版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Contents
Overview
viii
ListofIllustrations
xiv
WordsofThanks
xix
PartI:GEB
Introduction:AMusico-LogicalOffering
3
Three-PartInvention
29
ChapterI:TheMU-puzzle
33
Two-PartInvention
43
ChapterII:MeaningandForminMathematics
46
SonataforUnaccompaniedAchilles
61
ChapterIII:FigureandGround
64
Contracrostipunctus
75
ChapterIV:Consistency,Completeness,andGeometry
82
LittleHarmonicLabyrinth
103
ChapterV:RecursiveStructuresandProcesses
127
CanonbyIntervallicAugmentation
153
ChapterVI:TheLocationofMeaning
158
ChromaticFantasy,AndFeud
177
ChapterVII:ThePropositionalCalculus
181
CrabCanon
199
ChapterVIII:TypographicalNumberTheory
204
AMuOffering
231
ChapterIX:MumonandG?del
246
Contents II
PartIIEGB
Prelude...
275
ChapterX:LevelsofDescription,andComputerSystems
285
AntFugue
311
ChapterXI:BrainsandThoughts
337
EnglishFrenchGermanSuit
366
ChapterXII:MindsandThoughts
369
AriawithDiverseVariations
391
ChapterXIII:BlooPandFlooPandGlooP
406
AironG'sString
431
ChapterXIV:OnFormallyUndecidablePropositionsofTNT
andRelatedSystems
438
BirthdayCantatatata...
461
ChapterXV:JumpingoutoftheSystem
465
EdifyingThoughtsofaTobaccoSmoker
480
ChapterXVI:Self-RefandSelf-Rep
495
TheMagnfierab,Indeed
549
ChapterXVII:Church,Turing,Tarski,andOthers
559
SHRDLU,ToyofMan'sDesigning
586
ChapterXVIII:ArtificialIntelligence:Retrospects
594
Contrafactus
633
ChapterXIX:ArtificialIntelligence:Prospects
641
SlothCanon
681
ChapterXX:StrangeLoops,OrTangledHierarchies
684
Six-PartRicercar
720
Notes
743
Bibliography
746
Credits
757
Index
759
Contents III
Overview
PartI:GEB
Introduction:AMusico-LogicalOffering.ThebookopenswiththestoryofBach'sMusicalOffering.BachmadeanimpromptuvisittoKingFredericktheGreatofPrussia,andwasrequestedtoimproviseuponathemepresentedbytheKing.Hisimprovisationsformedthebasisofthatgreatwork.TheMusicalOfferinganditsstoryformathemeuponwhichI"improvise"throughoutthebook,thusmakingasortof"MetamusicalOffering".Self-referenceandtheinterplaybetweendifferentlevelsinBacharediscussed:thisleadstoadiscussionofparallelideasinEscher'sdrawingsandthenG?del’sTheorem.AbriefpresentationofthehistoryoflogicandparadoxesisgivenasbackgroundforG?del’sTheorem.Thisleadstomechanicalreasoningandcomputers,andthedebateaboutwhetherArtificialIntelligenceispossible.Iclosewithanexplanationoftheoriginsofthebook-particularlythewhyandwhereforeoftheDialogues.
Three-PartInvention.Bachwrotefifteenthree-partinventions.Inthisthree-partDialogue,theTortoiseandAchilles-themainfictionalprotagonistsintheDialogues-are"invented"byZeno(asinfacttheywere,toillustrateZeno'sparadoxesofmotion).Veryshort,itsimplygivestheflavoroftheDialoguestocome.
ChapterI:TheMU-puzzle.Asimpleformalsystem(theMIL'-system)ispresented,andthereaderisurgedtoworkoutapuzzletogainfamiliaritywithformalsystemsingeneral.Anumberoffundamentalnotionsareintroduced:string,theorem,axiom,ruleofinference,derivation,formalsystem,decisionprocedure,workinginside/outsidethesystem.
Two-PartInvention.Bachalsowrotefifteentwo-partinventions.Thistwo-partDialoguewaswrittennotbyme,butbyLewisCarrollin1895.CarrollborrowedAchillesandtheTortoisefromZeno,andIinturnborrowedthemfromCarroll.Thetopicistherelationbetweenreasoning,reasoningaboutreasoning,reasoningaboutreasoningaboutreasoning,andsoon.Itparallels,inaway,Zeno'sparadoxesabouttheimpossibilityofmotion,seemingtoshow,byusinginfiniteregress,thatreasoningisimpossible.Itisabeautifulparadox,andisreferredtoseveraltimeslaterinthebook.
ChapterII:MeaningandForminMathematics.Anewformalsystem(thepq-system)ispresented,evensimplerthantheMIU-systemofChapterI.Apparentlymeaninglessatfirst,itssymbolsaresuddenlyrevealedtopossessmeaningbyvirtueoftheformofthetheoremstheyappearin.Thisrevelationisthefirstimportantinsightintomeaning:itsdeepconnectiontoisomorphism.Variousissuesrelatedtomeaningarethendiscussed,suchastruth,proof,symbolmanipulation,andtheelusiveconcept,"form".
SonataforUnaccompaniedAchilles.ADialoguewhichimitatestheBachSonatasforunaccompaniedviolin.Inparticular,Achillesistheonlyspeaker,sinceitisatranscriptofoneendofatelephonecall,atthefarendofwhichistheTortoise.Theirconversationconcernstheconceptsof"figure"and"ground"invarious
Overview IV
contexts-e.g.,Escher'sart.TheDialogueitselfformsanexampleofthedistinction,sinceAchilles'linesforma"figure",andtheTortoise'slines-implicitinAchilles'lines-forma"ground".
ChapterIII:FigureandGround.Thedistinctionbetweenfigureandgroundinartiscomparedtothedistinctionbetweentheoremsandnontheoremsinformalsystems.Thequestion"Doesafigurenecessarilycontainthesameinformationasitsground%"leadstothedistinctionbetweenrecursivelyenumerablesetsandrecursivesets.
Contracrostipunctus.ThisDialogueiscentraltothebook,foritcontainsasetofparaphrasesofG?del’sself-referentialconstructionandofhisIncompletenessTheorem.OneoftheparaphrasesoftheTheoremsays,"Foreachrecordplayerthereisarecordwhichitcannotplay."TheDialogue'stitleisacrossbetweentheword"acrostic"andtheword"contrapunctus",aLatinwordwhichBachusedtodenotethemanyfuguesandcanonsmakinguphisArtoftheFugue.SomeexplicitreferencestotheArtoftheFuguearemade.TheDialogueitselfconcealssomeacrostictricks.
ChapterIV:Consistency,Completeness,andGeometry.TheprecedingDialogueisexplicatedtotheextentitispossibleatthisstage.Thisleadsbacktothequestionofhowandwhensymbolsinaformalsystemacquiremeaning.ThehistoryofEuclideanandnon-Euclideangeometryisgiven,asanillustrationoftheelusivenotionof"undefinedterms".Thisleadstoideasabouttheconsistencyofdifferentandpossibly"rival"geometries.Throughthisdiscussionthenotionofundefinedtermsisclarified,andtherelationofundefinedtermstoperceptionandthoughtprocessesisconsidered.
LittleHarmonicLabyrinth.ThisisbasedontheBachorganpiecebythesamename.Itisaplayfulintroductiontothenotionofrecursive-i.e.,nestedstructures.Itcontainsstorieswithinstories.Theframestory,insteadoffinishingasexpected,isleftopen,sothereaderisleftdanglingwithoutresolution.Onenestedstoryconcernsmodulationinmusic-particularlyanorganpiecewhichendsinthewrongkey,leavingthelistenerdanglingwithoutresolution.
ChapterV:RecursiveStructuresandProcesses.Theideaofrecursionispresentedinmanydifferentcontexts:musicalpatterns,linguisticpatterns,geometricstructures,mathematicalfunctions,physicaltheories,computerprograms,andothers.
CanonbyIntervallicAugmentation.AchillesandtheTortoisetrytoresolvethequestion,"Whichcontainsmoreinformation-arecord,orthephonographwhichplaysitThisoddquestionariseswhentheTortoisedescribesasinglerecordwhich,whenplayedonasetofdifferentphonographs,producestwoquitedifferentmelodies:B-A-C-HandC-A-G-E.Itturnsout,however,thatthesemelodiesare"thesame",inapeculiarsense.
ChapterVI:TheLocationofMeaning.Abroaddiscussionofhowmeaningissplitamongcodedmessage,decoder,andreceiver.ExamplespresentedincludestrandsofDNA,undecipheredinscriptionsonancienttablets,andphonographrecordssailingoutinspace.Therelationshipofintelligenceto"absolute"meaningispostulated.
ChromaticFantasy,AndFeud.AshortDialoguebearinghardlyanyresemblance,exceptintitle,toBach'sChromaticFantasyandFugue.Itconcernstheproperwaytomanipulatesentencessoastopreservetruth-andinparticularthequestion
Overview V
ofwhetherthereexistrulesfortheusageoftheword"arid".ThisDialoguehasmuchincommonwiththeDialoguebyLewisCarroll.
ChapterVII:ThePropositionalCalculus.Itissuggestedhowwordssuchas.,and"canbegovernedbyformalrules.Onceagain,theideasofisomorphismandautomaticacquisitionofmeaningbysymbolsinsuchasystemarebroughtup.AlltheexamplesinthisChapter,incidentally,are"Zentences"-sentencestakenfromZenkoans.Thisispurposefullydone,somewhattongue-in-cheek,sinceZenkoansaredeliberatelyillogicalstories.
CrabCanon.ADialoguebasedonapiecebythesamenamefromtheMusicalOffering.Botharesonamedbecausecrabs(supposedly)walkbackwards.TheCrabmakeshisfirstappearanceinthisDialogue.ItisperhapsthedensestDialogueinthebookintermsofformaltrickeryandlevel-play.G?del,Escher,andBacharedeeplyintertwinedinthisveryshortDialogue.
ChapterVIII:TypographicalNumberTheory.AnextensionofthePropositionalCalculuscalled"TNT"ispresented.InTNT,number-theoreticalreasoningcanbedonebyrigidsymbolmanipulation.Differencesbetweenformalreasoningandhumanthoughtareconsidered.
AMuOffering.ThisDialogueforeshadowsseveralnewtopicsinthebook.OstensiblyconcernedwithZenBuddhismandkoans,itisactuallyathinlyveileddiscussionoftheoremhoodandnontheoremhood,truthandfalsity,ofstringsinnumbertheory.Therearefleetingreferencestomolecularbiology-particular)theGeneticCode.ThereisnocloseaffinitytotheMusicalOffering,otherthaninthetitleandtheplayingofself-referentialgames.
ChapterIX:MumonandG?del.AnattemptismadetotalkaboutthestrangeideasofZenBuddhism.TheZenmonkMumon,whogavewellknowncommentariesonmanykoans,isacentralfigure.Inaway,Zenideasbearametaphoricalresemblancetosomecontemporaryideasinthephilosophyofmathematics.Afterthis"Zennery",G?del’sfundamentalideaofG?del-numberingisintroduced,andafirstpassthroughG?del’sTheoremismade.
PartII:EGB
Prelude...ThisDialogueattachestothenextone.TheyarebasedonpreludesandfuguesfromBach'sWell-TemperedClavier.AchillesandtheTortoisebringapresenttotheCrab,whohasaguest:theAnteater.ThepresentturnsouttobearecordingoftheW.T.C.;itisimmediatelyputon.Astheylistentoaprelude,theydiscussthestructureofpreludesandfugues,whichleadsAchillestoaskhowtohearafugue:asawhole,orasasumofparts?Thisisthedebatebetweenholismandreductionism,whichissoontakenupintheAntFugue.
ChapterX:LevelsofDescription,andComputerSystems.Variouslevelsofseeingpictures,chessboards,andcomputersystemsarediscussed.Thelastoftheseisthenexaminedindetail.Thisinvolvesdescribingmachinelanguages,assemblylanguages,compilerlanguages,operatingsystems,andsoforth.Thenthediscussionturnstocompositesystemsofothertypes,suchassportsteams,nuclei,atoms,theweather,andsoforth.Thequestionarisesastohowmanintermediatelevelsexist-orindeedwhetheranyexist.
Overview VI
…AntFugue.Animitationofamusicalfugue:eachvoiceenterswiththesamestatement.Thetheme-holismversusreductionism-isintroducedinarecursivepicturecomposedofwordscomposedofsmallerwords.etc.Thewordswhichappearonthefourlevelsofthisstrangepictureare"HOLISM","REDLCTIONIsM",and"ML".ThediscussionveersofftoafriendoftheAnteater'sAuntHillary,aconsciousantcolony.Thevariouslevelsofherthoughtprocessesarethetopicofdiscussion.ManyfugaltricksareensconcedintheDialogue.Asahinttothereader,referencesaremadetoparalleltricksoccurringinthefugueontherecordtowhichthefoursomeislistening.AttheendoftheAntFugue,themesfromthePreludereturn.transformedconsiderably.
ChapterXI:BrainsandThoughts."HowcanthoughtshesupportedbythehardwareofthebrainisthetopicoftheChapter.Anoverviewofthelargescaleandsmall-scalestructureofthebrainisfirstgiven.Thentherelationbetweenconceptsandneuralactivityisspeculativelydiscussedinsomedetail.
EnglishFrenchGermanSuite.AninterludeconsistingofLewisCarroll'snonsensepoem"Jabberwocky`'togetherwithtwotranslations:oneintoFrenchandoneintoGerman,bothdonelastcentury.
ChapterXII:MindsandThoughts.Theprecedingpoemsbringupinaforcefulwaythequestionofwhetherlanguages,orindeedminds,canbe"mapped"ontoeachother.Howiscommunicationpossiblebetweentwoseparatephysicalbrains:Whatdoallhumanbrainshaveincommon?Ageographicalanalogyisusedtosuggestananswer.Thequestionarises,"Canabrainbeunderstood,insomeobjectivesense,byanoutsider?"
AriawithDiverseVariations.ADialoguewhoseformisbasedonBach'sGoldbergVariations,andwhosecontentisrelatedtonumber-theoreticalproblemssuchastheGoldbachconjecture.Thishybridhasasitsmainpurposetoshowhownumbertheory'ssubtletystemsfromthefactthattherearemanydiversevariationsonthethemeofsearchingthroughaninfinitespace.Someofthemleadtoinfinitesearches,someofthemleadtofinitesearches,whilesomeothershoverinbetween.
ChapterXIII:BlooPandFlooPandGlooP.Thesearethenamesofthreecomputerlanguages.BlooPprogramscancarryoutonlypredictablyfinitesearches,whileFlooPprogramscancarryoutunpredictableoreveninfinitesearches.ThepurposeofthisChapteristogiveanintuitionforthenotionsofprimitiverecursiveandgeneralrecursivefunctionsinnumbertheory,fortheyareessentialinG?del’sproof.
AironG'sString.ADialogueinwhichG?del’sself-referentialconstructionismirroredinwords.
TheideaisduetoW.V.O.Quine.ThisDialogueservesasaprototypeforthenextChapter.
ChapterXIV:OnFormallyUndecidablePropositionsofTNTandRelatedSystems.ThisChapter'stitleisanadaptationofthetitleofG?del’s1931article,inwhichhisIncompletenessTheoremwasfirstpublished.ThetwomajorpartsofG?del’sproofaregonethroughcarefully.ItisshownhowtheassumptionofconsistencyofTNTforcesonetoconcludethatTNT(oranysimilarsystem)isincomplete.RelationstoEuclideanandnon-Euclideangeometryarediscussed.Implicationsforthephilosophyofmathematicsaregoneintowithsomecare.
Overview VII
BirthdayCantatatata...InwhichAchillescannotconvincethewilyandskepticalTortoisethattodayishis(Achilles')birthday.HisrepeatedbutunsuccessfultriestodosoforeshadowtherepeatabilityoftheG?delargument.
ChapterXV:JumpingoutoftheSystem.TherepeatabilityofG?del’sargumentisshown,withtheimplicationthatTNTisnotonlyincomplete,but"essentiallyincompleteThefairlynotoriousargumentbyJ.R.Lucas,totheeffectthatG?del’sTheoremdemonstratesthathumanthoughtcannotinanysensebe"mechanical",isanalyzedandfoundtobewanting.
EdifyingThoughtsofaTobaccoSmoker.ADialoguetreatingofmanytopics,withthethrustbeingproblemsconnectedwithself-replicationandself-reference.Televisioncamerasfilmingtelevisionscreens,andvirusesandothersubcellularentitieswhichassemblethemselves,areamongtheexamplesused.ThetitlecomesfromapoembyJ.S.Bachhimself,whichentersinapeculiarway.
ChapterXVI:Self-RefandSelf-Rep.ThisChapterisabouttheconnectionbetweenself-referenceinitsvariousguises,andself-reproducingentitiese.g.,computerprogramsorDNAmolecules).Therelationsbetweenaself-reproducingentityandthemechanismsexternaltoitwhichaiditinreproducingitself(e.g.,acomputerorproteins)arediscussed-particularlythefuzzinessofthedistinction.HowinformationtravelsbetweenvariouslevelsofsuchsystemsisthecentraltopicofthisChapter.
TheMagnificrab,Indeed.ThetitleisapunonBach'sMagnifacatinD.ThetaleisabouttheCrab,whogivestheappearanceofhavingamagicalpowerofdistinguishingbetweentrueandfalsestatementsofnumbertheorybyreadingthemasmusicalpieces,playingthemonhisflute,anddeterminingwhethertheyare"beautiful"ornot.
ChapterXVII:Church,Turing,Tarski,andOthers.ThefictionalCraboftheprecedingDialogueisreplacedbyvariousrealpeoplewithamazingmathematicalabilities.TheChurch-TuringThesis,whichrelatesmentalactivitytocomputation,ispresentedinseveralversionsofdifferingstrengths.Allareanalyzed,particularlyintermsoftheirimplicationsforsimulatinghumanthoughtmechanically,orprogrammingintoamachineanabilitytosenseorcreatebeauty.Theconnectionbetweenbrainactivityandcomputationbringsupsomeothertopics:thehaltingproblemofTuring,andTarski'sTruthTheorem.
SHRDLU,ToyofMan'sDesigning.ThisDialogueisliftedoutofanarticlebyTerryWinogradonhisprogramSHRDLU:onlyafewnameshavebeenchanged.Init.aprogramcommunicateswithapersonabouttheso-called"blocksworld"inratherimpressiveEnglish.Thecomputerprogramappearstoexhibitsomerealunderstanding-initslimitedworld.TheDialogue'stitleisbasedonJesu,joyofMansDesiring,onemovementofBach'sCantata147.
ChapterXVIII:ArtificialIntelligence:Retrospects,ThisChapteropenswithadiscussionofthefamous"Turingtest"-aproposalbythecomputerpioneerAlanTuringforawaytodetectthepresenceorabsenceof"thought"inamachine.Fromthere,wegoontoanabridgedhistoryofArtificialIntelligence.Thiscoversprogramsthatcan-tosomedegree-playgames,provetheorems,solveproblems,composemusic,domathematics,anduse"naturallanguage"(e.g.,English).
Overview VIII
Contrafactus.Abouthowweunconsciouslyorganizeourthoughtssothatwecanimaginehypotheticalvariantsontherealworldallthetime.Alsoaboutaberrantvariantsofthisability-suchaspossessedbythenewcharacter,theSloth,anavidloverofFrenchfries,andrabidhaterofcounterfactuals.
ChapterXIX:ArtificialIntelligence:Prospects.TheprecedingDialoguetriggersadiscussionofhowknowledgeisrepresentedinlayersofcontexts.ThisleadstothemodernAlideaof"frames".Aframe-likewayofhandlingasetofvisualpatternpuzzlesispresented,forthepurposeofconcreteness.Thenthedeepissueoftheinteractionofconceptsingeneralisdiscussed,whichleadsintosomespeculationsoncreativity.TheChapterconcludeswithasetofpersonal"QuestionsandSpeculations"onAlandmindsingeneral.
SlothCanon.AcanonwhichimitatesaBachcanoninwhichonevoiceplaysthesamemelodyasanother,onlyupsidedownandtwiceasslowly,whileathirdvoiceisfree.Here,theSlothuttersthesamelinesastheTortoisedoes,onlynegated(inaliberalsenseoftheterm)andtwiceasslowly,whileAchillesisfree.
ChapterXX:StrangeLoops,OrTangledHierarchies.Agrandwindupofmanyoftheideasabouthierarchicalsystemsandself-reference.Itisconcernedwiththesnarlswhicharisewhensystemsturnbackonthemselves-forexample,scienceprobingscience,governmentinvestigatinggovernmentalwrongdoing,artviolatingtherulesofart,andfinally,humansthinkingabouttheirownbrainsandminds.DoesG?del’sTheoremhaveanythingtosayaboutthislast"snarl"?ArefreewillandthesensationofconsciousnessconnectedtoG?del’sTheorem?TheChapterendsbytyingG?del,Escher,andBachtogetheronceagain.
Six-PartRicercar.ThisDialogueisanexuberantgameplayedwithmanyoftheideaswhichhavepermeatedthebook.ItisareenactmentofthestoryoftheMusicalOffering,whichbeganthebook;itissimultaneouslya"translation"intowordsofthemostcomplexpieceintheMusicalOffering:theSix-PartRicercar.ThisdualityimbuestheDialoguewithmorelevelsofmeaningthananyotherinthebook.FredericktheGreatisreplacedbytheCrab,pianosbycomputers,andsoon.Manysurprisesarise.TheDialogue'scontentconcernsproblemsofmind,consciousness,freewill,ArtificialIntelligence,theTuringtest,andsoforth,whichhavebeenintroducedearlier.Itconcludeswithanimplicitreferencetothebeginningofthebook,thusmakingthebookintoonebigself-referentialloop,symbolizingatonceBach'smusic,Escher'sdrawings,andG?del’sTheorem.
Overview IX
FIGURE1.JohannSebastianBach,in1748.FromapaintingbyEliasGottliebHanssmann.
Introduction:AMusico-LogicalOffering
10
Introduction:
AMusico-LogicalOffering
Author:
FREDERICKTHEGREAT,KingofPrussia,cametopowerin1740.Althoughheisrememberedinhistorybooksmostlyforhismilitaryastuteness,hewasalsodevotedtothelifeofthemindandthespirit.HiscourtinPotsdamwasoneofthegreatcentersofintellectualactivityinEuropeintheeighteenthcentury.ThecelebratedmathematicianLeonhardEulerspenttwenty-fiveyearsthere.Manyothermathematiciansandscientistscame,aswellasphilosophers-includingVoltaireandLaMettrie,whowrotesomeoftheirmostinfluentialworkswhilethere.
ButmusicwasFrederick'sreallove.Hewasanavidflutistandcomposer.Someofhiscompositionsareoccasionallyperformedeventothisday.Frederickwasoneofthefirstpatronsoftheartstorecognizethevirtuesofthenewlydeveloped"piano-forte"("soft-loud").Thepianohadbeendevelopedinthefirsthalfoftheeighteenthcenturyasamodificationoftheharpsichord.Theproblemwiththeharpsichordwasthatpiecescouldonlybeplayedataratheruniformloudness-therewasnowaytostrikeonenotemoreloudlythanitsneighbors.The"soft-loud",asitsnameimplies,providedaremedytothisproblem.FromItaly,whereBartolommeoCristoforihadmadethefirstone,thesoft-loudideahadspreadwidely.GottfriedSilbermann,theforemostGermanorganbuilderoftheday,wasendeavoringtomakea"perfect"piano-forte.UndoubtedlyKingFrederickwasthegreatestsupporterofhisefforts-itissaidthattheKingownedasmanyasfifteenSilbermannpianos!
Bach
Frederickwasanadmirernotonlyofpianos,butalsoofanorganistandcomposerbythenameofJ.S.Bach.ThisBach'scompositionsweresomewhatnotorious.Somecalledthem"turgidandconfused",whileothersclaimedtheywereincomparablemasterpieces.ButnoonedisputedBach'sabilitytoimproviseontheorgan.Inthosedays,beinganorganistnotonlymeantbeingabletoplay,butalsotoextemporize,andBachwasknownfarandwideforhisremarkableextemporizations.(ForsomedelightfulanecdotesaboutBach'sextemporization,seeTheBachReader,byH.T.DavidandA.Mendel.)
In1747,Bachwassixty-two,andhisfame,aswellasoneofhissons,hadreachedPotsdam:infact,CarlPhilippEmanuelBachwastheCapellmeister(choirmaster)atthecourtofKingFrederick.ForyearstheKinghadletitbeknown,throughgentlehintstoPhilippEmanuel,how
Introduction:AMusico-LogicalOffering 11
pleasedhewouldbetohavetheelderBachcomeandpayhimavisit;butthiswishhadneverbeenrealized.FrederickwasparticularlyeagerforBachtotryouthisnewSilbermannpianos,whichlie(Frederick)correctlyforesawasthegreatnewwaveinmusic.
ItwasFrederick'scustomtohaveeveningconcertsofchambermusicinhiscourt.OftenhehimselfwouldbethesoloistinaconcertoforfluteHerewehavereproducedapaintingofsuchaneveningbytheGermanpainterAdolphvonMenzel,who,inthe1800's,madeaseriesofpaintingsillustratingthelifeofFredericktheGreat.AtthecembaloisC.P.E.Bach,andthefigurefurthesttotherightisJoachimQuantz,theKing'sflutemaster-andtheonlypersonallowedtofindfaultwiththeKing'sfluteplaying.OneMayeveningin1747,anunexpectedguestshowedup.JohannNikolausForkel,oneofBach'searliestbiographers,tellsthestoryasfollows:
Oneevening,justasliewasgettinghisfluteready,andhismusiciansweressembled,anofficerbroughthimalistofthestrangerswhohadarrived.Withhisfluteinhishandheraneverthelist,butimmediatelyturnedtotheassembledmusicians,andsaid,withakindofagitation,"Gentlemen,oldBachiscome."TheHutewasnowlaidaside,andoldBach,whohadalightedathisson'slodgings,wasimmediatelysummonedtothePalace.WilhelmFriedemann,whoaccompaniedhisfather,toldmethisstory,andImustsaythat1stillthinkwithpleasureonthemannerinwhichlierelatedit.Atthattimeitwasthefashiontomakeratherprolixcompliments.ThefirstappearanceofJ.S.BachbeforesegreataKing,whodidnotevengivehimtimetochangehistravelingdressforablackchanter'sgown,mustnecessarilybeattendedwithmanyapologies.Iwillnetheredwellentheseapologies,butmerelyobserve,thatinWilhelmFriedemann'smouththeymadeaformalDialoguebetweentheKingandtheApologist.
ButwhatismereimportantthanthisisthattheKinggaveuphisConcertforthisevening,andinvitedBach,thenalreadycalledtheOldBach,totryhisfortepianos,madebySilbermann,whichsteedinseveralroomsofthepalace.[Forkelhereinsertsthisfootnote:"ThepianofortesmanufacturedbySilbermann,ofFrevberg,pleasedtheKingsemuch,thatheresolvedtobuythemallup.Hecollectedfifteen.IhearthattheyallnowstandunfitforuseinvariouscornersoftheRoyalPalace."]Themusicianswentwithhimfromroomtoroom,andBachwasinvitedeverywheretotrythemandtoplayunpremeditatedcompositions.Afterhehadgeneenforsometime,heaskedtheKingtogivehimasubjectforaFugue,inordertoexecuteitimmediatelywithoutanypreparation.TheKingadmiredthelearnedmannerinwhichhissubjectwasthusexecutedextempore:and,probablytoseehewfarsucharttcouldbecarried,expressedawishtohearaFuguewithsixObligatoparts.Butasitisnoteverysubjectthatisfitforsuchfullharmony,Bachchoseonehimself,andimmediatelyexecutedittotheastonishmentofallpresentinthesamemagnificentandlearnedmannerashehaddonethatoftheKing.HisMajestydesiredalsotohearhisperformanceentheorgan.ThenextdaythereforeBachwastakentoalltheorgansinPotsdam,asliehadbeforebeentoSilbermann'sfortepianos.AfterhisreturntoLeipzig,hecomposedthesubject,whichhehadreceivedfromtheKing,inthreeandsixparts.addedseveralartificialpassagesinstrictcanontoit,andhaditengraved,underthetitleof"MusikalischesOpfer"[MusicalOffering],anddedicatedittotheInventor.'
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- TMO Group:東南亞食品飲料電商行業(yè)市場洞察報告(2024年9月版)
- 2024屆陜西省寶雞市下學期高三數(shù)學試題第七次月考考試試卷
- DB11∕512-2017 建筑裝飾工程石材應用技術規(guī)程
- 河南省鄭州市金水區(qū)第十一初級中學2023-2024學年八年級上學期期中數(shù)學試題(含答案)
- 5年中考3年模擬試卷初中生物八年級下冊專項素養(yǎng)綜合全練(四)
- 內蒙古部分地區(qū)2023-2024學年高二10月月考語文試題匯編文學類文本閱讀
- 高考給考生一句簡單的話范例
- 肺炎課件教學課件
- 小學一年級下冊音樂教案
- 小學2024-2025年度工作計劃
- 國家自然科學基金申請經(jīng)驗匯總課件
- 【教案】第14課 人性的崛起-文藝復興美術 教案-高中美術人教版(2019)美術鑒賞
- 社會實踐鑒定表
- 英文推薦信范文及翻譯(精選十三篇)
- 2022版義務教育(化學)課程標準(含2022年修訂部分)
- 2022-2023學年浙科版(2019)選擇必修三 4.1基因工程賦予生物新的遺傳特性第一課時 課件(26張)
- 消毒記錄表(簡單模板)
- 東北抗聯(lián)精神很實用-學習東北抗聯(lián)精神共24張課件
- 老舊小區(qū)改造施工組織詳細
- 東北林大保護生物學教案
- 三位數(shù)乘兩位數(shù)的口算和估算課件
評論
0/150
提交評論