版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線(xiàn)內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正方體的體積為,點(diǎn),分別在棱,上,滿(mǎn)足最小,則四面體的體積為A. B. C. D.2.設(shè)函數(shù)恰有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.3.設(shè)變量滿(mǎn)足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.24.已知函數(shù),,若成立,則的最小值是()A. B. C. D.5.已知變量,滿(mǎn)足不等式組,則的最小值為()A. B. C. D.6.集合,,則()A. B. C. D.7.已知復(fù)數(shù),則()A. B. C. D.28.已知向量,滿(mǎn)足,在上投影為,則的最小值為()A. B. C. D.9.為了研究國(guó)民收入在國(guó)民之間的分配,避免貧富過(guò)分懸殊,美國(guó)統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線(xiàn),如圖所示.勞倫茨曲線(xiàn)為直線(xiàn)時(shí),表示收入完全平等.勞倫茨曲線(xiàn)為折線(xiàn)時(shí),表示收入完全不平等.記區(qū)域?yàn)椴黄降葏^(qū)域,表示其面積,為的面積,將稱(chēng)為基尼系數(shù).對(duì)于下列說(shuō)法:①越小,則國(guó)民分配越公平;②設(shè)勞倫茨曲線(xiàn)對(duì)應(yīng)的函數(shù)為,則對(duì),均有;③若某國(guó)家某年的勞倫茨曲線(xiàn)近似為,則;④若某國(guó)家某年的勞倫茨曲線(xiàn)近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④10.若圓錐軸截面面積為,母線(xiàn)與底面所成角為60°,則體積為()A. B. C. D.11.已知圓:,圓:,點(diǎn)、分別是圓、圓上的動(dòng)點(diǎn),為軸上的動(dòng)點(diǎn),則的最大值是()A. B.9 C.7 D.12.已知,,為圓上的動(dòng)點(diǎn),,過(guò)點(diǎn)作與垂直的直線(xiàn)交直線(xiàn)于點(diǎn),若點(diǎn)的橫坐標(biāo)為,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若曲線(xiàn)(其中常數(shù))在點(diǎn)處的切線(xiàn)的斜率為1,則________.14.若,則=______,=______.15.某高校組織學(xué)生辯論賽,六位評(píng)委為選手成績(jī)打出分?jǐn)?shù)的莖葉圖如圖所示,若去掉一個(gè)最高分,去掉一個(gè)最低分,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為_(kāi)_____.16.已知函數(shù),則函數(shù)的極大值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列滿(mǎn)足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.18.(12分)已知數(shù)列中,,前項(xiàng)和為,若對(duì)任意的,均有(是常數(shù),且)成立,則稱(chēng)數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項(xiàng)和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問(wèn):是否存在數(shù)列,使得對(duì)任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請(qǐng)說(shuō)明理由.19.(12分)已知分別是橢圓的左焦點(diǎn)和右焦點(diǎn),橢圓的離心率為是橢圓上兩點(diǎn),點(diǎn)滿(mǎn)足.(1)求的方程;(2)若點(diǎn)在圓上,點(diǎn)為坐標(biāo)原點(diǎn),求的取值范圍.20.(12分)某企業(yè)現(xiàn)有A.B兩套設(shè)備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測(cè)某一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是從A設(shè)備抽取的樣本頻率分布直方圖,表1是從B設(shè)備抽取的樣本頻數(shù)分布表.圖1:A設(shè)備生產(chǎn)的樣本頻率分布直方圖表1:B設(shè)備生產(chǎn)的樣本頻數(shù)分布表質(zhì)量指標(biāo)值頻數(shù)2184814162(1)請(qǐng)估計(jì)A.B設(shè)備生產(chǎn)的產(chǎn)品質(zhì)量指標(biāo)的平均值;(2)企業(yè)將不合格品全部銷(xiāo)毀后,并對(duì)合格品進(jìn)行等級(jí)細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件利潤(rùn)240元;質(zhì)量指標(biāo)值落在或內(nèi)的定為二等品,每件利潤(rùn)180元;其它的合格品定為三等品,每件利潤(rùn)120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設(shè)備生產(chǎn)的同一種產(chǎn)品每件獲得利潤(rùn)的期望值調(diào)整生產(chǎn)規(guī)模,請(qǐng)根據(jù)以上數(shù)據(jù),從經(jīng)濟(jì)效益的角度考慮企業(yè)應(yīng)該對(duì)哪一套設(shè)備加大生產(chǎn)規(guī)模?21.(12分)已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿(mǎn)足:,,求的通項(xiàng)公式;(3)在第(2)問(wèn)的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;22.(10分)某早餐店對(duì)一款新口味的酸奶進(jìn)行了一段時(shí)間試銷(xiāo),定價(jià)為元/瓶.酸奶在試銷(xiāo)售期間足量供應(yīng),每天的銷(xiāo)售數(shù)據(jù)按照,,,分組,得到如下頻率分布直方圖,以不同銷(xiāo)量的頻率估計(jì)概率.從試銷(xiāo)售期間任選三天,求其中至少有一天的酸奶銷(xiāo)量大于瓶的概率;試銷(xiāo)結(jié)束后,這款酸奶正式上市,廠(chǎng)家只提供整箱批發(fā):大箱每箱瓶,批發(fā)成本元;小箱每箱瓶,批發(fā)成本元.由于酸奶保質(zhì)期短,當(dāng)天未賣(mài)出的只能作廢.該早餐店以試銷(xiāo)售期間的銷(xiāo)量作為參考,決定每天僅批發(fā)一箱(計(jì)算時(shí)每個(gè)分組取中間值作為代表,比如銷(xiāo)量為時(shí)看作銷(xiāo)量為瓶).①設(shè)早餐店批發(fā)一大箱時(shí),當(dāng)天這款酸奶的利潤(rùn)為隨機(jī)變量,批發(fā)一小箱時(shí),當(dāng)天這款酸奶的利潤(rùn)為隨機(jī)變量,求和的分布列和數(shù)學(xué)期望;②以利潤(rùn)作為決策依據(jù),該早餐店應(yīng)每天批發(fā)一大箱還是一小箱?注:銷(xiāo)售額=銷(xiāo)量×定價(jià);利潤(rùn)=銷(xiāo)售額-批發(fā)成本.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由題意畫(huà)出圖形,將所在的面延它們的交線(xiàn)展開(kāi)到與所在的面共面,可得當(dāng)時(shí)最小,設(shè)正方體的棱長(zhǎng)為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,
∵點(diǎn)M,N分別在棱上,要最小,將所在的面延它們的交線(xiàn)展開(kāi)到與所在的面共面,三線(xiàn)共線(xiàn)時(shí),最小,
∴
設(shè)正方體的棱長(zhǎng)為,則,∴.
取,連接,則共面,在中,設(shè)到的距離為,
設(shè)到平面的距離為,
.
故選D.【點(diǎn)睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問(wèn)題,考查計(jì)算能力,是中檔題.2、C【解析】
恰有兩個(gè)極值點(diǎn),則恰有兩個(gè)不同的解,求出可確定是它的一個(gè)解,另一個(gè)解由方程確定,令通過(guò)導(dǎo)數(shù)判斷函數(shù)值域求出方程有一個(gè)不是1的解時(shí)t應(yīng)滿(mǎn)足的條件.【詳解】由題意知函數(shù)的定義域?yàn)椋?因?yàn)榍∮袃蓚€(gè)極值點(diǎn),所以恰有兩個(gè)不同的解,顯然是它的一個(gè)解,另一個(gè)解由方程確定,且這個(gè)解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當(dāng)且時(shí),恰有兩個(gè)極值點(diǎn),即實(shí)數(shù)的取值范圍是.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應(yīng)用,屬于中檔題.3、B【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線(xiàn)方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫(huà)出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線(xiàn),由圖可知當(dāng)直經(jīng)過(guò)點(diǎn)時(shí),直線(xiàn)在軸上的截距最大,最大值為,故選B.【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移、三求”:(1)作出可行域(一定要注意是實(shí)線(xiàn)還是虛線(xiàn));(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.4、A【解析】分析:設(shè),則,把用表示,然后令,由導(dǎo)數(shù)求得的最小值.詳解:設(shè),則,,,∴,令,則,,∴是上的增函數(shù),又,∴當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,,∴的最小值是.故選A.點(diǎn)睛:本題易錯(cuò)選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時(shí)學(xué)生可能不會(huì)將其中求的最小值問(wèn)題,通過(guò)構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問(wèn)題,另外通過(guò)二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯(cuò).5、B【解析】
先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿(mǎn)足不等式組,畫(huà)出相應(yīng)圖形如下:可知點(diǎn),,在處有最小值,最小值為.故選:B.【點(diǎn)睛】本題主要考查簡(jiǎn)單的線(xiàn)性規(guī)劃,運(yùn)用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.6、A【解析】
解一元二次不等式化簡(jiǎn)集合A,再根據(jù)對(duì)數(shù)的真數(shù)大于零化簡(jiǎn)集合B,求交集運(yùn)算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.【點(diǎn)睛】本題主要考查了集合的交集運(yùn)算,涉及一元二次不等式解法及對(duì)數(shù)的概念,屬于中檔題.7、C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.8、B【解析】
根據(jù)在上投影為,以及,可得;再對(duì)所求模長(zhǎng)進(jìn)行平方運(yùn)算,可將問(wèn)題轉(zhuǎn)化為模長(zhǎng)和夾角運(yùn)算,代入即可求得.【詳解】在上投影為,即又本題正確選項(xiàng):【點(diǎn)睛】本題考查向量模長(zhǎng)的運(yùn)算,對(duì)于含加減法運(yùn)算的向量模長(zhǎng)的求解,通常先求解模長(zhǎng)的平方,再開(kāi)平方求得結(jié)果;解題關(guān)鍵是需要通過(guò)夾角取值范圍的分析,得到的最小值.9、A【解析】
對(duì)于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國(guó)民分配越公平,所以①正確.對(duì)于②,根據(jù)勞倫茨曲線(xiàn)為一條凹向橫軸的曲線(xiàn),由圖得,均有,可得,所以②錯(cuò)誤.對(duì)于③,因?yàn)?,所以,所以③錯(cuò)誤.對(duì)于④,因?yàn)?,所以,所以④正確.故選A.10、D【解析】
設(shè)圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計(jì)算即可.【詳解】設(shè)圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點(diǎn)睛】本題考查圓錐的體積的計(jì)算,涉及到圓錐的定義,是一道容易題.11、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對(duì)稱(chēng)點(diǎn),,故的最大值為,故選B.考點(diǎn):圓與圓的位置關(guān)系及其判定.【思路點(diǎn)睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對(duì)稱(chēng)性,求出所求式子的最大值.12、A【解析】
由題意得,即可得點(diǎn)M的軌跡為以A,B為左、右焦點(diǎn),的雙曲線(xiàn),根據(jù)雙曲線(xiàn)的性質(zhì)即可得解.【詳解】如圖,連接OP,AM,由題意得,點(diǎn)M的軌跡為以A,B為左、右焦點(diǎn),的雙曲線(xiàn),.故選:A.【點(diǎn)睛】本題考查了雙曲線(xiàn)定義的應(yīng)用,考查了轉(zhuǎn)化化歸思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用導(dǎo)數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.14、10【解析】
①根據(jù)換底公式計(jì)算即可得解;②根據(jù)同底對(duì)數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點(diǎn)睛】此題考查對(duì)數(shù)的基本運(yùn)算,涉及換底公式和同底對(duì)數(shù)加法運(yùn)算,屬于基礎(chǔ)題目.15、【解析】
先根據(jù)莖葉圖求出平均數(shù)和中位數(shù),然后可得結(jié)果.【詳解】剩下的四個(gè)數(shù)為83,85,87,95,且這四個(gè)數(shù)的平均數(shù),這四個(gè)數(shù)的中位數(shù)為,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為.【點(diǎn)睛】本題主要考查莖葉圖的識(shí)別和統(tǒng)計(jì)量的計(jì)算,側(cè)重考查數(shù)據(jù)分析和數(shù)學(xué)運(yùn)算的核心素養(yǎng).16、【解析】
對(duì)函數(shù)求導(dǎo),通過(guò)賦值,求得,再對(duì)函數(shù)單調(diào)性進(jìn)行分析,求得極大值.【詳解】,故解得,,令,解得函數(shù)在單調(diào)遞增,在單調(diào)遞減,故的極大值為故答案為:.【點(diǎn)睛】本題考查函數(shù)極值的求解,難點(diǎn)是要通過(guò)賦值,求出未知量.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析,;(2).【解析】
(1)將等式變形為,進(jìn)而可證明出是等差數(shù)列,確定數(shù)列的首項(xiàng)和公差,可求得的表達(dá)式,進(jìn)而可得出數(shù)列的通項(xiàng)公式;(2)利用錯(cuò)位相減法可求得數(shù)列的前項(xiàng)和.【詳解】(1)因?yàn)椋?,即,所以?shù)列是等差數(shù)列,且公差,其首項(xiàng)所以,解得;(2),①,②①②,得,所以.【點(diǎn)睛】本題考查利用遞推公式證明等差數(shù)列,同時(shí)也考查了錯(cuò)位相減法求和,考查推理能力與計(jì)算能力,屬于中等題.18、(1)(2)存在,【解析】
由數(shù)列為“數(shù)列”可得,,,兩式相減得,又,利用等比數(shù)列通項(xiàng)公式即可求出,進(jìn)而求出;由題意得,,,兩式相減得,,據(jù)此可得,當(dāng)時(shí),,進(jìn)而可得,即數(shù)列為常數(shù)列,進(jìn)而可得,結(jié)合,得到關(guān)于的不等式,再由時(shí),且為整數(shù)即可求出符合題意的的所有值.【詳解】因?yàn)閿?shù)列為“數(shù)列”,所以,故,兩式相減得,在中令,則可得,故所以,所以數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,所以,因?yàn)?,所?(2)由題意得,故,兩式相減得所以,當(dāng)時(shí),又因?yàn)樗援?dāng)時(shí),所以成立,所以當(dāng)時(shí),數(shù)列是常數(shù)列,所以因?yàn)楫?dāng)時(shí),成立,所以,所以在中令,因?yàn)椋钥傻?,所以,由時(shí),且為整數(shù),可得,把分別代入不等式可得,,所以存在數(shù)列符合題意,的所有值為.【點(diǎn)睛】本題考查數(shù)列的新定義、等比數(shù)列的通項(xiàng)公式和數(shù)列遞推公式的運(yùn)用;考查運(yùn)算求解能力、邏輯推理能力和對(duì)新定義的理解能力;通過(guò)反復(fù)利用遞推公式,得到數(shù)列為常數(shù)列是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.19、(1);(2).【解析】
(1)根據(jù)焦點(diǎn)坐標(biāo)和離心率,結(jié)合橢圓中的關(guān)系,即可求得的值,進(jìn)而得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線(xiàn)的方程為,由題意可知為中點(diǎn).聯(lián)立直線(xiàn)與橢圓方程,由韋達(dá)定理表示出,由判別式可得;由平面向量的線(xiàn)性運(yùn)算及數(shù)量積定義,化簡(jiǎn)可得,代入弦長(zhǎng)公式化簡(jiǎn);由中點(diǎn)坐標(biāo)公式可得點(diǎn)的坐標(biāo),代入圓的方程,化簡(jiǎn)可得,代入數(shù)量積公式并化簡(jiǎn),由換元法令,代入可得,再令及,結(jié)合函數(shù)單調(diào)性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點(diǎn)和右焦點(diǎn),則,橢圓的離心率為則解得,所以,所以的方程為.(2)設(shè)直線(xiàn)的方程為,點(diǎn)滿(mǎn)足,則為中點(diǎn),點(diǎn)在圓上,設(shè),聯(lián)立直線(xiàn)與橢圓方程,化簡(jiǎn)可得,所以則,化簡(jiǎn)可得,而由弦長(zhǎng)公式代入可得為中點(diǎn),則點(diǎn)在圓上,代入化簡(jiǎn)可得,所以令,則,,令,則令,則,所以,因?yàn)樵趦?nèi)單調(diào)遞增,所以,即所以【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程求法,直線(xiàn)與橢圓的位置關(guān)系綜合應(yīng)用,由韋達(dá)定理研究參數(shù)間的關(guān)系,平面向量的線(xiàn)性運(yùn)算與數(shù)量積運(yùn)算,弦長(zhǎng)公式的應(yīng)用及換元法在求取值范圍問(wèn)題中的綜合應(yīng)用,計(jì)算量大,屬于難題.20、(1)30.2,29;(2)B設(shè)備【解析】
(1)平均數(shù)的估計(jì)值為組中值與頻率乘積的和;(2)要注意指標(biāo)值落在內(nèi)的產(chǎn)品才視為合格品,列出A、B設(shè)備利潤(rùn)分布列,算出期望即可作出決策.【詳解】(1)A設(shè)備生產(chǎn)的樣本的頻數(shù)分布表如下質(zhì)量指標(biāo)值頻數(shù)41640121810.根據(jù)樣本質(zhì)量指標(biāo)平均值估計(jì)A設(shè)備生產(chǎn)一件產(chǎn)品質(zhì)量指標(biāo)平均值為30.2.B設(shè)備生產(chǎn)的樣本的頻數(shù)分布表如下質(zhì)量指標(biāo)值頻數(shù)2184814162根據(jù)樣本質(zhì)量指標(biāo)平均值估計(jì)B設(shè)備生產(chǎn)一件產(chǎn)品質(zhì)量指標(biāo)平均值為29.(2)A設(shè)備生產(chǎn)一件產(chǎn)品的利潤(rùn)記為X,B設(shè)備生產(chǎn)一件產(chǎn)品的利潤(rùn)記為Y,X240180120PY240180120P若以生產(chǎn)一件產(chǎn)品的利潤(rùn)作為決策依據(jù),企業(yè)應(yīng)加大B設(shè)備的生產(chǎn)規(guī)模.【點(diǎn)睛】本題考查平均數(shù)的估計(jì)值、離散隨機(jī)變量的期望,并利用期望作決策,是一個(gè)概率與統(tǒng)計(jì)綜合題,本題是一道中檔題.21、(1)(2)當(dāng)n為偶數(shù)時(shí),;當(dāng)n為奇數(shù)時(shí),.(3)【解析】
(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時(shí)的通項(xiàng)公式.也可利用數(shù)學(xué)歸納法,先猜想出通項(xiàng)公式,再用數(shù)學(xué)歸納法證明.(3)分類(lèi)討論,當(dāng)n為奇數(shù)或偶數(shù)時(shí),分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當(dāng)時(shí),,當(dāng)時(shí),也滿(mǎn)足上式.所以.(2)解法一:由(1)可知,即.當(dāng)時(shí),,①當(dāng)時(shí),,所以,②當(dāng)時(shí),,③當(dāng)時(shí),,所以,④……當(dāng)時(shí),n為偶數(shù)當(dāng)時(shí),n為偶數(shù)所以以上個(gè)式子相加,得.又,所以當(dāng)n為偶數(shù)時(shí),.同理,當(dāng)n為奇數(shù)時(shí),,所以,當(dāng)n為奇數(shù)時(shí),.解法二:猜測(cè):當(dāng)n為奇數(shù)時(shí),.猜測(cè):當(dāng)n為偶數(shù)時(shí),.以下用數(shù)學(xué)歸納法證明:,命題成立;假設(shè)當(dāng)時(shí),命題成立;當(dāng)n為奇數(shù)時(shí),,當(dāng)時(shí),n為偶數(shù),由得故,時(shí),命題也成立.綜上可知,當(dāng)n為奇數(shù)時(shí)同理,當(dāng)n為偶數(shù)時(shí),命題仍成立.(3)由(2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 版權(quán)合同范本協(xié)議要點(diǎn)梳理
- 直飲水購(gòu)銷(xiāo)合同
- 冰箱采購(gòu)合同的運(yùn)輸責(zé)任
- 裝修版權(quán)補(bǔ)充合同
- 現(xiàn)場(chǎng)拌合砂漿購(gòu)銷(xiāo)合同
- 個(gè)人借款合同范本格式格式格式閱讀
- 短期借款合同與借據(jù)樣本
- 裝飾粉刷班組合同合作
- 產(chǎn)品推廣翻譯服務(wù)協(xié)議
- 網(wǎng)吧會(huì)員包月上網(wǎng)合同范例
- 競(jìng)爭(zhēng)性談判工作人員簽到表及競(jìng)爭(zhēng)性談判方案
- 山東省淄博市張店區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期1月期末化學(xué)試題(含解析)
- 廈門(mén)旅游課件
- 人工智能導(dǎo)論智慧樹(shù)知到期末考試答案章節(jié)答案2024年哈爾濱工程大學(xué)
- 單位食堂供餐方案(2篇)
- 農(nóng)村《智慧養(yǎng)老》課件
- 《庖丁解?!?(教學(xué)課件)- 統(tǒng)編版高中語(yǔ)文必修下冊(cè)
- 2022課程方案試題
- 絲氨酸蛋白酶在代謝性疾病中的作用
- 城市軌道交通工程監(jiān)理控制要點(diǎn)
- 針刺氣沖穴對(duì)慢性疼痛動(dòng)物模式的電生理研究
評(píng)論
0/150
提交評(píng)論