的加權(quán)平均數(shù):(其中w1、w2、……、wn分別為x1、x2、……、xn的權(quán)數(shù)).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).2、B【解析】

由于ED∥BC,可證得△ABC∽△ADE,根據(jù)相似三角形所得比例線段,即可求得AE的長.【詳解】∵ED∥BC,∴△ABC∽△ADE,∴=,∴==,即AE=9;∴AE=9.故答案選B.【點睛】本題考查的知識點是相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì).3、B【解析】【分析】設(shè)菱形的高為h,即是一個定值,再分點P在AB上,在BC上和在CD上三種情況,利用三角形的面積公式列式求出相應(yīng)的函數(shù)關(guān)系式,然后選擇答案即可.【詳解】分三種情況:①當(dāng)P在AB邊上時,如圖1,設(shè)菱形的高為h,y=12∵AP隨x的增大而增大,h不變,∴y隨x的增大而增大,故選項C不正確;②當(dāng)P在邊BC上時,如圖2,y=12AD和h都不變,∴在這個過程中,y不變,故選項A不正確;③當(dāng)P在邊CD上時,如圖3,y=12∵PD隨x的增大而減小,h不變,∴y隨x的增大而減小,∵P點從點A出發(fā)沿A→B→C→D路徑勻速運動到點D,∴P在三條線段上運動的時間相同,故選項D不正確,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,菱形的性質(zhì),根據(jù)點P的位置的不同,運用分類討論思想,分三段求出△PAD的面積的表達(dá)式是解題的關(guān)鍵.4、A【解析】

本題的等量關(guān)系是:繩長-木長=4.5;木長-×繩長=1,據(jù)此列方程組即可求解.【詳解】設(shè)繩子長x尺,木條長y尺,依題意有.故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解題的關(guān)鍵是明確題意,列出相應(yīng)的二元一次方程組.5、C【解析】

根據(jù)主視圖、左視圖、俯視圖的定義,可得答案.【詳解】球的三視圖都是圓,故選C.【點睛】本題考查了簡單幾何體的三視圖,熟記特殊幾何體的三視圖是解題關(guān)鍵.6、B【解析】

解:根據(jù)特殊角的三角函數(shù)值可得tan45o=1,故選B.【點睛】本題考查特殊角的三角函數(shù)值.7、B【解析】

根據(jù)圖象知,兩個函數(shù)的圖象的交點是(1,1),(-1,-1).由圖象可以直接寫出當(dāng)y1<y2時所對應(yīng)的x的取值范圍.【詳解】根據(jù)圖象知,一次函數(shù)y1=x3與反比例函數(shù)y2=的交點是(1,1),(-1,?1),∴當(dāng)y1<y2時,,0<x<1或x<-1;故答案選:B.【點睛】本題考查了反比例函數(shù)與冪函數(shù),解題的關(guān)鍵是熟練的掌握反比例函數(shù)與冪函數(shù)的圖象根據(jù)圖象找出答案.8、D【解析】

解:如圖:利用頂點式及取值范圍,可畫出函數(shù)圖象會發(fā)現(xiàn):當(dāng)x=3時,y=k成立的x值恰好有三個.故選:D.9、C【解析】

設(shè)B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對應(yīng)角相等∠DAE=∠B′AE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計算即可得解.【詳解】如圖,設(shè)B′C′與CD的交點為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉(zhuǎn)角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關(guān)鍵,也是本題的難點.10、A【解析】

根據(jù)正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù),比較即可【詳解】∵-3<-<0<0.3∴最大為0.3故選A.【點睛】本題考查實數(shù)比較大小,解題的關(guān)鍵是正確理解正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù),本題屬于基礎(chǔ)題型.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≤2且x≠1【解析】

根據(jù)被開方數(shù)大于等于1,分母不等于1列式計算即可得解.【詳解】解:由題意得,且x≠1,解得且x≠1.故答案為且x≠1.【點睛】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數(shù)是非負(fù)數(shù).12、【解析】

設(shè)羊價為x錢,根據(jù)題意可得合伙的人數(shù)為或,由合伙人數(shù)不變可得方程.【詳解】設(shè)羊價為x錢,根據(jù)題意可得方程:,故答案為:.【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程.13、25【解析】

利用平方根定義即可求出這個數(shù).【詳解】設(shè)這個數(shù)是x(x≥0),所以x=(-5)2=25.【點睛】本題解題的關(guān)鍵是掌握平方根的定義.14、2:1【解析】先根據(jù)相似三角形面積的比是4:9,求出其相似比是2:1,再根據(jù)其對應(yīng)的角平分線的比等于相似比,可知它們對應(yīng)的角平分線比是2:1.故答案為2:1.點睛:本題考查的是相似三角形的性質(zhì),即相似三角形對應(yīng)邊的比、對應(yīng)高線的比、對應(yīng)角平分線的比、周長的比都等于相似比;面積的比等于相似比的平方.15、1【解析】試題分析:先求出m2﹣2m的值,然后把所求代數(shù)式整理出已知條件的形式并代入進(jìn)行計算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案為1.考點:代數(shù)式求值.16、C【解析】

先證明△BPE∽△CDP,再根據(jù)相似三角形對應(yīng)邊成比例列出式子變形可得.【詳解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故選C.考點:1.折疊問題;2.相似三角形的判定和性質(zhì);3.二次函數(shù)的圖象.三、解答題(共8題,共72分)17、(1);(2)y=x2;(3)點Q到x軸的最短距離為1.【解析】

(1)先判斷出m(n﹣1)=6,進(jìn)而得出結(jié)論;(2)先求出點P到點A的距離和點P到直線y=﹣1的距離建立方程即可得出結(jié)論;(3)設(shè)出點M,N的坐標(biāo),進(jìn)而得出點Q的坐標(biāo),利用MN=a,得出,即可得出結(jié)論.【詳解】(1)設(shè)m=x,n﹣1=y,∵mn﹣m=6,∴m(n﹣1)=6,∴xy=6,∴∴(m,n﹣1)在平面直角坐標(biāo)系xOy中的軌跡是故答案為:;(2)∴點P(x,y)到點A(0,1),∴點P(x,y)到點A(0,1)的距離的平方為x2+(y﹣1)2,∵點P(x,y)到直線y=﹣1的距離的平方為(y+1)2,∵點P(x,y)到點A(0,1)的距離與到直線y=﹣1的距離相等,∴x2+(y﹣1)2=(y+1)2,∴(3)設(shè)直線MN的解析式為y=kx+b,M(x1,y1),N(x2,y2),∴線段MN的中點為Q的縱坐標(biāo)為∴∴x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,∴∴∴∴點Q到x軸的最短距離為1.【點睛】此題是二次函數(shù)綜合題,主要考查了點的軌跡的定義,兩點間的距離公式,中點坐標(biāo)公式公式,根與系數(shù)的關(guān)系,確定出是解本題的關(guān)鍵.18、(1);(2)方程有兩個不相等的實根.【解析】分析:(1)由方程根的定義,代入可得到關(guān)于m的方程,則可求得m的值;

(2)計算方程根的判別式,判斷判別式的符號即可.詳解:(1)∵m是方程的一個實數(shù)根,

∴m2-(2m-3)m+m2+1=1,

∴m=?;

(2)△=b2-4ac=-12m+5,

∵m<1,

∴-12m>1.

∴△=-12m+5>1.

∴此方程有兩個不相等的實數(shù)根.點睛:考查根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.19、(1)見解析;(2).【解析】

(1)直接利用直角三角形的性質(zhì)得出,再利用DE∥BC,得出∠2=∠3,進(jìn)而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的長,進(jìn)而得出EC的長.【詳解】(1)證明:∵AD⊥DB,點E為AB的中點,∴.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴.【點睛】此題主要考查了直角三角形斜邊上的中線與斜邊的關(guān)系,正確得出DB,DE的長是解題關(guān)鍵.20、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)連接OE,AE,由AB是⊙O的直徑,得到∠AEB=∠AEC=90°,根據(jù)四邊形ABCD是平行四邊形,得到PA=PC推出∠OEP=∠OAC=90°,根據(jù)切線的判定定理即可得到結(jié)論;(2)由AB是⊙O的直徑,得到∠AQB=90°根據(jù)相似三角形的性質(zhì)得到=PB?PQ,根據(jù)全等三角形的性質(zhì)得到PF=PE,求得PA=PE=EF,等量代換即可得到結(jié)論.試題解析:(1)連接OE,AE,∵AB是⊙O的直徑,∴∠AEB=∠AEC=90°,∵四邊形ABCD是平行四邊形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切線;(2)∵AB是⊙O的直徑,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB?PQ,在△AFP與△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP?QP.考點:切線的判定;平行四邊形的性質(zhì);相似三角形的判定與性質(zhì).21、每臺電腦0.5萬元;每臺電子白板1.5萬元.【解析】

先設(shè)每臺電腦x萬元,每臺電子白板y萬元,根據(jù)電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元列出方程組,求出x,y的值即可.【詳解】設(shè)每臺電腦x萬元,每臺電子白板y萬元.根據(jù)題意,得:解得,答:每臺電腦0.5萬元,每臺電子白板1.5萬元.【點睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是讀懂題意,找出之間的數(shù)量關(guān)系,列出二元一次方程組.22、(1)證明見解析;(2)△EAD是等腰三角形.證明見解析;(3).【解析】試題分析:(1)連接OG,則由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,從而可得∠KGE=∠AKH=∠EKG,這樣即可得到KE=GE;(2)設(shè)∠FGB=α,由AB是直徑可得∠AGB=90°,從而可得∠KGE=90°-α,結(jié)合GE=KE可得∠EKG=90°-α,這樣在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,這樣可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下圖2,作NP⊥AC于P,由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,設(shè)AH=3a,可得AC=5a,CH=4a,則tan∠CAH=,由(2)中結(jié)論易得∠CAK=∠EGK=∠EKG=∠AKC,從而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,結(jié)合AK=可得a=1,則AC=5;在四邊形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,結(jié)合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,在Rt△APN中,由tan∠CAH=,可設(shè)PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,則可得b=,由此即可在Rt△CPN中由勾股定理解出CN的長.試題解析:(1)如圖1,連接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)設(shè)∠FGB=α,∵AB是直徑,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=,設(shè)AH=3a,AC=5a,則CH=,tan∠CAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,∵AK

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論