2020版廣西數(shù)學(xué)復(fù)習(xí)考點規(guī)范練26平面向量的數(shù)量積與平面向量的應(yīng)用_第1頁
2020版廣西數(shù)學(xué)復(fù)習(xí)考點規(guī)范練26平面向量的數(shù)量積與平面向量的應(yīng)用_第2頁
2020版廣西數(shù)學(xué)復(fù)習(xí)考點規(guī)范練26平面向量的數(shù)量積與平面向量的應(yīng)用_第3頁
2020版廣西數(shù)學(xué)復(fù)習(xí)考點規(guī)范練26平面向量的數(shù)量積與平面向量的應(yīng)用_第4頁
2020版廣西數(shù)學(xué)復(fù)習(xí)考點規(guī)范練26平面向量的數(shù)量積與平面向量的應(yīng)用_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精考點規(guī)范練26平面向量的數(shù)量積與平面向量的應(yīng)用考點規(guī)范練B冊第17頁

一、基礎(chǔ)鞏固1。對任意平面向量a,b,下列關(guān)系式中不恒成立的是()A。|a·b|≤|a||b| B.|a—b|≤||a|—|b||C.(a+b)2=|a+b|2 D.(a+b)·(a-b)=a2—b2答案B解析A項,設(shè)向量a與b的夾角為θ,則a·b=|a||b|cosθ≤|a||b|,所以不等式恒成立;B項,當(dāng)a與b同向時,|a-b|=||a|-|b||;當(dāng)a與b非零且反向時,|a-b|=|a|+|b|>||a|-|b||。故不等式不恒成立;C項,(a+b)2=|a+b|2恒成立;D項,(a+b)·(a-b)=a2-a·b+b·a—b2=a2-b2,故等式恒成立.綜上,選B。2。已知a,b為單位向量,其夾角為60°,則(2a-b)·b=()A。-1 B。0 C.1 D。2答案B解析由已知得|a|=|b|=1,a與b的夾角θ=60°,則(2a-b)·b=2a·b—b2=2|a||b|cosθ—|b|2=2×1×1×cos60°—12=0,故選B。3.已知向量a=(1,2),b=(m,-4),若|a||b|+a·b=0,則實數(shù)m等于()A?!? B。4 C.-2 D.2答案C解析設(shè)a,b的夾角為θ,∵|a||b|+a·b=0,∴|a||b|+|a||b|cosθ=0,∴cosθ=—1,即a,b的方向相反.又向量a=(1,2),b=(m,-4),∴b=-2a,∴m=—2.4。若向量BA=(1,2),CA=(4,5),且CB·(λBA+CA)=0,則實數(shù)λ的值為(A.3 B。-92 C.-3 D.—答案C解析∵BA=(1,2),CA=(4,5),∴CB=CA+AB=CAλBA+CA=(λ+4,2λ+5又CB·(λBA+CA)=∴3(λ+4)+3(2λ+5)=0,解得λ=—3。5。在四邊形ABCD中,AC=(1,2),BD=(-4,2),則該四邊形的面積為()A。5 B.25 C.5 D。10答案C解析依題意得,AC·BD=1×(-4)+2×2=0,∴∴四邊形ABCD的面積為12|AC||BD|=16。在△ABC中,邊AB上的高為CD,若CB=a,CA=b,a·b=0,|a|=1,|b|=2,則AD=(A。13a—13b B.23aC.35a-35b D.45a答案D解析∵a·b=0,∴CA⊥∵|a|=1,|b|=2,∴AB=5。又CD⊥AB,∴由射影定理,得AC2=AD·AB.∴AD=45=45∴AD=45AB=45(CB-CA7.已知向量a=(m,2),b=(2,-1),且a⊥b,則|2a-A。—53 B.1 C.2 D.答案B解析∵a=(m,2),b=(2,—1),且a⊥b,∴a·b=2m-2=0,解得m=1,∴a=(1,2),2a—b=(0,5),|2a-b|=5.又a+b=(3,1),a·(a+b)=1×3+2×1=5,∴|2a-8.設(shè)m,n為非零向量,則“存在負數(shù)λ,使得m=λn”是“m·n<0"的()A.充分不必要條件 B。必要不充分條件C。充分必要條件 D。既不充分也不必要條件答案A解析m,n為非零向量,若存在λ<0,使m=λn,即兩向量反向,夾角是180°,則m·n=|m||n|cos180°=-|m||n|<0.反過來,若m·n<0,則兩向量的夾角為(90°,180°],并不一定反向,即不一定存在負數(shù)λ,使得m=λn,所以“存在負數(shù)λ,使得m=λn"是“m·n<0”的充分不必要條件.故選A.9。已知A(1,2),B(3,4),C(—2,2),D(—3,5),則向量AB在向量CD方向上的投影為()A.105 B。2105 C。310答案B解析由A(1,2),B(3,4),C(-2,2),D(—3,5),得AB=(2,2),CD=(—1,3),AB·CD=2×(-1)+2×3=4,|CD|=1+9=10,則向量AB在向量10.(2018江蘇蘇州調(diào)研)已知向量a=(1,2),b=(—2,—4),|c|=5,若(a+b)·c=52,則a,c的夾角大小為。答案120°解析設(shè)a,c的夾角為θ?!遖=(1,2),b=(-2,—4),∴b=—2a,∴(a+b)·c=-a·c=52?!郺·c=-5∴cosθ=a·c|∵0°≤θ≤180°,∴θ=120°.11.已知|a|=2,|b|=1,(2a-3b)·(2a+b)=9。(1)求向量a與b的夾角θ;(2)求|a+b|及向量a在a+b方向上的投影.解(1)因為|a|=2,|b|=1,(2a-3b)·(2a+b)=9,所以4a2—3b2-4a·b=9,即16-8cosθ-3=9。所以cosθ=12因為θ∈[0,π],所以θ=π3(2)由(1)可知a·b=|a||b|cosπ3=1所以|a+b|=a2a·(a+b)=a2+a·b=5.所以向量a在a+b方向上的投影為a·二、能力提升12。已知非零向量m,n滿足4|m|=3|n|,向量m與n的夾角為θ,且cosθ=13.若n⊥(tm+n),則實數(shù)t的值為(A.4 B.-4 C。94 D.—答案B解析由4|m|=3|n|,可設(shè)|m|=3k,|n|=4k(k〉0),因為n⊥(tm+n),所以n·(tm+n)=n·tm+n·n=t|m|·|n|cosθ+|n|2=t×3k×4k×13+(4k)2=4tk2+16k2=0所以t=—4,故選B.13.在矩形ABCD中,AB=1,AD=3,P為矩形內(nèi)一點,且AP=32.若AP=λAB+μAD(λ,μ∈R),則λ+3μ的最大值為(A.32 B.62 C.3+34答案B解析因為AP=λAB+μAD,所以|AP|2=|λAB+μAD|2所以322=λ2|AB|2+μ2|AD|2+2λμ因為AB=1,AD=3,AB⊥AD,所以34=λ2+3μ2又34=λ2+3μ2≥23λμ所以(λ+3μ)2=34+23λμ≤3所以λ+3μ的最大值為62,當(dāng)且僅當(dāng)λ=64,μ=214。已知AB⊥AC,|AB|=1t,|AC|=t。若點P是△ABC所在平面內(nèi)的一點,且AP=A。13 B。15 C.19 D。21答案A解析以點A為原點,AB,AC所在直線分別為x軸、y軸建立平面直角坐標系,如圖,則A(0,0),B1t,0,C∴AB|AB|=(1,0),AC|AC|∴AP=AB|AB|+4AC|AC|=(1,0)+4∴點P的坐標為(1,4),PB=1t-1,-4,∴PB·PC=1—1t—=-1t+4t+17≤-4+17當(dāng)且僅當(dāng)1t=4t,即t=12∴PB·PC的最大值為15。如圖,在平面四邊形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若點E為邊CD上的動點,則AE·BE的最小值為(A.2116 B.C。2516 D。答案A解析如圖,取AB的中點F,連接EF.AE=(2FE)2-AB2當(dāng)EF⊥CD時,|EF|最小,即AE·BE過點A作AH⊥EF于點H,由AD⊥CD,EF⊥CD,可得EH=AD=1,∠DAH=90°.因為∠DAB=120°,所以∠HAF=30°。在Rt△AFH中,易知AF=12,HF=1所以EF=EH+HF=1+14所以(AE·BE)min=16。如圖,在?ABCD中,已知AB=8,AD=5,CP=3PD,AP·BP=2,則AB答案22解析∵CP=3PD,∴AP=又AB=8,AD=5,∴AP=|AD|2-12AB=25—12AB·AD-∴AB·AD=三、高考預(yù)測17.已知兩個平面向量a,b滿足|a|=1,|a-2b|=21,且a與b的夾角為120°,則|b|=.

答案2解析∵向量a,b滿足|a|=1,|a—2b|=21,且a與b的夾角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論