版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年四川省眉山市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.設(shè)函數(shù)在x=0處連續(xù),則a等于().A.A.0B.1/2C.1D.2
2.
3.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
4.
5.A.A.
B.
C.
D.
6.
7.
8.
9.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
10.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
11.設(shè)z=y2x,則等于().A.2xy2x-11
B.2y2x
C.y2xlny
D.2y2xlny
12.
13.
14.
15.()A.A.1/2B.1C.2D.e16.A.A.連續(xù)點(diǎn)
B.
C.
D.
17.
18.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件19.曲線y=lnx-2在點(diǎn)(e,-1)的切線方程為()A.A.
B.
C.
D.
20.
二、填空題(20題)21.
22.23.設(shè)y=ex/x,則dy=________。
24.過坐標(biāo)原點(diǎn)且與平面3x-7y+5z-12=0平行的平面方程為_________.
25.26.設(shè)y=2x+sin2,則y'=______.
27.28.29.
30.
31.
32.
33.
34.
35.
36.
37.方程cosxsinydx+sinxcosydy=0的通解為___________.
38.
39.
40.
三、計(jì)算題(20題)41.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.42.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).43.將f(x)=e-2X展開為x的冪級數(shù).44.
45.
46.求微分方程y"-4y'+4y=e-2x的通解.
47.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
48.
49.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.50.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則51.52.證明:53.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
54.求曲線在點(diǎn)(1,3)處的切線方程.55.56.57.求微分方程的通解.58.
59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.60.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)61.
62.設(shè)z=z(x,y)是由F(x+mz,y+nz)=0確定的,其中F是可微函數(shù),m、n是
63.
64.
65.
66.(本題滿分8分)
67.若y=y(x)由方程y=x2+y2,求dy。
68.(本題滿分10分)求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)-周所成旋轉(zhuǎn)體的體積.
69.
70.五、高等數(shù)學(xué)(0題)71.
則f(x)=_________。
六、解答題(0題)72.設(shè)y=y(x)由方程X2+2y3+2xy+3y-x=1確定,求y'.
參考答案
1.C本題考查的知識點(diǎn)為函數(shù)連續(xù)性的概念.
由函數(shù)連續(xù)性的定義可知,若f(x)在x=0處連續(xù),則有,由題設(shè)f(0)=a,
可知應(yīng)有a=1,故應(yīng)選C.
2.C
3.B如果y1,y2這兩個特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。
4.B
5.D本題考查的知識點(diǎn)為級數(shù)的基本性質(zhì).
6.B
7.C
8.C
9.D本題考查的知識點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項(xiàng)。
10.A本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
11.D本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.
z=y2x,若求,則需將z認(rèn)定為指數(shù)函數(shù).從而有
可知應(yīng)選D.
12.B
13.B
14.A
15.C
16.C解析:
17.A
18.D
19.D
20.B
21.1/20022.1
23.
24.3x-7y+5z=0本題考查了平面方程的知識點(diǎn)。已知所求平面與3x-7y+5z-12=0平行,則其法向量為(3,-7,5),故所求方程為3(x-0)+(-7)(y-0)+5(z-0)=0,即3x-7y+5z=0.
25.26.2xln2本題考查的知識點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
Y'=(2x+sin2)'=(2x)'+(sin2)'=2xln2.
本題中常見的錯誤有
(sin2)'=cos2.
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為一個常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
(sin2)'=0.
相仿(cos3)'=0,(ln5)'=0,(e1/2)'=0等.
請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
27.0
28.
29.
本題考查的知識點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
本題中常見的錯誤有
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
30.
31.
32.(-22)(-2,2)解析:
33.1
34.(03)(0,3)解析:
35.1
36.-3e-3x-3e-3x
解析:
37.sinx·siny=Csinx·siny=C本題考查了可分離變量微分方程的通解的知識點(diǎn).
由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=-0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.
38.
39.1/3
40.
解析:
41.
42.
列表:
說明
43.
44.
則
45.
46.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
47.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
48.49.函數(shù)的定義域?yàn)?/p>
注意
50.由等價無窮小量的定義可知
51.
52.
53.
54.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
55.
56.
57.58.由一階線性微分方程通解公式有
59.
60.由二重積分物理意義知
61.
62.解
63.
64.65.本題考查的知識點(diǎn)為兩個:極限的運(yùn)算;極限值是個確定的數(shù)值.
66.本題考查的知識點(diǎn)為求曲線的漸近線.
由于
可知y=0為所給曲線的水平漸近線.
【解題指導(dǎo)】
67.
68.本題考查的知識點(diǎn)有兩個:利用定積分求平面圖形的面積;用定積分求繞坐標(biāo)軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積.
所給曲線圍成的平面圖形如圖1-2所示.
解法1利用定積分求平面圖形的面積。
解法2利用二重積分求平面圖形面積.
求旋轉(zhuǎn)體體積與解法1同.
注本題也可以利用二重積分求平面圖形的面積.
69.
70.
71.即f"(lnx)=x2=elnx2=e2lnx
∴f"(x)=e2x即f"(lnx)=x2=elnx2=e2lnx
∴f"(x)=e2x72.解法1將所給方程兩端關(guān)于x求導(dǎo),可得2x+6y2·y'+2(y+xy')+3y'-1=0,整理可得
解法2令F(x,y)=x2+2y3+2xy+3y-x-1,則本題考查的知識點(diǎn)為隱函數(shù)求導(dǎo)法.
y=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024照顧小孩家庭保姆聘用合同范本
- 2024健身勞動合同
- 導(dǎo)游與旅行社合同范本
- 室內(nèi)設(shè)計(jì)合同中的收費(fèi)標(biāo)準(zhǔn)
- 浙江省七年級上學(xué)期語文期中試卷5套【附答案】
- 技術(shù)轉(zhuǎn)讓合同書樣本樣式
- 專利申請權(quán)轉(zhuǎn)讓合同
- 擔(dān)保借款合同格式范本
- 標(biāo)準(zhǔn)勞動合同范本樣式
- 2024建筑施工安全質(zhì)量協(xié)議
- 河北省石家莊市長安區(qū)2023-2024學(xué)年五年級上學(xué)期期中英語試卷
- 品牌經(jīng)理招聘筆試題及解答(某大型國企)2025年
- 多能互補(bǔ)規(guī)劃
- 珍愛生命主題班會
- 《網(wǎng)絡(luò)數(shù)據(jù)安全管理?xiàng)l例》課件
- 消除“艾梅乙”醫(yī)療歧視-從我做起
- 八年級歷史上冊(部編版)第六單元中華民族的抗日戰(zhàn)爭(大單元教學(xué)設(shè)計(jì))
- 全國農(nóng)業(yè)技術(shù)推廣服務(wù)中心公開招聘應(yīng)屆畢業(yè)生補(bǔ)充(北京)高頻難、易錯點(diǎn)500題模擬試題附帶答案詳解
- 公司研發(fā)項(xiàng)目審核管理制度
- 《詩意的色彩》課件 2024-2025學(xué)年人美版(2024)初中美術(shù)七年級上冊
- 小學(xué)生主題班會《追夢奧運(yùn)+做大家少年》(課件)
評論
0/150
提交評論