2023年山西太原師范學(xué)院附中高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
2023年山西太原師范學(xué)院附中高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
2023年山西太原師范學(xué)院附中高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
2023年山西太原師范學(xué)院附中高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
2023年山西太原師范學(xué)院附中高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),滿足約束條件,則的最大值是()A. B. C. D.2.已知中,角、所對(duì)的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件3.已知函數(shù),關(guān)于x的方程f(x)=a存在四個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)4.如圖,已知平面,,、是直線上的兩點(diǎn),、是平面內(nèi)的兩點(diǎn),且,,,,.是平面上的一動(dòng)點(diǎn),且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.5.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國(guó)古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”,這可視為中國(guó)古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為()A. B. C. D.6.已知向量與向量平行,,且,則()A. B.C. D.7.如圖,在中,,是上的一點(diǎn),若,則實(shí)數(shù)的值為()A. B. C. D.8.若時(shí),,則的取值范圍為()A. B. C. D.9.已知各項(xiàng)都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.10.已知數(shù)列的前n項(xiàng)和為,,且對(duì)于任意,滿足,則()A. B. C. D.11.在長(zhǎng)方體中,,則直線與平面所成角的余弦值為()A. B. C. D.12.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}二、填空題:本題共4小題,每小題5分,共20分。13.滿足約束條件的目標(biāo)函數(shù)的最小值是.14.《九章算術(shù)》是中國(guó)古代的數(shù)學(xué)名著,其中《方田》一章給出了弧田面積的計(jì)算公式.如圖所示,弧田是由圓弧AB和其所對(duì)弦AB圍成的圖形,若弧田的弧AB長(zhǎng)為4π,弧所在的圓的半徑為6,則弧田的弦AB長(zhǎng)是__________,弧田的面積是__________.15.的二項(xiàng)展開(kāi)式中,含項(xiàng)的系數(shù)為_(kāi)_________.16.的展開(kāi)式中項(xiàng)的系數(shù)為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)的內(nèi)角所對(duì)的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.18.(12分)2018年9月,臺(tái)風(fēng)“山竹”在我國(guó)多個(gè)省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個(gè)農(nóng)戶在該次臺(tái)風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計(jì)該地區(qū)每個(gè)農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);(2)臺(tái)風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣?huì)發(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過(guò)4000元的農(nóng)戶中隨機(jī)抽取2戶進(jìn)行重點(diǎn)幫扶,設(shè)抽出損失超過(guò)8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.19.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程及曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.20.(12分)已知數(shù)列為公差不為零的等差數(shù)列,是數(shù)列的前項(xiàng)和,且、、成等比數(shù)列,.設(shè)數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列、的通項(xiàng)公式;(2)令,證明:.21.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),如果方程有兩個(gè)不等實(shí)根,求實(shí)數(shù)t的取值范圍,并證明.22.(10分)設(shè)為等差數(shù)列的前項(xiàng)和,且,.(1)求數(shù)列的通項(xiàng)公式;(2)若滿足不等式的正整數(shù)恰有個(gè),求正實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

作出不等式對(duì)應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過(guò)平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當(dāng)過(guò)點(diǎn)時(shí),取得最大值.由得:,故選:D【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.2.D【解析】

由大邊對(duì)大角定理結(jié)合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對(duì)的邊分別是、,由大邊對(duì)大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點(diǎn)睛】本題考查充分條件、必要條件的判斷,考查三角形的性質(zhì)等基礎(chǔ)知識(shí),考查邏輯推理能力,是基礎(chǔ)題.3.D【解析】

原問(wèn)題轉(zhuǎn)化為有四個(gè)不同的實(shí)根,換元處理令t,對(duì)g(t)進(jìn)行零點(diǎn)個(gè)數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時(shí),g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個(gè)不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實(shí)數(shù)a的取值范圍是(2,2).故選:D.【點(diǎn)睛】此題考查方程的根與函數(shù)零點(diǎn)問(wèn)題,關(guān)鍵在于等價(jià)轉(zhuǎn)化,將問(wèn)題轉(zhuǎn)化為通過(guò)導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問(wèn)題.4.B【解析】

為所求的二面角的平面角,由得出,求出在內(nèi)的軌跡,根據(jù)軌跡的特點(diǎn)求出的最大值對(duì)應(yīng)的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內(nèi),以為軸,以的中垂線為軸建立平面直角坐標(biāo)系則,設(shè),整理可得:在內(nèi)的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當(dāng)與圓相切時(shí),最大,取得最小值此時(shí)故選【點(diǎn)睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據(jù)題目選擇方法求出結(jié)果.5.A【解析】

設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,則每個(gè)等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時(shí)即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,所以每個(gè)等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時(shí),可得,故選:A【點(diǎn)睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.6.B【解析】

設(shè),根據(jù)題意得出關(guān)于、的方程組,解出這兩個(gè)未知數(shù)的值,即可得出向量的坐標(biāo).【詳解】設(shè),且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點(diǎn)睛】本題考查向量坐標(biāo)的求解,涉及共線向量的坐標(biāo)表示和向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于中等題.7.B【解析】

變形為,由得,轉(zhuǎn)化在中,利用三點(diǎn)共線可得.【詳解】解:依題:,又三點(diǎn)共線,,解得.故選:.【點(diǎn)睛】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運(yùn)用該基底將條件和結(jié)論表示成向量的形式,再通過(guò)向量的運(yùn)算來(lái)解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點(diǎn)共線?(為平面內(nèi)任一點(diǎn),)8.D【解析】

由題得對(duì)恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對(duì)恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點(diǎn)睛】本題主要考查了不等式恒成立問(wèn)題,導(dǎo)數(shù)的綜合應(yīng)用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問(wèn)題,可采用參變量分離法去求解.9.A【解析】試題分析:設(shè)公差為或(舍),故選A.考點(diǎn):等差數(shù)列及其性質(zhì).10.D【解析】

利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項(xiàng)公式,然后求解數(shù)列的和,判斷選項(xiàng)的正誤即可.【詳解】當(dāng)時(shí),.所以數(shù)列從第2項(xiàng)起為等差數(shù)列,,所以,,.,,.故選:.【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項(xiàng)公式的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.11.C【解析】

在長(zhǎng)方體中,得與平面交于,過(guò)做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【詳解】在長(zhǎng)方體中,平面即為平面,過(guò)做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點(diǎn)睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎(chǔ)題.12.D【解析】

解一元二次不等式化簡(jiǎn)集合,再由集合的交集運(yùn)算可得選項(xiàng).【詳解】因?yàn)榧?,故選:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.-2【解析】

可行域是如圖的菱形ABCD,代入計(jì)算,知為最小.14.612π﹣9【解析】

過(guò)作,交于,先求得圓心角的弧度數(shù),然后解解三角形求得的長(zhǎng).利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長(zhǎng)為4π,弧所在的圓的半徑為6,過(guò)作,交于,根據(jù)圓的幾何性質(zhì)可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.【點(diǎn)睛】本小題主要考查弓形弦長(zhǎng)和弓形面積的計(jì)算,考查中國(guó)古代數(shù)學(xué)文化,屬于中檔題.15.【解析】

寫(xiě)出二項(xiàng)展開(kāi)式的通項(xiàng),然后取的指數(shù)為求得的值,則項(xiàng)的系數(shù)可求得.【詳解】,由,可得.含項(xiàng)的系數(shù)為.故答案為:【點(diǎn)睛】本題考查了二項(xiàng)式定理展開(kāi)式、需熟記二項(xiàng)式展開(kāi)式的通項(xiàng)公式,屬于基礎(chǔ)題.16.40【解析】

根據(jù)二項(xiàng)定理展開(kāi)式,求得r的值,進(jìn)而求得系數(shù).【詳解】根據(jù)二項(xiàng)定理展開(kāi)式的通項(xiàng)式得所以,解得所以系數(shù)【點(diǎn)睛】本題考查了二項(xiàng)式定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1),(2)【解析】

(1)先由正弦定理,得到,進(jìn)而可得,再由,即可得出結(jié)果;(2)先由余弦定理得,,再根據(jù)題中數(shù)據(jù),可得,從而可求出,得到,進(jìn)而可求出結(jié)果.【詳解】(1)由正弦定理得,所以,因?yàn)?,所以,即,所以,又因?yàn)?,所以?(2)在和中,由余弦定理得,.因?yàn)?,,,,又因?yàn)?,即,所以,所以,又因?yàn)椋?所以的面積.【點(diǎn)睛】本題主要考查解三角形,靈活運(yùn)用正弦定理和余弦定理即可,屬于??碱}型.18.(1)3360元;(2)見(jiàn)解析【解析】

(1)根據(jù)頻率分布直方圖計(jì)算每個(gè)農(nóng)戶的平均損失;(2)根據(jù)頻率分布直方圖計(jì)算隨機(jī)變量X的可能取值,再求X的分布列和數(shù)學(xué)期望值.【詳解】(1)記每個(gè)農(nóng)戶的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過(guò)1000元的農(nóng)戶共有(0.00009+0.00003+0.00003)×2000×50=15(戶),損失超過(guò)8000元的農(nóng)戶共有0.00003×2000×50=3(戶),隨機(jī)抽取2戶,則X的可能取值為0,1,2;計(jì)算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列為;X012P數(shù)學(xué)期望為E(X)=0×+1×+2×=.【點(diǎn)睛】本題考查了頻率分布直方圖與離散型隨機(jī)變量的分布列與數(shù)學(xué)期望計(jì)算問(wèn)題,屬于中檔題.19.(1);(2)【解析】

(1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.(2)利用(1)的結(jié)論,進(jìn)一步利用一元二次方程根和系數(shù)的關(guān)系式的應(yīng)用求出結(jié)果.【詳解】解:(1)直線的參數(shù)方程為(為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為.曲線的極坐標(biāo)方程為.轉(zhuǎn)換為,轉(zhuǎn)換為直角坐標(biāo)方程為.(2)直線的參數(shù)方程為(為參數(shù)),轉(zhuǎn)換為標(biāo)準(zhǔn)式為(為參數(shù)),代入圓的直角坐標(biāo)方程整理得,所以,..【點(diǎn)睛】本題屬于基礎(chǔ)本題考查的知識(shí)要點(diǎn):主要考查極坐標(biāo),參數(shù)方程與普通方程互化,及求三角形面積.需要熟記極坐標(biāo)系與參數(shù)方程的公式,及與解析幾何相關(guān)的直線與曲線位置關(guān)系的一些解題思路.20.(1),(2)證明見(jiàn)解析【解析】

(1)利用首項(xiàng)和公差構(gòu)成方程組,從而求解出的通項(xiàng)公式;由的通項(xiàng)公式求解出的表達(dá)式,根據(jù)以及,求解出的通項(xiàng)公式;(2)利用錯(cuò)位相減法求解出的前項(xiàng)和,根據(jù)不等關(guān)系證明即可.【詳解】(1)設(shè)首項(xiàng)為,公差為.由題意,得,解得,∴,∴,∴當(dāng)時(shí),∴,.當(dāng)時(shí),滿足上式.∴(2),令數(shù)列的前項(xiàng)和為.兩式相減得∴恒成立,得證.【點(diǎn)睛】本題考查等差數(shù)列、等比數(shù)列的綜合應(yīng)用,難度一般.(1)當(dāng)用求解的通項(xiàng)公式時(shí),一定要注意驗(yàn)證是否成立;(2)當(dāng)一個(gè)數(shù)列符合等差乘以等比的形式,優(yōu)先考慮采用錯(cuò)位相減法進(jìn)行求和,同時(shí)注意對(duì)于錯(cuò)位的理解.21.(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當(dāng)時(shí),的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(2),證明見(jiàn)解析.【解析】

(1)求出,對(duì)分類討論,分別求出的解,即可得出結(jié)論;(2)由(1)得出有兩解時(shí)的范圍,以及關(guān)系,將,等價(jià)轉(zhuǎn)化為證明,不妨設(shè),令,則,即證,構(gòu)造函

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論