版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第二十一章二次根式教材內(nèi)容1.本單元教學(xué)的主要內(nèi)容:二次根式的概念;二次根式的加減;二次根式的乘除;最簡二次根式.2.本單元在教材中的地位和作用:二次根式是在學(xué)完了八年級下冊第十七章《反比例正函數(shù)》、第十八章《勾股定理及其應(yīng)用》等內(nèi)容的基礎(chǔ)之上繼續(xù)學(xué)習(xí)的,它也是今后學(xué)習(xí)其他數(shù)學(xué)知識的基礎(chǔ).教學(xué)目標1.知識與技能(1)理解二次根式的概念.(2)理解(a≥0)是一個非負數(shù),()2=a(a≥0),=a(a≥0).(3)掌握·=(a≥0,b≥0),=·;=(a≥0,b>0),=(a≥0,b>0).(4)了解最簡二次根式的概念并靈活運用它們對二次根式進行加減.2.過程與方法(1)先提出問題,讓學(xué)生探討、分析問題,師生共同歸納,得出概念.再對概念的內(nèi)涵進行分析,得出幾個重要結(jié)論,并運用這些重要結(jié)論進行二次根式的計算和化簡.(2)用具體數(shù)據(jù)探究規(guī)律,用不完全歸納法得出二次根式的乘(除)法規(guī)定,并運用規(guī)定進行計算.(3)利用逆向思維,得出二次根式的乘(除)法規(guī)定的逆向等式并運用它進行化簡.(4)通過分析前面的計算和化簡結(jié)果,抓住它們的共同特點,給出最簡二次根式的概念.利用最簡二次根式的概念,來對相同的二次根式進行合并,達到對二次根式進行計算和化簡的目的.3.情感、態(tài)度與價值觀通過本單元的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準確計算和化簡的嚴謹?shù)目茖W(xué)精神,經(jīng)過探索二次根式的重要結(jié)論,二次根式的乘除規(guī)定,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.教學(xué)重點1.二次根式(a≥0)的內(nèi)涵.(a≥0)是一個非負數(shù);()2=a(a≥0);=a(a≥0)及其運用.2.二次根式乘除法的規(guī)定及其運用.3.最簡二次根式的概念.4.二次根式的加減運算.教學(xué)難點1.對(a≥0)是一個非負數(shù)的理解;對等式()2=a(a≥0)及=a(a≥0)的理解及應(yīng)用.2.二次根式的乘法、除法的條件限制.3.利用最簡二次根式的概念把一個二次根式化成最簡二次根式.教學(xué)關(guān)鍵1.潛移默化地培養(yǎng)學(xué)生從具體到一般的推理能力,突出重點,突破難點.2.培養(yǎng)學(xué)生利用二次根式的規(guī)定和重要結(jié)論進行準確計算的能力,培養(yǎng)學(xué)生一絲不茍的科學(xué)精神.單元課時劃分本單元教學(xué)時間約需11課時,具體分配如下:21.1二次根式3課時21.2二次根式的乘法3課時21.3二次根式的加減3課時教學(xué)活動、習(xí)題課、小結(jié)2課時21.1二次根式第一課時教學(xué)內(nèi)容二次根式的概念及其運用教學(xué)目標理解二次根式的概念,并利用(a≥0)的意義解答具體題目.提出問題,根據(jù)問題給出概念,應(yīng)用概念解決實際問題.教學(xué)重難點關(guān)鍵1.重點:形如(a≥0)的式子叫做二次根式的概念;2.難點與關(guān)鍵:利用“(a≥0)”解決具體問題.教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動)請同學(xué)們獨立完成下列三個問題:問題1:已知反比例函數(shù)y=,那么它的圖象在第一象限橫、縱坐標相等的點的坐標是___________.問題2:如圖,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB邊的長是__________.問題3:甲射擊6次,各次擊中的環(huán)數(shù)如下:8、7、9、9、7、8,那么甲這次射擊的方差是S2,那么S=_________.老師點評:問題1:橫、縱坐標相等,即x=y,所以x2=3.因為點在第一象限,所以x=,所以所求點的坐標(,).問題2:由勾股定理得AB=問題3:由方差的概念得S=.二、探索新知很明顯、、,都是一些正數(shù)的算術(shù)平方根.像這樣一些正數(shù)的算術(shù)平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如(a≥0)的式子叫做二次根式,“”稱為二次根號.(學(xué)生活動)議一議:1.-1有算術(shù)平方根嗎?2.0的算術(shù)平方根是多少?3.當a<0,有意義嗎?老師點評:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).分析:二次根式應(yīng)滿足兩個條件:第一,有二次根號“”;第二,被開方數(shù)是正數(shù)或0.解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.例2.當x是多少時,在實數(shù)范圍內(nèi)有意義?分析:由二次根式的定義可知,被開方數(shù)一定要大于或等于0,所以3x-1≥0,才能有意義.解:由3x-1≥0,得:x≥當x≥時,在實數(shù)范圍內(nèi)有意義.三、鞏固練習(xí)教材P練習(xí)1、2、3.四、應(yīng)用拓展例3.當x是多少時,+在實數(shù)范圍內(nèi)有意義?分析:要使+在實數(shù)范圍內(nèi)有意義,必須同時滿足中的≥0和中的x+1≠0.解:依題意,得由①得:x≥-由②得:x≠-1當x≥-且x≠-1時,+在實數(shù)范圍內(nèi)有意義.例4(1)已知y=++5,求的值.(答案:2)(2)若+=0,求a2022+b2022的值.(答案:)五、歸納小結(jié)(學(xué)生活動,老師點評)本節(jié)課要掌握:1.形如(a≥0)的式子叫做二次根式,“”稱為二次根號.2.要使二次根式在實數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負數(shù).六、布置作業(yè)1.教材P8復(fù)習(xí)鞏固1、綜合應(yīng)用5.2.選用課時作業(yè)設(shè)計.3.課后作業(yè):《同步訓(xùn)練》第一課時作業(yè)設(shè)計一、選擇題
1.下列式子中,是二次根式的是()A.-B.C.D.x2.下列式子中,不是二次根式的是()A.B.C.D.3.已知一個正方形的面積是5,那么它的邊長是()A.5B.C.D.以上皆不對二、填空題1.形如________的式子叫做二次根式.2.面積為a的正方形的邊長為________.3.負數(shù)________平方根.三、綜合提高題1.某工廠要制作一批體積為1m3的產(chǎn)品包裝盒,其高為,按設(shè)計需要,底面應(yīng)做成正方形,試問底面邊長應(yīng)是多少?2.當x是多少時,+x2在實數(shù)范圍內(nèi)有意義?3.若+有意義,則=_______.4.使式子有意義的未知數(shù)x有()個.A.0B.1C.2D.無數(shù)5.已知a、b為實數(shù),且+2=b+4,求a、b的值.第一課時作業(yè)設(shè)計答案:一、1.A2.D3.B二、1.(a≥0)2.3.沒有三、1.設(shè)底面邊長為x,則=1,解答:x=.2.依題意得:,∴當x>-且x≠0時,+x2在實數(shù)范圍內(nèi)沒有意義.3.4.B5.a(chǎn)=5,b=-4二次根式(2)第二課時教學(xué)內(nèi)容1.(a≥0)是一個非負數(shù);2.()2=a(a≥0).教學(xué)目標理解(a≥0)是一個非負數(shù)和()2=a(a≥0),并利用它們進行計算和化簡.通過復(fù)習(xí)二次根式的概念,用邏輯推理的方法推出(a≥0)是一個非負數(shù),用具體數(shù)據(jù)結(jié)合算術(shù)平方根的意義導(dǎo)出()2=a(a≥0);最后運用結(jié)論嚴謹解題.教學(xué)重難點關(guān)鍵1.重點:(a≥0)是一個非負數(shù);()2=a(a≥0)及其運用.2.難點、關(guān)鍵:用分類思想的方法導(dǎo)出(a≥0)是一個非負數(shù);用探究的方法導(dǎo)出()2=a(a≥0).教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動)口答1.什么叫二次根式?2.當a≥0時,叫什么?當a<0時,有意義嗎?老師點評(略).二、探究新知議一議:(學(xué)生分組討論,提問解答)(a≥0)是一個什么數(shù)呢?老師點評:根據(jù)學(xué)生討論和上面的練習(xí),我們可以得出(a≥0)是一個非負數(shù).做一做:根據(jù)算術(shù)平方根的意義填空:()2=_______;()2=_______;()2=______;()2=_______;()2=______;()2=_______;()2=_______.老師點評:是4的算術(shù)平方根,根據(jù)算術(shù)平方根的意義,是一個平方等于4的非負數(shù),因此有()2=4.同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2=a(a≥0)例1計算1.()22.(3)23.()24.()2分析:我們可以直接利用()2=a(a≥0)的結(jié)論解題.解:()2=,(3)2=32·()2=32·5=45,()2=,()2=.三、鞏固練習(xí)計算下列各式的值:()2()2()2()2(4)2四、應(yīng)用拓展例2計算1.()2(x≥0)2.()23.()24.()2分析:(1)因為x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的4題都可以運用()2=a(a≥0)的重要結(jié)論解題.解:(1)因為x≥0,所以x+1>0()2=x+1(2)∵a2≥0,∴()2=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴()2=4x2-12x+9例3在實數(shù)范圍內(nèi)分解下列因式:(1)x2-3(2)x4-4(3)2x2-3分析:(略)五、歸納小結(jié)本節(jié)課應(yīng)掌握:1.(a≥0)是一個非負數(shù);2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作業(yè)1.教材P8復(fù)習(xí)鞏固2.(1)、(2)P97.2.選用課時作業(yè)設(shè)計.3.課后作業(yè):《同步訓(xùn)練》第二課時作業(yè)設(shè)計一、選擇題1.下列各式中、、、、、,二次根式的個數(shù)是().A.4B.3C.2D.12.數(shù)a沒有算術(shù)平方根,則a的取值范圍是().A.a(chǎn)>0B.a(chǎn)≥0C.a(chǎn)<0D.a(chǎn)=0二、填空題1.(-)2=________.2.已知有意義,那么是一個_______數(shù).三、綜合提高題1.計算(1)()2(2)-()2(3)()2(4)(-3)2(5)2.把下列非負數(shù)寫成一個數(shù)的平方的形式:(1)5(2)(3)(4)x(x≥0)3.已知+=0,求xy的值.4.在實數(shù)范圍內(nèi)分解下列因式:(1)x2-2(2)x4-93x2-5第二課時作業(yè)設(shè)計答案:一、1.B2.C二、1.32.非負數(shù)三、1.(1)()2=9(2)-()2=-3(3)()2=×6=(4)(-3)2=9×=6(5)-62.(1)5=()2(2)=()2(3)=()2(4)x=()2(x≥0)3.xy=34=814.(1)x2-2=(x+)(x-)(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+)(x-)(3)略二次根式(3)第三課時教學(xué)內(nèi)容=a(a≥0)教學(xué)目標理解=a(a≥0)并利用它進行計算和化簡.通過具體數(shù)據(jù)的解答,探究=a(a≥0),并利用這個結(jié)論解決具體問題.教學(xué)重難點關(guān)鍵1.重點:=a(a≥0).2.難點:探究結(jié)論.3.關(guān)鍵:講清a≥0時,=a才成立.教學(xué)過程一、復(fù)習(xí)引入老師口述并板收上兩節(jié)課的重要內(nèi)容;1.形如(a≥0)的式子叫做二次根式;2.(a≥0)是一個非負數(shù);3.()2=a(a≥0).那么,我們猜想當a≥0時,=a是否也成立呢?下面我們就來探究這個問題.二、探究新知(學(xué)生活動)填空:=_______;=_______;=______;=________;=________;=_______.(老師點評):根據(jù)算術(shù)平方根的意義,我們可以得到:=2;=;=;=;=0;=.因此,一般地:=a(a≥0)例1化簡(1)(2)(3)(4)分析:因為(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可運用=a(a≥0)去化簡.解:(1)==3(2)==4(3)==5(4)==3三、鞏固練習(xí)教材P7練習(xí)2.四、應(yīng)用拓展例2填空:當a≥0時,=_____;當a<0時,=_______,并根據(jù)這一性質(zhì)回答下列問題.(1)若=a,則a可以是什么數(shù)?(2)若=-a,則a可以是什么數(shù)?(3)>a,則a可以是什么數(shù)?分析:∵=a(a≥0),∴要填第一個空格可以根據(jù)這個結(jié)論,第二空格就不行,應(yīng)變形,使“()2”中的數(shù)是正數(shù),因為,當a≤0時,=,那么-a≥0.(1)根據(jù)結(jié)論求條件;(2)根據(jù)第二個填空的分析,逆向思想;(3)根據(jù)(1)、(2)可知=│a│,而│a│要大于a,只有什么時候才能保證呢?a<0.解:(1)因為=a,所以a≥0;(2)因為=-a,所以a≤0;(3)因為當a≥0時=a,要使>a,即使a>a所以a不存在;當a<0時,=-a,要使>a,即使-a>a,a<0綜上,a<0例3當x>2,化簡-.分析:(略)五、歸納小結(jié)本節(jié)課應(yīng)掌握:=a(a≥0)及其運用,同時理解當a<0時,=-a的應(yīng)用拓展.六、布置作業(yè)1.教材P8習(xí)題21.13、4、6、8.2.選作課時作業(yè)設(shè)計.3.課后作業(yè):《同步訓(xùn)練》第三課時作業(yè)設(shè)計一、選擇題1.的值是().A.0B.C.4D.以上都不對2.a(chǎn)≥0時,、、-,比較它們的結(jié)果,下面四個選項中正確的是().A.=≥-B.>>-C.<<-D.->=二、填空題1.-=________.2.若是一個正整數(shù),則正整數(shù)m的最小值是________.三、綜合提高題1.先化簡再求值:當a=9時,求a+的值,甲乙兩人的解答如下:甲的解答為:原式=a+=a+(1-a)=1;乙的解答為:原式=a+=a+(a-1)=2a-1=17.兩種解答中,_______的解答是錯誤的,錯誤的原因是__________.2.若│1995-a│+=a,求a-19952的值.(提示:先由a-2000≥0,判斷1995-a的值是正數(shù)還是負數(shù),去掉絕對值)3.若-3≤x≤2時,試化簡│x-2│++。答案:一、1.C2.A二、1.-0.022.5三、1.甲甲沒有先判定1-a是正數(shù)還是負數(shù)2.由已知得a-2000≥0,a≥2000所以a-1995+=a,=1995,a-2000=19952,所以a-19952=2000.3.10-x21.2二次根式的乘除第一課時教學(xué)內(nèi)容·=(a≥0,b≥0),反之=·(a≥0,b≥0)及其運用.教學(xué)目標理解·=(a≥0,b≥0),=·(a≥0,b≥0),并利用它們進行計算和化簡由具體數(shù)據(jù),發(fā)現(xiàn)規(guī)律,導(dǎo)出·=(a≥0,b≥0)并運用它進行計算;利用逆向思維,得出=·(a≥0,b≥0)并運用它進行解題和化簡.教學(xué)重難點關(guān)鍵重點:·=(a≥0,b≥0),=·(a≥0,b≥0)及它們的運用.難點:發(fā)現(xiàn)規(guī)律,導(dǎo)出·=(a≥0,b≥0).關(guān)鍵:要講清(a<0,b<0)=,如=或==×.教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動)請同學(xué)們完成下列各題.1.填空(1)×=_______,=______;(2)×=_______,=________.(3)×=________,=_______.參考上面的結(jié)果,用“>、<或=”填空.×_____,×_____,×________2.利用計算器計算填空(1)×______,(2)×______,(3)×______,(4)×______,(5)×______.老師點評(糾正學(xué)生練習(xí)中的錯誤)二、探索新知(學(xué)生活動)讓3、4個同學(xué)上臺總結(jié)規(guī)律.老師點評:(1)被開方數(shù)都是正數(shù);(2)兩個二次根式的乘除等于一個二次根式,并且把這兩個二次根式中的數(shù)相乘,作為等號另一邊二次根式中的被開方數(shù).一般地,對二次根式的乘法規(guī)定為·=.(a≥0,b≥0)反過來:=·(a≥0,b≥0)例1.計算(1)×(2)×(3)×(4)×分析:直接利用·=(a≥0,b≥0)計算即可.解:(1)×=(2)×==(3)×==9(4)×==例2化簡(1)(2)(3)(4)(5)分析:利用=·(a≥0,b≥0)直接化簡即可.解:(1)=×=3×4=12(2)=×=4×9=36(3)=×=9×10=90(4)=×=××=3xy(5)==×=3三、鞏固練習(xí)(1)計算(學(xué)生練習(xí),老師點評)①×②3×2③·(2)化簡:;;;;教材P11練習(xí)全部四、應(yīng)用拓展例3.判斷下列各式是否正確,不正確的請予以改正:(1)(2)×=4××=4×=4=8解:(1)不正確.改正:==×=2×3=6(2)不正確.改正:×=×====4五、歸納小結(jié)本節(jié)課應(yīng)掌握:(1)·==(a≥0,b≥0),=·(a≥0,b≥0)及其運用.六、布置作業(yè)1.課本P151,4,5,6.(1)(2).2.選用課時作業(yè)設(shè)計.3.課后作業(yè):《同步訓(xùn)練》第一課時作業(yè)設(shè)計一、選擇題1.若直角三角形兩條直角邊的邊長分別為cm和cm,那么此直角三角形斜邊長是().A.3cmB.3cmC.9cmD.27cm2.化簡a的結(jié)果是().A.B.C.-D.-3.等式成立的條件是()A.x≥1B.x≥-1C.-1≤x≤1D.x≥1或x≤-14.下列各等式成立的是().A.4×2=8B.5×4=20C.4×3=7D.5×4=20二、填空題1.=_______.2.自由落體的公式為S=gt2(g為重力加速度,它的值為10m/s2),若物體下落的高度為720m,則下落的時間是_________.三、綜合提高題1.一個底面為30cm×30cm長方體玻璃容器中裝滿水,現(xiàn)將一部分水例入一個底面為正方形、高為10cm鐵桶中,當鐵桶裝滿水時,容器中的水面下降了20cm,鐵桶的底面邊長是多少厘米?2.探究過程:觀察下列各式及其驗證過程.(1)2=驗證:2=×====(2)3=驗證:3=×====同理可得:45,……通過上述探究你能猜測出:a=_______(a>0),并驗證你的結(jié)論.答案:一、1.B2.C二、1.132.12s三、1.設(shè):底面正方形鐵桶的底面邊長為x,則x2×10=30×30×20,x2=30×30×2,x=×=30.2.a(chǎn)=驗證:a====.21.2二次根式的乘除第二課時教學(xué)內(nèi)容=(a≥0,b>0),反過來=(a≥0,b>0)及利用它們進行計算和化簡.教學(xué)目標理解=(a≥0,b>0)和=(a≥0,b>0)及利用它們進行運算.利用具體數(shù)據(jù),通過學(xué)生練習(xí)活動,發(fā)現(xiàn)規(guī)律,歸納出除法規(guī)定,并用逆向思維寫出逆向等式及利用它們進行計算和化簡.教學(xué)重難點關(guān)鍵1.重點:理解=(a≥0,b>0),=(a≥0,b>0)及利用它們進行計算和化簡.2.難點關(guān)鍵:發(fā)現(xiàn)規(guī)律,歸納出二次根式的除法規(guī)定.教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動)請同學(xué)們完成下列各題:1.寫出二次根式的乘法規(guī)定及逆向等式.2.填空(1)=________,=_________;(2)=________,=________;(3)=________,=_________;(4)=________,=________.規(guī)律:______;______;_______;_______.3.利用計算器計算填空:(1)=_________,(2)=_________,(3)=______,(4)=________.規(guī)律:______;_______;_____;_____。每組推薦一名學(xué)生上臺闡述運算結(jié)果.(老師點評)二、探索新知剛才同學(xué)們都練習(xí)都很好,上臺的同學(xué)也回答得十分準確,根據(jù)大家的練習(xí)和回答,我們可以得到:一般地,對二次根式的除法規(guī)定:=(a≥0,b>0),反過來,=(a≥0,b>0)下面我們利用這個規(guī)定來計算和化簡一些題目.例1.計算:(1)(2)(3)(4)分析:上面4小題利用=(a≥0,b>0)便可直接得出答案.解:(1)===2(2)==×=2(3)===2(4)===2例2.化簡:(1)(2)(3)(4)分析:直接利用=(a≥0,b>0)就可以達到化簡之目的.解:(1)=(2)=(3)=(4)=三、鞏固練習(xí)教材P14練習(xí)1.四、應(yīng)用拓展例3.已知,且x為偶數(shù),求(1+x)的值.分析:式子=,只有a≥0,b>0時才能成立.因此得到9-x≥0且x-6>0,即6<x≤9,又因為x為偶數(shù),所以x=8.解:由題意得,即∴6<x≤9∵x為偶數(shù)∴x=8∴原式=(1+x)=(1+x)=(1+x)=∴當x=8時,原式的值==6.五、歸納小結(jié)本節(jié)課要掌握=(a≥0,b>0)和=(a≥0,b>0)及其運用.六、布置作業(yè)1.教材P15習(xí)題21.22、7、8、9.2.選用課時作業(yè)設(shè)計.3.課后作業(yè):《同步訓(xùn)練》第二課時作業(yè)設(shè)計一、選擇題1.計算的結(jié)果是().A.B.C.D.2.閱讀下列運算過程:,數(shù)學(xué)上將這種把分母的根號去掉的過程稱作“分母有理化”,那么,化簡的結(jié)果是().A.2B.6C.D.二、填空題1.分母有理化:(1)=_________;(2)=________;(3)=______.2.已知x=3,y=4,z=5,那么的最后結(jié)果是_______.三、綜合提高題1.有一種房梁的截面積是一個矩形,且矩形的長與寬之比為:1,現(xiàn)用直徑為3cm的一種圓木做原料加工這種房梁,那么加工后的房染的最大截面積是多少?2.計算(1)·(-)÷(m>0,n>0)(2)-3÷()×(a>0)答案:一、1.A2.C二、1.(1);(2);(3)2.三、1.設(shè):矩形房梁的寬為x(cm),則長為xcm,依題意,得:(x)2+x2=(3)2,4x2=9×15,x=(cm),x·x=x2=(cm2).2.(1)原式=-÷=-=-=-(2)原式=-2=-2=-a二次根式的乘除(3)第三課時教學(xué)內(nèi)容最簡二次根式的概念及利用最簡二次根式的概念進行二次根式的化簡運算.教學(xué)目標理解最簡二次根式的概念,并運用它把不是最簡二次根式的化成最簡二次根式.通過計算或化簡的結(jié)果來提煉出最簡二次根式的概念,并根據(jù)它的特點來檢驗最后結(jié)果是否滿足最簡二次根式的要求.重難點關(guān)鍵1.重點:最簡二次根式的運用.2.難點關(guān)鍵:會判斷這個二次根式是否是最簡二次根式.教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動)請同學(xué)們完成下列各題(請三位同學(xué)上臺板書)1.計算(1),(2),(3)老師點評:=,=,=2.現(xiàn)在我們來看本章引言中的問題:如果兩個電視塔的高分別是h1km,h2km,那么它們的傳播半徑的比是_________.它們的比是.二、探索新知觀察上面計算題1的最后結(jié)果,可以發(fā)現(xiàn)這些式子中的二次根式有如下兩個特點:1.被開方數(shù)不含分母;2.被開方數(shù)中不含能開得盡方的因數(shù)或因式.我們把滿足上述兩個條件的二次根式,叫做最簡二次根式.那么上題中的比是否是最簡二次根式呢?如果不是,把它們化成最簡二次根式.學(xué)生分組討論,推薦3~4個人到黑板上板書.老師點評:不是.=.例1.(1);(2);(3)例2.如圖,在Rt△ABC中,∠C=90°,AC=,BC=6cm,求AB的長.解:因為AB2=AC2+BC2所以AB===(cm)因此AB的長為.三、鞏固練習(xí)教材P14練習(xí)2、3四、應(yīng)用拓展例3.觀察下列各式,通過分母有理數(shù),把不是最簡二次根式的化成最簡二次根式:==-1,==-,同理可得:=-,……從計算結(jié)果中找出規(guī)律,并利用這一規(guī)律計算(+++……)(+1)的值.分析:由題意可知,本題所給的是一組分母有理化的式子,因此,分母有理化后就可以達到化簡的目的.解:原式=(-1+-+-+……+-)×(+1)=(-1)(+1)=2022-1=2022五、歸納小結(jié)本節(jié)課應(yīng)掌握:最簡二次根式的概念及其運用.六、布置作業(yè)1.教材P15習(xí)題21.23、7、10.2.選用課時作業(yè)設(shè)計.3.課后作業(yè):《同步訓(xùn)練》第三課時作業(yè)設(shè)計一、選擇題1.如果(y>0)是二次根式,那么,化為最簡二次根式是().A.(y>0)B.(y>0)C.(y>0)D.以上都不對2.把(a-1)中根號外的(a-1)移入根號內(nèi)得().A.B.C.-D.-3.在下列各式中,化簡正確的是()A.=3B.=±C.=a2D.=x4.化簡的結(jié)果是()A.-B.-C.-D.-二、填空題1.化簡=_________.(x≥0)2.a(chǎn)化簡二次根式號后的結(jié)果是_________.三、綜合提高題1.已知a為實數(shù),化簡:-a,閱讀下面的解答過程,請判斷是否正確?若不正確,請寫出正確的解答過程:解:-a=a-a·=(a-1)2.若x、y為實數(shù),且y=,求的值.答案:一、1.C2.D二、1.x2.-三、1.不正確,正確解答:因為,所以a<0,原式=-a·=·-a·=-a+=(1-a)2.∵∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=∴.二次根式的加減(1)第一課時教學(xué)內(nèi)容二次根式的加減教學(xué)目標理解和掌握二次根式加減的方法.先提出問題,分析問題,在分析問題中,滲透對二次根式進行加減的方法的理解.再總結(jié)經(jīng)驗,用它來指導(dǎo)根式的計算和化簡.重難點關(guān)鍵1.重點:二次根式化簡為最簡根式.2.難點關(guān)鍵:會判定是否是最簡二次根式.教學(xué)過程一、復(fù)習(xí)引入學(xué)生活動:計算下列各式.(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3教師點評:上面題目的結(jié)果,實際上是我們以前所學(xué)的同類項合并.同類項合并就是字母不變,系數(shù)相加減.二、探索新知學(xué)生活動:計算下列各式.(1)2+3(2)2-3+5(3)+2+3(4)3-2+老師點評:(1)如果我們把當成x,不就轉(zhuǎn)化為上面的問題嗎?2+3=(2+3)=5(2)把當成y;2-3+5=(2-3+5)=4=8(3)把當成z;+2+=2+2+3=(1+2+3)=6(4)看為x,看為y.3-2+=(3-2)+=+因此,二次根式的被開方數(shù)相同是可以合并的,如2與表面上看是不相同的,但它們可以合并嗎?可以的.(板書)3+=3+2=53+=3+3=6所以,二次根式加減時,可以先將二次根式化成最簡二次根式,再將被開方數(shù)相同的二次根式進行合并.例1.計算(1)+(2)+分析:第一步,將不是最簡二次根式的項化為最簡二次根式;第二步,將相同的最簡二次根式進行合并.解:(1)+=2+3=(2+3)=5(2)+=4+8=(4+8)=12例2.計算(1)3-9+3(2)(+)+(-)解:(1)3-9+3=12-3+6=(12-3+6)=15(2)(+)+(-)=++-=4+2+2-=6+三、鞏固練習(xí)教材P19練習(xí)1、2.四、應(yīng)用拓展例3.已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.分析:本題首先將已知等式進行變形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根據(jù)二次根式的加減運算,先把各項化成最簡二次根式,再合并同類二次根式,最后代入求值.解:∵4x2+y2-4x-6y+10=0∵4x2-4x+1+y2-6y+9=0∴(2x-1)2+(y-3)2=0∴x=,y=3原式=+y2-x2+5x=2x+-x+5=x+6當x=,y=3時,原式=×+6=+3五、歸納小結(jié)本節(jié)課應(yīng)掌握:(1)不是最簡二次根式的,應(yīng)化成最簡二次根式;(2)相同的最簡二次根式進行合并.六、布置作業(yè)1.教材P21習(xí)題21.31、2、3、5.2.選作課時作業(yè)設(shè)計.3.課后作業(yè):《同步訓(xùn)練》第一課時作業(yè)設(shè)計一、選擇題1.以下二次根式:①;②;③;④中,與是同類二次根式的是().A.①和②B.②和③C.①和④D.③和④2.下列各式:①3+3=6;②=1;③+==2;④=2,其中錯誤的有().A.3個B.2個C.1個D.0個二、填空題1.在、、、、、3、-2中,與是同類二次根式的有________.2.計算二次根式5-3-7+9的最后結(jié)果是________.三、綜合提高題1.已知≈,求(-)-(+)的值.(結(jié)果精確到)2.先化簡,再求值.(6x+)-(4x+),其中x=,y=27.答案:一、1.C2.A二、1.2.6-2三、1.原式=4---=≈×≈2.原式=6+3-(4+6)=(6+3-4-6)=-,當x=,y=27時,原式=-=-二次根式的加減(2)第二課時教學(xué)內(nèi)容利用二次根式化簡的數(shù)學(xué)思想解應(yīng)用題.教學(xué)目標運用二次根式、化簡解應(yīng)用題.通過復(fù)習(xí),將二次根式化成被開方數(shù)相同的最簡二次根式,進行合并后解應(yīng)用題.重難點關(guān)鍵講清如何解答應(yīng)用題既是本節(jié)課的重點,又是本節(jié)課的難點、關(guān)鍵點.教學(xué)過程一、復(fù)習(xí)引入上節(jié)課,我們已經(jīng)講了二次根式如何加減的問題,我們把它歸為兩個步驟:第一步,先將二次根式化成最簡二次根式;第二步,再將被開方數(shù)相同的二次根式進行合并,下面我們講三道例題以做鞏固.二、探索新知例1.如圖所示的Rt△ABC中,∠B=90°,點P從點B開始沿BA邊以1厘米/秒的速度向點A移動;同時,點Q也從點B開始沿BC邊以2厘米/秒的速度向點C移動.問:幾秒后△PBQ的面積為35平方厘米?PQ的距離是多少厘米?(結(jié)果用最簡二次根式表示)分析:設(shè)x秒后△PBQ的面積為35平方厘米,那么PB=x,BQ=2x,根據(jù)三角形面積公式就可以求出x的值.解:設(shè)x后△PBQ的面積為35平方厘米.則有PB=x,BQ=2x依題意,得:x·2x=35x2=35x=所以秒后△PBQ的面積為35平方厘米.PQ==5答:秒后△PBQ的面積為35平方厘米,PQ的距離為5厘米.例2.要焊接如圖所示的鋼架,大約需要多少米鋼材(精確到)?分析:此框架是由AB、BC、BD、AC組成,所以要求鋼架的鋼材,只需知道這四段的長度.解:由勾股定理,得AB==2BC==所需鋼材長度為AB+BC+AC+BD=2++5+2=3+7≈3×+7≈(m)答:要焊接一個如圖所示的鋼架,大約需要的鋼材.三、鞏固練習(xí)教材P19練習(xí)3四、應(yīng)用拓展例3.若最簡根式與根式是同類二次根式,求a、b的值.(同類二次根式就是被開方數(shù)相同的最簡二次根式)分析:同類二次根式是指幾個二次根式化成最簡二次根式后,被開方數(shù)相同;事實上,根式不是最簡二次根式,因此把化簡成|b|·,才由同類二次根式的定義得3a-b=2,2a-b+6=4a+3b.解:首先把根式化為最簡二次根式:==|b|·由題意得∴∴a=1,b=1五、歸納小結(jié)本節(jié)課應(yīng)掌握運用最簡二次根式的合并原理解決實際問題.六、布置作業(yè)1.教材P21習(xí)題21.37.2.選用課時作業(yè)設(shè)計.3.課后作業(yè):《同步訓(xùn)練》作業(yè)設(shè)計一、選擇題1.已知直角三角形的兩條直角邊的長分別為5和5,那么斜邊的長應(yīng)為().(結(jié)果用最簡二次根式)A.5B.C.2D.以上都不對2.小明想自己釘一個長與寬分別為30cm和20cm的長方形的木框,為了增加其穩(wěn)定性,他沿長方形的對角線又釘上了一根木條,木條的長應(yīng)為()米.(結(jié)果同最簡二次根式表示)A.13B.C.10D.5二、填空題1.某地有一長方形魚塘,已知魚塘的長是寬的2倍,它的面積是1600m2,魚塘的寬是_______m.(結(jié)果用最簡二次根式)2.已知等腰直角三角形的直角邊的邊長為,那么這個等腰直角三角形的周長是________.(結(jié)果用最簡二次根式)三、綜合提高題1.若最簡二次根式與是同類二次根式,求m、n的值.2.同學(xué)們,我們以前學(xué)過完全平方公式a2±2ab+b2=(a±b)2,你一定熟練掌握了吧!現(xiàn)在,我們又學(xué)習(xí)了二次根式,那么所有的正數(shù)(包括0)都可以看作是一個數(shù)的平方,如3=()2,5=()2,你知道是誰的二次根式呢?下面我們觀察:(-1)2=()2-2·1·+12=2-2+1=3-2反之,3-2=2-2+1=(-1)2∴3-2=(-1)2∴=-1求:(1);(2);(3)你會算嗎?(4)若=,則m、n與a、b的關(guān)系是什么?并說明理由.答案:一、1.A2.C二、1.202.2+2三、1.依題意,得,,所以或或或2.(1)==+1(2)==+1(3)==-1(4)理由:兩邊平方得a±2=m+n±2所以二次根式的加減(3)第三課時教學(xué)內(nèi)容含有二次根式的單項式與單項式相乘、相除;多項式與單項式相乘、相除;多項式與多項式相乘、相除;乘法公式的應(yīng)用.教學(xué)目標含有二次根式的式子進行乘除運算和含有二次根式的多項式乘法公式的應(yīng)用.復(fù)習(xí)整式運算知識并將該知識運用于含有二次根式的式子的乘除、乘方等運算.重難點關(guān)鍵重點:二次根式的乘除、乘方等運算規(guī)律;難點關(guān)鍵:由整式運算知識遷移到含二次根式的運算.教學(xué)過程一、復(fù)習(xí)引入學(xué)生活動:請同學(xué)們完成下列各題:1.計算(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy2.計算(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2老師點評:這些內(nèi)容是對八年級上冊整式運算的再現(xiàn).它主要有(1)單項式×單項式;(2)單項式×多項式;(3)多項式÷單項式;(4)完全平方公式;(5)平方差公式的運用.二、探索新知如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.整式運算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當然也可以代表二次根式,所以,整式中的運算規(guī)律也適用于二次根式.例1.計算:(1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律.解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算(1)(+6)(3-)(2)(+)(-)分析:剛才已經(jīng)分析,二次根式的多項式乘以多項式運算在乘法公式運算中仍然成立.解:(1)(+6)(3-)=3-()2+18-6=13-3(2)(+)(-)=()2-()2=10-7=3三、鞏固練習(xí)課本P20練習(xí)1、2.四、應(yīng)用拓展例3.已知=2-,其中a、b是實數(shù),且a+b≠0,化簡+,并求值.分析:由于(+)(-)=1,因此對代數(shù)式的化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結(jié)果即可.解:原式=+=+=(x+1)+x-2+x+2=4x+2∵=2-∴b(x-b)=2ab-a(x-a)∴bx-b2=2ab-ax+a2∴(a+b)x=a2+2ab+b2∴(a+b)x=(a+b)2∵a+b≠0∴x=a+b∴原式=4x+2=4(a+b)+2五、歸納小結(jié)本節(jié)課應(yīng)掌握二次根式的乘、除、乘方等運算.六、布置作業(yè)1.教材P21習(xí)題21.31、8、9.2.選用課時作業(yè)設(shè)計.3.課后作業(yè):《同步訓(xùn)練》作業(yè)設(shè)計一、選擇題1.(-3+2)×的值是().A.-3B.3-C.2-D.-2.計算(+)(-)的值是().A.2B.3C.4D.1二、填空題1.(-+)2的計算結(jié)果(用最簡根式表示)是________.2.(1-2)(1+2)-(2-1)2的計算結(jié)果(用最簡二次根式表示)是_______.3.若x=-1,則x2+2x+1=________.4.已知a=3+2,b=3-2,則a2b-ab2=_________.三、綜合提高題1.化簡2.當x=時,求+的值.(結(jié)果用最簡二次根式表示)課外知識1.同類二次根式:幾個二次根式化成最簡二次根式后,它們的被開方數(shù)相同,這些二次根式就稱為同類二次根式,就是本書中所講的被開方數(shù)相同的二次根式.練習(xí):下列各組二次根式中,是同類二次根式的是().A.與B.與C.與D.與2.互為有理化因式:互為有理化因式是指兩個二次根式的乘積可以運用平方差公式(a+b)(a-b)=a2-b2,同時它們的積是有理數(shù),不含有二次根式:如x+1-與x+1+就是互為有理化因式;與也是互為有理化因式.練習(xí):+的有理化因式是________;x-的有理化因式是_________.--的有理化因式是_______.3.分母有理化是指把分母中的根號化去,通常在分子、分母上同乘以一個二次根式,達到化去分母中的根號的目的.練習(xí):把下列各式的分母有理化(1);(2);(3);(4).4.其它材料:如果n是任意正整數(shù),那么=n理由:==n練習(xí):填空=_______;=________;=_______.答案:一、1.A2.D二、1.1-2.4-243.24.4三、1.原式====-(-)=-2.原式====2(2x+1)∵x==+1原式=2(2+3)=4+6.二次根式復(fù)習(xí)課教學(xué)目標1.使學(xué)生進一步理解二次根式的意義及基本性質(zhì),并能熟練地化簡含二次根式的式子;2.熟練地進行二次根式的加、減、乘、除混合運算.教學(xué)重點和難點重點:含二次根式的式子的混合運算.難點:綜合運用二次根式的性質(zhì)及運算法則化簡和計算含二次根式的式子.教學(xué)過程設(shè)計一、復(fù)習(xí)1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各式成立的條件.指出:二次根式的這些基本性質(zhì)都是在一定條件下才成立的,主要應(yīng)用于化簡二次根式.2.二次根式的乘法及除法的法則是什么?用式子表示出來.指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,計算結(jié)果要把分母有理化.3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:二、例題例1x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:分析:(1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;(3)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;(4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.x≥-2且x≠0.解因為n2-9≥0,9-n2≥0,且n-3≠0,所以n2=9且n≠3,所以例3分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3-a≥0和1-a>0.解因為1-a>0,3-a≥0,所以a<1,|a-2|=2-a.(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)≥0.這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.解注意:所以在化簡過程中,例6分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩產(chǎn)+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),三、課堂練習(xí)1.選擇題:A.a(chǎn)≤2B.a(chǎn)≥2C.a(chǎn)≠2D.a(chǎn)<2A.x+2B.-x-2C.-x+2D.x-2A.2xB.2aC.-2xD.-2a2.填空題:4.計算:四、小結(jié)1.本節(jié)課復(fù)習(xí)的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.4.通過例題的討論,要學(xué)會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.五、作業(yè)1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?2.把下列各式化成最簡二次根式:第二十三章旋轉(zhuǎn)單元要點分析教學(xué)內(nèi)容1.主要內(nèi)容:圖形的旋轉(zhuǎn)及其有關(guān)概念:包括旋轉(zhuǎn)、旋轉(zhuǎn)中心、旋轉(zhuǎn)角.圖形旋轉(zhuǎn)的有關(guān)性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,旋轉(zhuǎn)前、后的圖形全等.通過不同形式的旋轉(zhuǎn),設(shè)計圖案.中心對稱及其有關(guān)概念:中心對稱、對稱中心、關(guān)于中心的對稱點;關(guān)于中心對稱的兩個圖形.中心對稱的性質(zhì):對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分;關(guān)于中心對稱的兩個圖形是全等圖形.中心對稱圖形:概念及性質(zhì):包括中心對稱圖形、對稱中心.關(guān)于原點對稱的點的坐標:兩個點關(guān)于原點對稱時,它們的坐標符號都相反,即點P(x,y)關(guān)于原點的對稱點為P′(-x,-y).課題學(xué)習(xí).圖案設(shè)計.2.本單元在教材中的地位與作用:學(xué)生通過平移、平面直角坐標系,軸對稱、反比例函數(shù)、四邊形等知識的學(xué)習(xí),初步積累了一定的圖形變換數(shù)學(xué)活動經(jīng)驗.本章在此基礎(chǔ)上,讓學(xué)生進行觀察、分析、畫圖、簡單圖案的欣賞與設(shè)計等操作性活動形成圖形旋轉(zhuǎn)概念.它又對今后繼續(xù)學(xué)習(xí)數(shù)學(xué),尤其是幾何,包括圓等內(nèi)容的學(xué)習(xí)起著橋梁鋪墊之作用.教學(xué)目標1.知識與技能了解圖形的旋轉(zhuǎn)的有關(guān)概念并理解它的基本性質(zhì).了解中心對稱的概念并理解它的基本性質(zhì).了解中心對稱圖形的概念;掌握關(guān)于原點對稱的兩點的關(guān)系并應(yīng)用;再通過幾何操作題的練習(xí),掌握課題學(xué)習(xí)中圖案設(shè)計的方法.2.過程與方法(1)讓學(xué)生感受生活中的幾何,通過不同的情景設(shè)計歸納出圖形旋轉(zhuǎn)的有關(guān)概念,并用這些概念來解決一些問題.(2)通過復(fù)習(xí)圖形旋轉(zhuǎn)的有關(guān)概念從中歸納出“對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,旋轉(zhuǎn)前后的圖形全等”等重要性質(zhì),并運用它解決一些實際問題.(3)經(jīng)歷復(fù)習(xí)圖形的旋轉(zhuǎn)的有關(guān)概念和性質(zhì),分析不同的旋轉(zhuǎn)中心,不同的旋轉(zhuǎn)角,出現(xiàn)不同的效果并對各種情況進行分類.(4)復(fù)習(xí)對稱軸和軸對稱圖形的有關(guān)概念,通過知識遷移講授中心對稱圖形和對稱中心的有關(guān)內(nèi)容,并附加練習(xí)鞏固這個內(nèi)容.(5)通過幾何操作題,探究猜測發(fā)現(xiàn)規(guī)律,并給予證明,附加例題進一步鞏固.(6)復(fù)習(xí)中心對稱圖形和對稱中心的有關(guān)概念,然后提出問題,讓學(xué)生觀察、思考,老師歸納得出中心對稱圖形和對稱中心的有關(guān)概念,最后用一些例題、練習(xí)來鞏固這個內(nèi)容.(7)復(fù)習(xí)平面直角坐標系的有關(guān)概念,通過實例歸納出兩個點關(guān)于原點對稱時,坐標符號之間的關(guān)系,并運用它解決一些實際問題.(8)通過復(fù)習(xí)平移、軸對稱、旋轉(zhuǎn)等有關(guān)概念研究如何進行圖形設(shè)計.3.情感、態(tài)度與價值觀讓學(xué)生經(jīng)歷觀察、操作等過程,了解圖形旋轉(zhuǎn)的概念,從事圖形旋轉(zhuǎn)基本性質(zhì)的探索活動,進一步發(fā)展空間觀察,培養(yǎng)運動幾何的觀點,增強審美意識.讓學(xué)生通過獨立思考,自主探究和合作交流進一步體會旋轉(zhuǎn)的數(shù)學(xué)內(nèi)涵,獲得知識,體驗成功,享受學(xué)習(xí)樂趣.讓學(xué)生從事應(yīng)用所學(xué)的知識進行圖案設(shè)計的活動,享受成功的喜悅,激發(fā)學(xué)習(xí)熱情.教學(xué)重點1.圖形旋轉(zhuǎn)的基本性質(zhì).2.中心對稱的基本性質(zhì).3.兩個點關(guān)于原點對稱時,它們坐標間的關(guān)系.教學(xué)難點1.圖形旋轉(zhuǎn)的基本性質(zhì)的歸納與運用.2.中心對稱的基本性質(zhì)的歸納與運用.教學(xué)關(guān)鍵1.利用幾何直觀,經(jīng)歷觀察,產(chǎn)生概念;2.利用幾何操作,通過觀察、探究,用不完全歸納法歸納出圖形的旋轉(zhuǎn)和中心對稱的基本性質(zhì).單元課時劃分本單元教學(xué)時間約需10課時,具體分配如下:23.1圖形的旋轉(zhuǎn)3課時23.2中心對稱4課時23.3課題學(xué)習(xí);圖案設(shè)計1課時教學(xué)活動、習(xí)題課、小結(jié)2課時圖形的旋轉(zhuǎn)(1)第一課時教學(xué)內(nèi)容1.什么叫旋轉(zhuǎn)?旋轉(zhuǎn)中心?旋轉(zhuǎn)角?2.什么叫旋轉(zhuǎn)的對應(yīng)點?教學(xué)目標了解旋轉(zhuǎn)及其旋轉(zhuǎn)中心和旋轉(zhuǎn)角的概念,了解旋轉(zhuǎn)對應(yīng)點的概念及其應(yīng)用它們解決一些實際問題.通過復(fù)習(xí)平移、軸對稱的有關(guān)概念及性質(zhì),從生活中的數(shù)學(xué)開始,經(jīng)歷觀察,產(chǎn)生概念,應(yīng)用概念解決一些實際問題.重難點、關(guān)鍵1.重點:旋轉(zhuǎn)及對應(yīng)點的有關(guān)概念及其應(yīng)用.2.難點與關(guān)鍵:從活生生的數(shù)學(xué)中抽出概念.教具、學(xué)具準備小黑板、三角尺教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動)請同學(xué)們完成下面各題.1.將如圖所示的四邊形ABCD平移,使點B的對應(yīng)點為點D,作出平移后的圖形.2.如圖,已知△ABC和直線L,請你畫出△ABC關(guān)于L的對稱圖形△A′B′C′.3.圓是軸對稱圖形嗎?等腰三角形呢?你還能指出其它的嗎?(口述)老師點評并總結(jié):(1)平移的有關(guān)概念及性質(zhì).(2)如何畫一個圖形關(guān)于一條直線(對稱軸)的對稱圖形并口述它既有的一些性質(zhì).(3)什么叫軸對稱圖形?二、探索新知我們前面已經(jīng)復(fù)習(xí)平移等有關(guān)內(nèi)容,生活中是否還有其它運動變化呢?回答是肯定的,下面我們就來研究.1.請同學(xué)們看講臺上的大時鐘,有什么在不停地轉(zhuǎn)動?旋繞什么點呢?從現(xiàn)在到下課時鐘轉(zhuǎn)了多少度?分針轉(zhuǎn)了多少度?秒針轉(zhuǎn)了多少度?(口答)老師點評:時針、分針、秒針在不停地轉(zhuǎn)動,它們都繞時針的中心.如果從現(xiàn)在到下課時針轉(zhuǎn)了_______度,分針轉(zhuǎn)了_______度,秒針轉(zhuǎn)了______度.2.再看我自制的好像風(fēng)車風(fēng)輪的玩具,它可以不停地轉(zhuǎn)動.如何轉(zhuǎn)到新的位置?(老師點評略)3.第1、2兩題有什么共同特點呢?共同特點是如果我們把時針、風(fēng)車風(fēng)輪當成一個圖形,那么這些圖形都可以繞著某一固定點轉(zhuǎn)動一定的角度.像這樣,把一個圖形繞著某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),點O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角.如果圖形上的點P經(jīng)過旋轉(zhuǎn)變?yōu)辄cP′,那么這兩個點叫做這個旋轉(zhuǎn)的對應(yīng)點.下面我們來運用這些概念來解決一些問題.例1.如圖,如果把鐘表的指針看做三角形OAB,它繞O點按順時針方向旋轉(zhuǎn)得到△OEF,在這個旋轉(zhuǎn)過程中:(1)旋轉(zhuǎn)中心是什么?旋轉(zhuǎn)角是什么?(2)經(jīng)過旋轉(zhuǎn),點A、B分別移動到什么位置?解:(1)旋轉(zhuǎn)中心是O,∠AOE、∠BOF等都是旋轉(zhuǎn)角.(2)經(jīng)過旋轉(zhuǎn),點A和點B分別移動到點E和點F的位置.例2.(學(xué)生活動)如圖,四邊形ABCD、四邊形EFGH都是邊長為1的正方形.(1)這個圖案可以看做是哪個“基本圖案”通過旋轉(zhuǎn)得到的?(2)請畫出旋轉(zhuǎn)中心和旋轉(zhuǎn)角.(3)指出,經(jīng)過旋轉(zhuǎn),點A、B、C、D分別移到什么位置?(老師點評)(1)可以看做是由正方形ABCD的基本圖案通過旋轉(zhuǎn)而得到的.(2)畫圖略.(3)點A、點B、點C、點D移到的位置是點E、點F、點G、點H.最后強調(diào),這個旋轉(zhuǎn)中心是固定的,即正方形對角線的交點,但旋轉(zhuǎn)角和對應(yīng)點都是不唯一的.三、鞏固練習(xí)教材P65練習(xí)1、2、3.四、應(yīng)用拓展例3.兩個邊長為1的正方形,如圖所示,讓一個正方形的頂點與另一個正方形中心重合,不難知道重合部分的面積為,現(xiàn)把其中一個正方形固定不動,另一個正方形繞其中心旋轉(zhuǎn),問在旋轉(zhuǎn)過程中,兩個正方形重疊部分面積是否發(fā)生變化?說明理由.分析:設(shè)任轉(zhuǎn)一角度,如圖中的虛線部分,要說明旋轉(zhuǎn)后正方形重疊部分面積不變,只要說明S△OEE`=S△ODD`,那么只要說明△OEF′≌△ODD′.解:面積不變.理由:設(shè)任轉(zhuǎn)一角度,如圖所示.在Rt△ODD′和Rt△OEE′中∠ODD′=∠OEE′=90°∠DOD′=∠EOE′=90°-∠BOEOD=OD∴△ODD′≌△OEE′∴S△ODD`=S△OEE`∴S四邊形OE`BD`=S正方形OEBD=五、歸納小結(jié)(學(xué)生總結(jié),老師點評)本節(jié)課要掌握:1.旋轉(zhuǎn)及其旋轉(zhuǎn)中心、旋轉(zhuǎn)角的概念.2.旋轉(zhuǎn)的對應(yīng)點及其它們的應(yīng)用.六、布置作業(yè)1.教材P66復(fù)習(xí)鞏固1、2、3.2.《同步練習(xí)》一、選擇題1.在26個英文大寫字母中,通過旋轉(zhuǎn)180°后能與原字母重合的有().A.6個B.7個C.8個D.9個2.從5點15分到5點20分,分針旋轉(zhuǎn)的度數(shù)為().A.20°B.26°C.30°D.36°3.如圖1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角頂點C為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)到△A′B′C的位置,其中A′、B′分別是A、B的對應(yīng)點,且點B在斜邊A′B′上,直角邊CA′交AB于D,則旋轉(zhuǎn)角等于().A.70°B.80°C.60°D.50°(1)(2)(3)二、填空題.1.在平面內(nèi),將一個圖形繞一個定點沿著某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為________,這個定點稱為________,轉(zhuǎn)動的角為________.2.如圖2,△ABC與△ADE都是等腰直角三角形,∠C和∠AED都是直角,點E在AB上,如果△ABC經(jīng)旋轉(zhuǎn)后能與△ADE重合,那么旋轉(zhuǎn)中心是點_________;旋轉(zhuǎn)的度數(shù)是__________.3.如圖3,△ABC為等邊三角形,D為△ABC內(nèi)一點,△ABD經(jīng)過旋轉(zhuǎn)后到達△ACP的位置,則,(1)旋轉(zhuǎn)中心是________;(2)旋轉(zhuǎn)角度是________;(3)△ADP是________三角形.三、綜合提高題.1.閱讀下面材料:如圖4,把△ABC沿直線BC平行移動線段BC的長度,可以變到△ECD的位置.如圖5,以BC為軸把△ABC翻折180°,可以變到△DBC的位置.(4)(5)(6)(7)如圖6,以A點為中心,把△ABC旋轉(zhuǎn)90°,可以變到△AED的位置,像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀和大小的圖形變換,叫做三角形的全等變換.回答下列問題如圖7,在正方形ABCD中,E是AD的中點,F(xiàn)是BA延長線上一點,AF=AB.(1)在如圖7所示,可以通過平行移動、翻折、旋轉(zhuǎn)中的哪一種方法,使△ABE移到△ADF的位置?(2)指出如圖7所示中的線段BE與DF之間的關(guān)系.2.一塊等邊三角形木塊,邊長為1,如圖,現(xiàn)將木塊沿水平線翻滾五個三角形,那么B點從開始至結(jié)束所走過的路徑長是多少?答案:一、1.B2.C3.B二、1.旋轉(zhuǎn)旋轉(zhuǎn)中心旋轉(zhuǎn)角2.A45°3.點A60°等邊三、1.(1)通過旋轉(zhuǎn),即以點A為旋轉(zhuǎn)中心,將△ABE逆時針旋轉(zhuǎn)90°.(2)BE=DF,BE⊥DF2.翻滾一次滾120°翻滾五個三角形,正好翻滾一個圓,所以所走路徑是2.圖形的旋轉(zhuǎn)(2)第二課時教學(xué)內(nèi)容1.對應(yīng)點到旋轉(zhuǎn)中心的距離相等.2.對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.3.旋轉(zhuǎn)前后的圖形全等及其它們的運用.教學(xué)目標理解對應(yīng)點到旋轉(zhuǎn)中心的距離相等;理解對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;理解旋轉(zhuǎn)前、后的圖形全等.掌握以上三個圖形的旋轉(zhuǎn)的基本性質(zhì)的運用.先復(fù)習(xí)旋轉(zhuǎn)及其旋轉(zhuǎn)中心、旋轉(zhuǎn)角和旋轉(zhuǎn)的對應(yīng)點概念,接著用操作幾何、實驗探究圖形的旋轉(zhuǎn)的基本性質(zhì).重難點、關(guān)鍵1.重點:圖形的旋轉(zhuǎn)的基本性質(zhì)及其應(yīng)用.2.難點與關(guān)鍵:運用操作實驗幾何得出圖形的旋轉(zhuǎn)的三條基本性質(zhì).教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動)老師口問,學(xué)生口答.1.什么叫旋轉(zhuǎn)?什么叫旋轉(zhuǎn)中心?什么叫旋轉(zhuǎn)角?2.什么叫旋轉(zhuǎn)的對應(yīng)點?3.請獨立完成下面的題目.如圖,O是六個正三角形的公共頂點,正六邊形ABCDEF能否看做是某條線段繞O點旋轉(zhuǎn)若干次所形成的圖形?(老師點評)分析:能.看做是一條邊(如線段AB)繞O點,按照同一方法連續(xù)旋轉(zhuǎn)60°、120°、180°、240°、300°形成的.二、探索新知上面的解題過程中,能否得出什么結(jié)論,請回答下面的問題:1.A、B、C、D、E、F到O點的距離是否相等?2.對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?3.旋轉(zhuǎn)前、后的圖形這里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等嗎?老師點評:(1)距離相等,(2)夾角相等,(3)前后圖形全等,那么這個是否有一般性?下面請看這個實驗.請看我手里拿著的硬紙板,我在硬紙板上挖下一個三角形的洞,再挖一個點O作為旋轉(zhuǎn)中心,把挖好的硬紙板放在黑板上,先在黑板上描出這個挖掉的三角形圖案(△ABC),然后圍繞旋轉(zhuǎn)中心O轉(zhuǎn)動硬紙板,在黑板上再描出這個挖掉的三角形(△A′B′C′),移去硬紙板.(分組討論)根據(jù)圖回答下面問題(一組推薦一人上臺說明)1.線段OA與OA′,OB與OB′,OC與OC′有什么關(guān)系?2.∠AOA′,∠BOB′,∠COC′有什么關(guān)系?3.△ABC與△A′B′C′形狀和大小有什么關(guān)系?老師點評:1.OA=OA′,OB=OB′,OC=OC′,也就是對應(yīng)點到旋轉(zhuǎn)中心相等.2.∠AOA′=∠BOB′=∠COC′,我們把這三個相等的角,即對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角稱為旋轉(zhuǎn)角.3.△ABC和△A′B′C′形狀相同和大小相等,即全等.綜合以上的實驗操作和剛才作的(3),得出(1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;(2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;(3)旋轉(zhuǎn)前、后的圖形全等.例1.如圖,△ABC繞C點旋轉(zhuǎn)后,頂點A的對應(yīng)點為點D,試確定頂點B對應(yīng)點的位置,以及旋轉(zhuǎn)后的三角形.分析:繞C點旋轉(zhuǎn),A點的對應(yīng)點是D點,那么旋轉(zhuǎn)角就是∠ACD,根據(jù)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,即∠BCB′=ACD,又由對應(yīng)點到旋轉(zhuǎn)中心的距離相等,即CB=CB′,就可確定B′的位置,如圖所示.解:(1)連結(jié)CD(2)以CB為一邊作∠BCE,使得∠BCE=∠ACD(3)在射線CE上截取CB′=CB則B′即為所求的B的對應(yīng)點.(4)連結(jié)DB′則△DB′C就是△ABC繞C點旋轉(zhuǎn)后的圖形.例2.如圖,四邊形ABCD是邊長為1的正方形,且DE=,△ABF是△ADE的旋轉(zhuǎn)圖形.(1)旋轉(zhuǎn)中心是哪一點?(2)旋轉(zhuǎn)了多少度?(3)AF的長度是多少?(4)如果連結(jié)EF,那么△AEF是怎樣的三角形?分析:由△ABF是△ADE的旋轉(zhuǎn)圖形,可直接得出旋轉(zhuǎn)中心和旋轉(zhuǎn)角,要求AF的長度,根據(jù)旋轉(zhuǎn)前后的對應(yīng)線段相等,只要求AE的長度,由勾股定理很容易得到.△ABF與△ADE是完全重合的,所以它是直角三角形.解:(1)旋轉(zhuǎn)中心是A點.(2)∵△ABF是由△ADE旋轉(zhuǎn)而成的∴B是D的對應(yīng)點∴∠DAB=90°就是旋轉(zhuǎn)角(3)∵AD=1,DE=∴AE==∵對應(yīng)點到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點∴AF=(4)∵∠EAF=90°(與旋轉(zhuǎn)角相等)且AF=AE∴△EAF是等腰直角三角形.三、鞏固練習(xí)教材P64練習(xí)1、2.四、應(yīng)用拓展例3.如圖,K是正方形ABCD內(nèi)一點,以AK為一邊作正方形AKLM,使L、M在AK的同旁,連接BK和DM,試用旋轉(zhuǎn)的思想說明線段BK與DM的關(guān)系.分析:要用旋轉(zhuǎn)的思想說明就是要用旋轉(zhuǎn)中心、旋轉(zhuǎn)角、對應(yīng)點的知識來說明.解:∵四邊形ABCD、四邊形AKLM是正方形∴AB=AD,AK=AM,且∠BAD=∠KAM為旋轉(zhuǎn)角且為90°∴△ADM是以A為旋轉(zhuǎn)中心,∠BAD為旋轉(zhuǎn)角由△ABK旋轉(zhuǎn)而成的∴BK=DM五、歸納小結(jié)(學(xué)生總結(jié),老師點評)本節(jié)課應(yīng)掌握:1.對應(yīng)點到旋轉(zhuǎn)中心的距離相等;2.對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;3.旋轉(zhuǎn)前、后的圖形全等及其它們的應(yīng)用.六、布置作業(yè)1.教材P66復(fù)習(xí)鞏固4綜合運用5、6.2.作業(yè)設(shè)計.作業(yè)設(shè)計一、選擇題1.△ABC繞著A點旋轉(zhuǎn)后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,則旋轉(zhuǎn)角等于()A.50°B.210°C.50°或210°D.130°2.在圖形旋轉(zhuǎn)中,下列說法錯誤的是()A.在圖形上的每一點到旋轉(zhuǎn)中心的距離相等B.圖形上每一點移動的角度相同C.圖形上可能存在不動的點D.圖形上任意兩點的連線與其對應(yīng)兩點的連線長度相等3.如圖,下面的四個圖案中,既包含圖形的旋轉(zhuǎn),又包含圖形的軸對稱的是()二、填空題1.在作旋轉(zhuǎn)圖形中,各對應(yīng)點與旋轉(zhuǎn)中心的距離
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)網(wǎng)絡(luò)安全漏洞修復(fù)與監(jiān)控合同(2024年版)
- 2024年廣告發(fā)布合同標的及廣告投放詳細規(guī)定
- 2024年創(chuàng)新版:智慧城市系統(tǒng)集成與運營合同
- 2024年工程居間商代理權(quán)協(xié)議
- 2024年居間合同精解:中介職責與合同形式
- 保障房協(xié)議模板
- 2024年版夫妻雙方財產(chǎn)分割補充協(xié)議模板
- 2024年工程分包及居間服務(wù)協(xié)議
- 保密合同約定書模板(2024年版)
- 2024年雙邊勞務(wù)居間合同模板
- 醫(yī)院健康教育培訓(xùn)課件
- 無人機目標自動識別系統(tǒng)集成
- 人教版八年級信息技術(shù)下冊全冊教案
- 血漿吸附護理課件
- 新生兒紅臀的護理課件
- 明孝端皇后九龍九鳳冠
- 《上海市中學(xué)物理課程標準》試行稿
- 注塑車間規(guī)劃方案
- 營養(yǎng)不良五階梯治療
- 【課件】鐵及其化合物++第2課時++課件高一上學(xué)期化學(xué)人教版(2019)必修第一冊
- 南通市2024屆高三第一次調(diào)研測試(一模)生物試卷(含答案)
評論
0/150
提交評論