版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某工廠一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中錯誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個月的平均收入為萬元2.新聞出版業(yè)不斷推進供給側(cè)結(jié)構(gòu)性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是()A.2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加B.2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍C.2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍D.2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一3.若平面向量,滿足,則的最大值為()A. B. C. D.4.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內(nèi)切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.5.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.6.若θ是第二象限角且sinθ=,則=A. B. C. D.7.設(shè)集合,,則集合A. B. C. D.8.已知復(fù)數(shù),則對應(yīng)的點在復(fù)平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.對某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測試中的成績(單位:分)進行統(tǒng)計得到折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績分析.①甲同學(xué)的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間110,120內(nèi);③乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān);④乙同學(xué)連續(xù)九次測驗成績每一次均有明顯進步.其中正確的個數(shù)為()A.4 B.3 C.2 D.111.如圖是一個幾何體的三視圖,則這個幾何體的體積為()A. B. C. D.12.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知f(x)為偶函數(shù),當x≤0時,f(x)=e-x-1-x,則曲線y=f(x)14.如圖,在△ABC中,AB=4,D是AB的中點,E在邊AC上,AE=2EC,CD與BE交于點O,若OB=OC,則△ABC面積的最大值為_______.15.已知不等式組所表示的平面區(qū)域為,則區(qū)域的外接圓的面積為______.16.已知數(shù)列為等比數(shù)列,,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準線的距離為,且.(1)求拋物線的標準方程;(2)若軸上存在點,過點的直線與拋物線相交于、兩點,且為定值,求點的坐標.18.(12分)已知拋物線,焦點為,直線交拋物線于兩點,交拋物線的準線于點,如圖所示,當直線經(jīng)過焦點時,點恰好是的中點,且.(1)求拋物線的方程;(2)點是原點,設(shè)直線的斜率分別是,當直線的縱截距為1時,有數(shù)列滿足,設(shè)數(shù)列的前n項和為,已知存在正整數(shù)使得,求m的值.19.(12分)已知.(1)解不等式;(2)若均為正數(shù),且,求的最小值.20.(12分)2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內(nèi)報名人數(shù)便突破60萬,其中青年學(xué)生約有50萬人.現(xiàn)從這50萬青年學(xué)生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:分)統(tǒng)計結(jié)果用莖葉圖記錄如下:(Ⅰ)試估計在這50萬青年學(xué)生志愿者中,英語測試成績在80分以上的女生人數(shù);(Ⅱ)從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;(Ⅲ)為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機分成若干組(每組人數(shù)不少于5000),并在每組中隨機選取個人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語測試成績在70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)21.(12分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.22.(10分)己知,,.(1)求證:;(2)若,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項正確;結(jié)余最高為月份,為,故項正確;至月份的收入的變化率為至月份的收入的變化率相同,故項正確;前個月的平均收入為萬元,故項錯誤.綜上,故選.2、C【解析】
通過圖表所給數(shù)據(jù),逐個選項驗證.【詳解】根據(jù)圖示數(shù)據(jù)可知選項A正確;對于選項B:,正確;對于選項C:,故C不正確;對于選項D:,正確.選C.【點睛】本題主要考查柱狀圖是識別和數(shù)據(jù)分析,題目較為簡單.3、C【解析】
可根據(jù)題意把要求的向量重新組合成已知向量的表達,利用向量數(shù)量積的性質(zhì),化簡為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關(guān)鍵點.本題屬中檔題.4、D【解析】
可設(shè)的內(nèi)切圓的圓心為,設(shè),,可得,由切線的性質(zhì):切線長相等推得,解得、,并設(shè),求得的值,推得為等邊三角形,由焦距為三角形的高,結(jié)合離心率公式可得所求值.【詳解】可設(shè)的內(nèi)切圓的圓心為,為切點,且為中點,,設(shè),,則,且有,解得,,設(shè),,設(shè)圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質(zhì),注意運用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線的性質(zhì),考查化簡運算能力,屬于中檔題.5、A【解析】
求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點睛】本題考查函數(shù)的切線問題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.6、B【解析】由θ是第二象限角且sinθ=知:,.所以.7、B【解析】
先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【點睛】本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次項系數(shù)化為正數(shù),且不等號的另一邊化為,然后通過因式分解,求得對應(yīng)的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.8、A【解析】
利用復(fù)數(shù)除法運算化簡,由此求得對應(yīng)點所在象限.【詳解】依題意,對應(yīng)點為,在第一象限.故選A.【點睛】本小題主要考查復(fù)數(shù)除法運算,考查復(fù)數(shù)對應(yīng)點的坐標所在象限,屬于基礎(chǔ)題.9、D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因為x,,當時,不妨取,,故時,不成立,當時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.10、C【解析】
利用圖形,判斷折線圖平均分以及線性相關(guān)性,成績的比較,說明正誤即可.【詳解】①甲同學(xué)的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,①錯誤;②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間[110,120]內(nèi),②正確;③乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān),③正確;④乙同學(xué)在這連續(xù)九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點睛】本題考查折線圖的應(yīng)用,線性相關(guān)以及平均分的求解,考查轉(zhuǎn)化思想以及計算能力,屬于基礎(chǔ)題.11、A【解析】
由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.【點睛】本題主要考查由三視圖求面積、體積,關(guān)鍵是由三視圖還原原幾何體,意在考查學(xué)生對這些知識的理解掌握水平.12、D【解析】
根據(jù)面面平行的判定及性質(zhì)求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、y=2x【解析】試題分析:當x>0時,-x<0,則f(-x)=ex-1+x.又因為f(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點】函數(shù)的奇偶性、解析式及導(dǎo)數(shù)的幾何意義【知識拓展】本題題型可歸納為“已知當x>0時,函數(shù)y=f(x),則當x<0時,求函數(shù)的解析式”.有如下結(jié)論:若函數(shù)f(x)為偶函數(shù),則當x<0時,函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).14、【解析】
先根據(jù)點共線得到,從而得到O的軌跡為阿氏圓,結(jié)合三角形和三角形的面積關(guān)系可求.【詳解】設(shè)B,O,E共線,則,解得,從而O為CD中點,故.在△BOD中,BD=2,,易知O的軌跡為阿氏圓,其半徑,故.故答案為:.【點睛】本題主要考查三角形的面積問題,把所求面積進行轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).15、【解析】
先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結(jié)果.【詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設(shè)的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【點睛】線性規(guī)劃問題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離、可行域面積、可行域外接圓等等,最后結(jié)合圖形確定目標函數(shù)最值取法、值域范圍.16、81【解析】
設(shè)數(shù)列的公比為,利用等比數(shù)列通項公式求出,代入等比數(shù)列通項公式即可求解.【詳解】設(shè)數(shù)列的公比為,由題意知,因為,由等比數(shù)列通項公式可得,,解得,由等比數(shù)列通項公式可得,.故答案為:【點睛】本題考查等比數(shù)列通項公式;考查運算求解能力;屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先分別表示出,然后根據(jù)求解出的值,則的標準方程可求;(2)設(shè)出直線的方程并聯(lián)立拋物線方程得到韋達定理形式,然后根據(jù)距離公式表示出并代入韋達定理形式,由此判斷出為定值時的坐標.【詳解】(1)由題意可得,焦點,,則,,∴解得.拋物線的標準方程為(2)設(shè),設(shè)點,,顯然直線的斜率不為0.設(shè)直線的方程為聯(lián)立方程,整理可得,,∴,∴要使為定值,必有,解得,∴為定值時,點的坐標為【點睛】本題考查拋物線方程的求解以及拋物線中的定值問題,難度一般.(1)處理直線與拋物線相交對應(yīng)的定值問題,聯(lián)立直線方程借助韋達定理形式是常用方法;(2)直線與圓錐曲線的問題中,直線方程的設(shè)法有時能很大程度上起到簡化運算的作用。18、(1)(2)【解析】
(1)設(shè)出直線的方程,再與拋物線聯(lián)立方程組,進而求得點的坐標,結(jié)合弦長即可求得拋物線的方程;(2)設(shè)直線的方程,運用韋達定理可得,可得之間的關(guān)系,再運用進行裂項,可求得,解不等式求得的值.【詳解】解:(1)設(shè)過拋物線焦點的直線方程為,與拋物線方程聯(lián)立得:,設(shè),所以,,,所以拋物線方程為(2)設(shè)直線方程為,,,,,,由得.【點睛】本題考查了直線與拋物線的關(guān)系,考查了韋達定理和運用裂項法求數(shù)列的和,考查了運算能力,屬于中檔題.19、(1);(2)【解析】
(1)利用零點分段討論法可求不等式的解.(2)利用柯西不等式可求的最小值.【詳解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(當且僅當時取“=”).所以的最小值為.【點睛】本題考查絕對值不等式的解法以及利用柯西不等式求最值.解絕對值不等式的基本方法有零點分段討論法、圖象法、平方法等,利用零點分段討論法時注意分類點的合理選擇,利用平方去掉絕對值符號時注意代數(shù)式的正負,而利用圖象法求解時注意圖象的正確刻畫.利用柯西不等式求最值時注意把原代數(shù)式配成平方和的乘積形式,本題屬于中檔題.20、(Ⅰ)萬;(Ⅱ)分布列見解析,;(Ⅲ)【解析】
(Ⅰ)根據(jù)比例關(guān)系直接計算得到答案.(Ⅱ)的可能取值為,計算概率得到分布列,再計算數(shù)學(xué)期望得到答案.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- YY/T 0581.2-2024輸液連接件第2部分:無針連接件
- 貴州大學(xué)《生物防治學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年貴州省安全員《C證》考試題庫及答案
- 2025湖北建筑安全員《C證》考試題庫
- 2025山西建筑安全員《A證》考試題庫及答案
- 硅湖職業(yè)技術(shù)學(xué)院《唐詩宋詞賞析》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽學(xué)院《物流英語》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年河北建筑安全員C證(專職安全員)考試題庫
- 2025海南省安全員考試題庫及答案
- 2025年-黑龍江省安全員《A證》考試題庫及答案
- 三支一扶協(xié)議書模板
- 燙傷的防治與護理
- 2024年全國職業(yè)院校技能大賽高職組(護理技能賽項)備賽試題庫(含答案)
- 駕駛員三年內(nèi)工作總結(jié)
- 青年你為什么要入團-團員教育主題班會-熱點主題班會課件
- 司法鑒定工作應(yīng)急預(yù)案
- 《竹結(jié)構(gòu)建筑技術(shù)規(guī)程》
- 大一中國近代史綱要期末考試試題及答案
- (完整版)鋼筋加工棚驗算
- 安徽省合肥市廬陽區(qū)2023-2024學(xué)年三年級上學(xué)期期末數(shù)學(xué)試卷
- 概念方案模板
評論
0/150
提交評論