版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年寧夏回族自治區(qū)石嘴山市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無水平漸近線,又無鉛直漸近線
3.A.1B.0C.2D.1/2
4.A.A.
B.
C.
D.
5.
6.
7.
8.
9.當(dāng)x→0時(shí),sinx是sinx的等價(jià)無窮小量,則k=()A.0B.1C.2D.310.A.A.∞B.1C.0D.-111.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx
12.
13.
14.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.
B.
C..
D.不能確定
15.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是
A.xo為f(x)的極大值點(diǎn)
B.xo為f(x)的極小值點(diǎn)
C.xo不為f(x)的極值點(diǎn)
D.xo可能不為f(x)的極值點(diǎn)
16.
17.
18.等于().A.A.2B.1C.1/2D.019.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f'(-1)=0,當(dāng)x<-1時(shí),f'(x)<0;x>-1時(shí),f'(x)>0.則下列結(jié)論肯定正確的是().A.A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)
20.
二、填空題(20題)21.
22.
23.
24.若當(dāng)x→0時(shí),2x2與為等價(jià)無窮小,則a=______.
25.
26.
27.
28.29.已知當(dāng)x→0時(shí),-1與x2是等價(jià)無窮小,則a=________。30.31.空間直角坐標(biāo)系中方程x2+y2=9表示的曲線是________。32.設(shè)y=sin2x,則dy=______.
33.設(shè)f(x,y)=x+(y-1)arcsinx,則f'x(x,1)=__________。
34.求微分方程y"-y'-2y=0的通解。35.
36.
37.
38.
39.過原點(diǎn)(0,0,0)且垂直于向量(1,1,1)的平面方程為________。
40.
三、計(jì)算題(20題)41.
42.
43.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.44.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.45.
46.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
47.求微分方程y"-4y'+4y=e-2x的通解.
48.49.50.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).51.
52.將f(x)=e-2X展開為x的冪級數(shù).
53.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
54.求微分方程的通解.55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.56.證明:57.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
58.求曲線在點(diǎn)(1,3)處的切線方程.59.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則60.四、解答題(10題)61.62.
63.64.
65.
66.求微分方程y"-y'-2y=ex的通解。
67.證明:當(dāng)時(shí),sinx+tanx≥2x.
68.在第Ⅰ象限內(nèi)的曲線上求一點(diǎn)M(x,y),使過該點(diǎn)的切線被兩坐標(biāo)軸所截線段的長度為最小.69.
70.
五、高等數(shù)學(xué)(0題)71.設(shè)
則∫f(x)dx等于()。
A.2x+c
B.1nx+c
C.
D.
六、解答題(0題)72.
參考答案
1.C
2.A
3.C
4.D
5.C解析:
6.A
7.D解析:
8.A
9.B由等價(jià)無窮小量的概念,可知=1,從而k=1,故選B。也可以利用等價(jià)無窮小量的另一種表述形式,由于當(dāng)x→0時(shí),有sinx~x,由題設(shè)知當(dāng)x→0時(shí),kx~sinx,從而kx~x,可知k=1。
10.C本題考查的知識點(diǎn)為導(dǎo)數(shù)的幾何意義.
11.B
12.C解析:
13.C
14.B本題考查的知識點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見的錯(cuò)誤是選C。如果畫個(gè)草圖,則可以避免這類錯(cuò)誤。
15.A
16.B
17.C解析:
18.D本題考查的知識點(diǎn)為重要極限公式與無窮小性質(zhì).
注意:極限過程為x→∞,因此
不是重要極限形式!由于x→∞時(shí),1/x為無窮小,而sin2x為有界變量.由無窮小與有界變量之積仍為無窮小的性質(zhì)可知
19.C本題考查的知識點(diǎn)為極值的第一充分條件.
由f'(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí),f'(x)<0;當(dāng)x>-1時(shí),f'(x)>1,由極值的第一充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
20.D
21.
22.y=Cy=C解析:
23.7/524.6;本題考查的知識點(diǎn)為無窮小階的比較.
當(dāng)于當(dāng)x→0時(shí),2x2與為等價(jià)無窮小,因此
可知a=6.
25.1/6
26.e
27.ln|x-1|+c28.1.
本題考查的知識點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.
由于f(1)=2,可知
29.當(dāng)x→0時(shí),-1與x2等價(jià),應(yīng)滿足所以當(dāng)a=2時(shí)是等價(jià)的。
30.本題考查的知識點(diǎn)為不定積分的湊微分法.
31.以O(shè)z為軸的圓柱面方程。F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,方程x2+y2=32=0表示母線平行Oz軸的圓柱面方程。32.2cos2xdx這類問題通常有兩種解法.
解法1利用公式dy=y'dx,先求y',由于y'=cos2x·(2x)'2cos2x,
因此dy=2cos2xdx.
解法2利用微分運(yùn)算公式
dy=d(sin2x)=cos2x·d(2x)=2cos2xdx.
33.1
34.
35.(-21)(-2,1)
36.22解析:
37.
38.39.x+y+z=0
40.
41.
42.
43.由二重積分物理意義知
44.
45.
則
46.函數(shù)的定義域?yàn)?/p>
注意
47.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
48.
49.
50.
列表:
說明
51.由一階線性微分方程通解公式有
52.
53.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
54.
55.
56.
57.
58.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
59.由等價(jià)無窮小量的定義可知
60.
61.
62.
63.
64.解法1原式(兩次利用洛必達(dá)法則)解法2原式(利用等價(jià)無窮小代換)本題考查的知識點(diǎn)為用洛必達(dá)法則求極限.
由于問題為“∞-∞”型極限問題,應(yīng)先將求極限的函數(shù)通分,使所求極限化為“”型問題.
如果將上式右端直接利用洛必達(dá)法則求之,則運(yùn)算復(fù)雜.注意到使用洛必達(dá)法則求極限時(shí),如果能與等價(jià)無窮小代換相結(jié)合,則問題常能得到簡化,由于當(dāng)x→0時(shí),sinx~x,因此
從而能簡化運(yùn)算.
本題考生中常見的錯(cuò)誤為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024照顧小孩家庭保姆聘用合同范本
- 2024健身勞動合同
- 導(dǎo)游與旅行社合同范本
- 室內(nèi)設(shè)計(jì)合同中的收費(fèi)標(biāo)準(zhǔn)
- 浙江省七年級上學(xué)期語文期中試卷5套【附答案】
- 技術(shù)轉(zhuǎn)讓合同書樣本樣式
- 專利申請權(quán)轉(zhuǎn)讓合同
- 擔(dān)保借款合同格式范本
- 標(biāo)準(zhǔn)勞動合同范本樣式
- 2024建筑施工安全質(zhì)量協(xié)議
- 河北省石家莊市長安區(qū)2023-2024學(xué)年五年級上學(xué)期期中英語試卷
- 品牌經(jīng)理招聘筆試題及解答(某大型國企)2025年
- 多能互補(bǔ)規(guī)劃
- 珍愛生命主題班會
- 《網(wǎng)絡(luò)數(shù)據(jù)安全管理?xiàng)l例》課件
- 消除“艾梅乙”醫(yī)療歧視-從我做起
- 八年級歷史上冊(部編版)第六單元中華民族的抗日戰(zhàn)爭(大單元教學(xué)設(shè)計(jì))
- 全國農(nóng)業(yè)技術(shù)推廣服務(wù)中心公開招聘應(yīng)屆畢業(yè)生補(bǔ)充(北京)高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 公司研發(fā)項(xiàng)目審核管理制度
- 《詩意的色彩》課件 2024-2025學(xué)年人美版(2024)初中美術(shù)七年級上冊
- 小學(xué)生主題班會《追夢奧運(yùn)+做大家少年》(課件)
評論
0/150
提交評論