GEBenGodel Escher Bach-永恒的金色辮子an Eternal Golden Braid_第1頁
GEBenGodel Escher Bach-永恒的金色辮子an Eternal Golden Braid_第2頁
GEBenGodel Escher Bach-永恒的金色辮子an Eternal Golden Braid_第3頁
GEBenGodel Escher Bach-永恒的金色辮子an Eternal Golden Braid_第4頁
GEBenGodel Escher Bach-永恒的金色辮子an Eternal Golden Braid_第5頁
已閱讀5頁,還剩794頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

Contents

Overview

viii

ListofIllustrations

xiv

WordsofThanks

xix

PartI:GEB

Introduction:AMusico-LogicalOffering

3

Three-PartInvention

29

ChapterI:TheMU-puzzle

33

Two-PartInvention

43

ChapterII:MeaningandForminMathematics

46

SonataforUnaccompaniedAchilles

61

ChapterIII:FigureandGround

64

Contracrostipunctus

75

ChapterIV:Consistency,Completeness,andGeometry

82

LittleHarmonicLabyrinth

103

ChapterV:RecursiveStructuresandProcesses

127

CanonbyIntervallicAugmentation

153

ChapterVI:TheLocationofMeaning

158

ChromaticFantasy,AndFeud

177

ChapterVII:ThePropositionalCalculus

181

CrabCanon

199

ChapterVIII:TypographicalNumberTheory

204

AMuOffering

231

ChapterIX:MumonandG?del

246

Contents II

PartIIEGB

Prelude...

275

ChapterX:LevelsofDescription,andComputerSystems

285

AntFugue

311

ChapterXI:BrainsandThoughts

337

EnglishFrenchGermanSuit

366

ChapterXII:MindsandThoughts

369

AriawithDiverseVariations

391

ChapterXIII:BlooPandFlooPandGlooP

406

AironG'sString

431

ChapterXIV:OnFormallyUndecidablePropositionsofTNT

andRelatedSystems

438

BirthdayCantatatata...

461

ChapterXV:JumpingoutoftheSystem

465

EdifyingThoughtsofaTobaccoSmoker

480

ChapterXVI:Self-RefandSelf-Rep

495

TheMagnfierab,Indeed

549

ChapterXVII:Church,Turing,Tarski,andOthers

559

SHRDLU,ToyofMan'sDesigning

586

ChapterXVIII:ArtificialIntelligence:Retrospects

594

Contrafactus

633

ChapterXIX:ArtificialIntelligence:Prospects

641

SlothCanon

681

ChapterXX:StrangeLoops,OrTangledHierarchies

684

Six-PartRicercar

720

Notes

743

Bibliography

746

Credits

757

Index

759

Contents III

Overview

PartI:GEB

Introduction:AMusico-LogicalOffering.ThebookopenswiththestoryofBach'sMusicalOffering.BachmadeanimpromptuvisittoKingFredericktheGreatofPrussia,andwasrequestedtoimproviseuponathemepresentedbytheKing.Hisimprovisationsformedthebasisofthatgreatwork.TheMusicalOfferinganditsstoryformathemeuponwhichI"improvise"throughoutthebook,thusmakingasortof"MetamusicalOffering".Self-referenceandtheinterplaybetweendifferentlevelsinBacharediscussed:thisleadstoadiscussionofparallelideasinEscher'sdrawingsandthenG?del’sTheorem.AbriefpresentationofthehistoryoflogicandparadoxesisgivenasbackgroundforG?del’sTheorem.Thisleadstomechanicalreasoningandcomputers,andthedebateaboutwhetherArtificialIntelligenceispossible.Iclosewithanexplanationoftheoriginsofthebook-particularlythewhyandwhereforeoftheDialogues.

Three-PartInvention.Bachwrotefifteenthree-partinventions.Inthisthree-partDialogue,theTortoiseandAchilles-themainfictionalprotagonistsintheDialogues-are"invented"byZeno(asinfacttheywere,toillustrateZeno'sparadoxesofmotion).Veryshort,itsimplygivestheflavoroftheDialoguestocome.

ChapterI:TheMU-puzzle.Asimpleformalsystem(theMIL'-system)ispresented,andthereaderisurgedtoworkoutapuzzletogainfamiliaritywithformalsystemsingeneral.Anumberoffundamentalnotionsareintroduced:string,theorem,axiom,ruleofinference,derivation,formalsystem,decisionprocedure,workinginside/outsidethesystem.

Two-PartInvention.Bachalsowrotefifteentwo-partinventions.Thistwo-partDialoguewaswrittennotbyme,butbyLewisCarrollin1895.CarrollborrowedAchillesandtheTortoisefromZeno,andIinturnborrowedthemfromCarroll.Thetopicistherelationbetweenreasoning,reasoningaboutreasoning,reasoningaboutreasoningaboutreasoning,andsoon.Itparallels,inaway,Zeno'sparadoxesabouttheimpossibilityofmotion,seemingtoshow,byusinginfiniteregress,thatreasoningisimpossible.Itisabeautifulparadox,andisreferredtoseveraltimeslaterinthebook.

ChapterII:MeaningandForminMathematics.Anewformalsystem(thepq-system)ispresented,evensimplerthantheMIU-systemofChapterI.Apparentlymeaninglessatfirst,itssymbolsaresuddenlyrevealedtopossessmeaningbyvirtueoftheformofthetheoremstheyappearin.Thisrevelationisthefirstimportantinsightintomeaning:itsdeepconnectiontoisomorphism.Variousissuesrelatedtomeaningarethendiscussed,suchastruth,proof,symbolmanipulation,andtheelusiveconcept,"form".

SonataforUnaccompaniedAchilles.ADialoguewhichimitatestheBachSonatasforunaccompaniedviolin.Inparticular,Achillesistheonlyspeaker,sinceitisatranscriptofoneendofatelephonecall,atthefarendofwhichistheTortoise.Theirconversationconcernstheconceptsof"figure"and"ground"invarious

Overview IV

contexts-e.g.,Escher'sart.TheDialogueitselfformsanexampleofthedistinction,sinceAchilles'linesforma"figure",andtheTortoise'slines-implicitinAchilles'lines-forma"ground".

ChapterIII:FigureandGround.Thedistinctionbetweenfigureandgroundinartiscomparedtothedistinctionbetweentheoremsandnontheoremsinformalsystems.Thequestion"Doesafigurenecessarilycontainthesameinformationasitsground%"leadstothedistinctionbetweenrecursivelyenumerablesetsandrecursivesets.

Contracrostipunctus.ThisDialogueiscentraltothebook,foritcontainsasetofparaphrasesofG?del’sself-referentialconstructionandofhisIncompletenessTheorem.OneoftheparaphrasesoftheTheoremsays,"Foreachrecordplayerthereisarecordwhichitcannotplay."TheDialogue'stitleisacrossbetweentheword"acrostic"andtheword"contrapunctus",aLatinwordwhichBachusedtodenotethemanyfuguesandcanonsmakinguphisArtoftheFugue.SomeexplicitreferencestotheArtoftheFuguearemade.TheDialogueitselfconcealssomeacrostictricks.

ChapterIV:Consistency,Completeness,andGeometry.TheprecedingDialogueisexplicatedtotheextentitispossibleatthisstage.Thisleadsbacktothequestionofhowandwhensymbolsinaformalsystemacquiremeaning.ThehistoryofEuclideanandnon-Euclideangeometryisgiven,asanillustrationoftheelusivenotionof"undefinedterms".Thisleadstoideasabouttheconsistencyofdifferentandpossibly"rival"geometries.Throughthisdiscussionthenotionofundefinedtermsisclarified,andtherelationofundefinedtermstoperceptionandthoughtprocessesisconsidered.

LittleHarmonicLabyrinth.ThisisbasedontheBachorganpiecebythesamename.Itisaplayfulintroductiontothenotionofrecursive-i.e.,nestedstructures.Itcontainsstorieswithinstories.Theframestory,insteadoffinishingasexpected,isleftopen,sothereaderisleftdanglingwithoutresolution.Onenestedstoryconcernsmodulationinmusic-particularlyanorganpiecewhichendsinthewrongkey,leavingthelistenerdanglingwithoutresolution.

ChapterV:RecursiveStructuresandProcesses.Theideaofrecursionispresentedinmanydifferentcontexts:musicalpatterns,linguisticpatterns,geometricstructures,mathematicalfunctions,physicaltheories,computerprograms,andothers.

CanonbyIntervallicAugmentation.AchillesandtheTortoisetrytoresolvethequestion,"Whichcontainsmoreinformation-arecord,orthephonographwhichplaysitThisoddquestionariseswhentheTortoisedescribesasinglerecordwhich,whenplayedonasetofdifferentphonographs,producestwoquitedifferentmelodies:B-A-C-HandC-A-G-E.Itturnsout,however,thatthesemelodiesare"thesame",inapeculiarsense.

ChapterVI:TheLocationofMeaning.Abroaddiscussionofhowmeaningissplitamongcodedmessage,decoder,andreceiver.ExamplespresentedincludestrandsofDNA,undecipheredinscriptionsonancienttablets,andphonographrecordssailingoutinspace.Therelationshipofintelligenceto"absolute"meaningispostulated.

ChromaticFantasy,AndFeud.AshortDialoguebearinghardlyanyresemblance,exceptintitle,toBach'sChromaticFantasyandFugue.Itconcernstheproperwaytomanipulatesentencessoastopreservetruth-andinparticularthequestion

Overview V

ofwhetherthereexistrulesfortheusageoftheword"arid".ThisDialoguehasmuchincommonwiththeDialoguebyLewisCarroll.

ChapterVII:ThePropositionalCalculus.Itissuggestedhowwordssuchas.,and"canbegovernedbyformalrules.Onceagain,theideasofisomorphismandautomaticacquisitionofmeaningbysymbolsinsuchasystemarebroughtup.AlltheexamplesinthisChapter,incidentally,are"Zentences"-sentencestakenfromZenkoans.Thisispurposefullydone,somewhattongue-in-cheek,sinceZenkoansaredeliberatelyillogicalstories.

CrabCanon.ADialoguebasedonapiecebythesamenamefromtheMusicalOffering.Botharesonamedbecausecrabs(supposedly)walkbackwards.TheCrabmakeshisfirstappearanceinthisDialogue.ItisperhapsthedensestDialogueinthebookintermsofformaltrickeryandlevel-play.G?del,Escher,andBacharedeeplyintertwinedinthisveryshortDialogue.

ChapterVIII:TypographicalNumberTheory.AnextensionofthePropositionalCalculuscalled"TNT"ispresented.InTNT,number-theoreticalreasoningcanbedonebyrigidsymbolmanipulation.Differencesbetweenformalreasoningandhumanthoughtareconsidered.

AMuOffering.ThisDialogueforeshadowsseveralnewtopicsinthebook.OstensiblyconcernedwithZenBuddhismandkoans,itisactuallyathinlyveileddiscussionoftheoremhoodandnontheoremhood,truthandfalsity,ofstringsinnumbertheory.Therearefleetingreferencestomolecularbiology-particular)theGeneticCode.ThereisnocloseaffinitytotheMusicalOffering,otherthaninthetitleandtheplayingofself-referentialgames.

ChapterIX:MumonandG?del.AnattemptismadetotalkaboutthestrangeideasofZenBuddhism.TheZenmonkMumon,whogavewellknowncommentariesonmanykoans,isacentralfigure.Inaway,Zenideasbearametaphoricalresemblancetosomecontemporaryideasinthephilosophyofmathematics.Afterthis"Zennery",G?del’sfundamentalideaofG?del-numberingisintroduced,andafirstpassthroughG?del’sTheoremismade.

PartII:EGB

Prelude...ThisDialogueattachestothenextone.TheyarebasedonpreludesandfuguesfromBach'sWell-TemperedClavier.AchillesandtheTortoisebringapresenttotheCrab,whohasaguest:theAnteater.ThepresentturnsouttobearecordingoftheW.T.C.;itisimmediatelyputon.Astheylistentoaprelude,theydiscussthestructureofpreludesandfugues,whichleadsAchillestoaskhowtohearafugue:asawhole,orasasumofparts?Thisisthedebatebetweenholismandreductionism,whichissoontakenupintheAntFugue.

ChapterX:LevelsofDescription,andComputerSystems.Variouslevelsofseeingpictures,chessboards,andcomputersystemsarediscussed.Thelastoftheseisthenexaminedindetail.Thisinvolvesdescribingmachinelanguages,assemblylanguages,compilerlanguages,operatingsystems,andsoforth.Thenthediscussionturnstocompositesystemsofothertypes,suchassportsteams,nuclei,atoms,theweather,andsoforth.Thequestionarisesastohowmanintermediatelevelsexist-orindeedwhetheranyexist.

Overview VI

…AntFugue.Animitationofamusicalfugue:eachvoiceenterswiththesamestatement.Thetheme-holismversusreductionism-isintroducedinarecursivepicturecomposedofwordscomposedofsmallerwords.etc.Thewordswhichappearonthefourlevelsofthisstrangepictureare"HOLISM","REDLCTIONIsM",and"ML".ThediscussionveersofftoafriendoftheAnteater'sAuntHillary,aconsciousantcolony.Thevariouslevelsofherthoughtprocessesarethetopicofdiscussion.ManyfugaltricksareensconcedintheDialogue.Asahinttothereader,referencesaremadetoparalleltricksoccurringinthefugueontherecordtowhichthefoursomeislistening.AttheendoftheAntFugue,themesfromthePreludereturn.transformedconsiderably.

ChapterXI:BrainsandThoughts."HowcanthoughtshesupportedbythehardwareofthebrainisthetopicoftheChapter.Anoverviewofthelargescaleandsmall-scalestructureofthebrainisfirstgiven.Thentherelationbetweenconceptsandneuralactivityisspeculativelydiscussedinsomedetail.

EnglishFrenchGermanSuite.AninterludeconsistingofLewisCarroll'snonsensepoem"Jabberwocky`'togetherwithtwotranslations:oneintoFrenchandoneintoGerman,bothdonelastcentury.

ChapterXII:MindsandThoughts.Theprecedingpoemsbringupinaforcefulwaythequestionofwhetherlanguages,orindeedminds,canbe"mapped"ontoeachother.Howiscommunicationpossiblebetweentwoseparatephysicalbrains:Whatdoallhumanbrainshaveincommon?Ageographicalanalogyisusedtosuggestananswer.Thequestionarises,"Canabrainbeunderstood,insomeobjectivesense,byanoutsider?"

AriawithDiverseVariations.ADialoguewhoseformisbasedonBach'sGoldbergVariations,andwhosecontentisrelatedtonumber-theoreticalproblemssuchastheGoldbachconjecture.Thishybridhasasitsmainpurposetoshowhownumbertheory'ssubtletystemsfromthefactthattherearemanydiversevariationsonthethemeofsearchingthroughaninfinitespace.Someofthemleadtoinfinitesearches,someofthemleadtofinitesearches,whilesomeothershoverinbetween.

ChapterXIII:BlooPandFlooPandGlooP.Thesearethenamesofthreecomputerlanguages.BlooPprogramscancarryoutonlypredictablyfinitesearches,whileFlooPprogramscancarryoutunpredictableoreveninfinitesearches.ThepurposeofthisChapteristogiveanintuitionforthenotionsofprimitiverecursiveandgeneralrecursivefunctionsinnumbertheory,fortheyareessentialinG?del’sproof.

AironG'sString.ADialogueinwhichG?del’sself-referentialconstructionismirroredinwords.

TheideaisduetoW.V.O.Quine.ThisDialogueservesasaprototypeforthenextChapter.

ChapterXIV:OnFormallyUndecidablePropositionsofTNTandRelatedSystems.ThisChapter'stitleisanadaptationofthetitleofG?del’s1931article,inwhichhisIncompletenessTheoremwasfirstpublished.ThetwomajorpartsofG?del’sproofaregonethroughcarefully.ItisshownhowtheassumptionofconsistencyofTNTforcesonetoconcludethatTNT(oranysimilarsystem)isincomplete.RelationstoEuclideanandnon-Euclideangeometryarediscussed.Implicationsforthephilosophyofmathematicsaregoneintowithsomecare.

Overview VII

BirthdayCantatatata...InwhichAchillescannotconvincethewilyandskepticalTortoisethattodayishis(Achilles')birthday.HisrepeatedbutunsuccessfultriestodosoforeshadowtherepeatabilityoftheG?delargument.

ChapterXV:JumpingoutoftheSystem.TherepeatabilityofG?del’sargumentisshown,withtheimplicationthatTNTisnotonlyincomplete,but"essentiallyincompleteThefairlynotoriousargumentbyJ.R.Lucas,totheeffectthatG?del’sTheoremdemonstratesthathumanthoughtcannotinanysensebe"mechanical",isanalyzedandfoundtobewanting.

EdifyingThoughtsofaTobaccoSmoker.ADialoguetreatingofmanytopics,withthethrustbeingproblemsconnectedwithself-replicationandself-reference.Televisioncamerasfilmingtelevisionscreens,andvirusesandothersubcellularentitieswhichassemblethemselves,areamongtheexamplesused.ThetitlecomesfromapoembyJ.S.Bachhimself,whichentersinapeculiarway.

ChapterXVI:Self-RefandSelf-Rep.ThisChapterisabouttheconnectionbetweenself-referenceinitsvariousguises,andself-reproducingentitiese.g.,computerprogramsorDNAmolecules).Therelationsbetweenaself-reproducingentityandthemechanismsexternaltoitwhichaiditinreproducingitself(e.g.,acomputerorproteins)arediscussed-particularlythefuzzinessofthedistinction.HowinformationtravelsbetweenvariouslevelsofsuchsystemsisthecentraltopicofthisChapter.

TheMagnificrab,Indeed.ThetitleisapunonBach'sMagnifacatinD.ThetaleisabouttheCrab,whogivestheappearanceofhavingamagicalpowerofdistinguishingbetweentrueandfalsestatementsofnumbertheorybyreadingthemasmusicalpieces,playingthemonhisflute,anddeterminingwhethertheyare"beautiful"ornot.

ChapterXVII:Church,Turing,Tarski,andOthers.ThefictionalCraboftheprecedingDialogueisreplacedbyvariousrealpeoplewithamazingmathematicalabilities.TheChurch-TuringThesis,whichrelatesmentalactivitytocomputation,ispresentedinseveralversionsofdifferingstrengths.Allareanalyzed,particularlyintermsoftheirimplicationsforsimulatinghumanthoughtmechanically,orprogrammingintoamachineanabilitytosenseorcreatebeauty.Theconnectionbetweenbrainactivityandcomputationbringsupsomeothertopics:thehaltingproblemofTuring,andTarski'sTruthTheorem.

SHRDLU,ToyofMan'sDesigning.ThisDialogueisliftedoutofanarticlebyTerryWinogradonhisprogramSHRDLU:onlyafewnameshavebeenchanged.Init.aprogramcommunicateswithapersonabouttheso-called"blocksworld"inratherimpressiveEnglish.Thecomputerprogramappearstoexhibitsomerealunderstanding-initslimitedworld.TheDialogue'stitleisbasedonJesu,joyofMansDesiring,onemovementofBach'sCantata147.

ChapterXVIII:ArtificialIntelligence:Retrospects,ThisChapteropenswithadiscussionofthefamous"Turingtest"-aproposalbythecomputerpioneerAlanTuringforawaytodetectthepresenceorabsenceof"thought"inamachine.Fromthere,wegoontoanabridgedhistoryofArtificialIntelligence.Thiscoversprogramsthatcan-tosomedegree-playgames,provetheorems,solveproblems,composemusic,domathematics,anduse"naturallanguage"(e.g.,English).

Overview VIII

Contrafactus.Abouthowweunconsciouslyorganizeourthoughtssothatwecanimaginehypotheticalvariantsontherealworldallthetime.Alsoaboutaberrantvariantsofthisability-suchaspossessedbythenewcharacter,theSloth,anavidloverofFrenchfries,andrabidhaterofcounterfactuals.

ChapterXIX:ArtificialIntelligence:Prospects.TheprecedingDialoguetriggersadiscussionofhowknowledgeisrepresentedinlayersofcontexts.ThisleadstothemodernAlideaof"frames".Aframe-likewayofhandlingasetofvisualpatternpuzzlesispresented,forthepurposeofconcreteness.Thenthedeepissueoftheinteractionofconceptsingeneralisdiscussed,whichleadsintosomespeculationsoncreativity.TheChapterconcludeswithasetofpersonal"QuestionsandSpeculations"onAlandmindsingeneral.

SlothCanon.AcanonwhichimitatesaBachcanoninwhichonevoiceplaysthesamemelodyasanother,onlyupsidedownandtwiceasslowly,whileathirdvoiceisfree.Here,theSlothuttersthesamelinesastheTortoisedoes,onlynegated(inaliberalsenseoftheterm)andtwiceasslowly,whileAchillesisfree.

ChapterXX:StrangeLoops,OrTangledHierarchies.Agrandwindupofmanyoftheideasabouthierarchicalsystemsandself-reference.Itisconcernedwiththesnarlswhicharisewhensystemsturnbackonthemselves-forexample,scienceprobingscience,governmentinvestigatinggovernmentalwrongdoing,artviolatingtherulesofart,andfinally,humansthinkingabouttheirownbrainsandminds.DoesG?del’sTheoremhaveanythingtosayaboutthislast"snarl"?ArefreewillandthesensationofconsciousnessconnectedtoG?del’sTheorem?TheChapterendsbytyingG?del,Escher,andBachtogetheronceagain.

Six-PartRicercar.ThisDialogueisanexuberantgameplayedwithmanyoftheideaswhichhavepermeatedthebook.ItisareenactmentofthestoryoftheMusicalOffering,whichbeganthebook;itissimultaneouslya"translation"intowordsofthemostcomplexpieceintheMusicalOffering:theSix-PartRicercar.ThisdualityimbuestheDialoguewithmorelevelsofmeaningthananyotherinthebook.FredericktheGreatisreplacedbytheCrab,pianosbycomputers,andsoon.Manysurprisesarise.TheDialogue'scontentconcernsproblemsofmind,consciousness,freewill,ArtificialIntelligence,theTuringtest,andsoforth,whichhavebeenintroducedearlier.Itconcludeswithanimplicitreferencetothebeginningofthebook,thusmakingthebookintoonebigself-referentialloop,symbolizingatonceBach'smusic,Escher'sdrawings,andG?del’sTheorem.

Overview IX

FIGURE1.JohannSebastianBach,in1748.FromapaintingbyEliasGottliebHanssmann.

Introduction:AMusico-LogicalOffering

10

Introduction:

AMusico-LogicalOffering

Author:

FREDERICKTHEGREAT,KingofPrussia,cametopowerin1740.Althoughheisrememberedinhistorybooksmostlyforhismilitaryastuteness,hewasalsodevotedtothelifeofthemindandthespirit.HiscourtinPotsdamwasoneofthegreatcentersofintellectualactivityinEuropeintheeighteenthcentury.ThecelebratedmathematicianLeonhardEulerspenttwenty-fiveyearsthere.Manyothermathematiciansandscientistscame,aswellasphilosophers-includingVoltaireandLaMettrie,whowrotesomeoftheirmostinfluentialworkswhilethere.

ButmusicwasFrederick'sreallove.Hewasanavidflutistandcomposer.Someofhiscompositionsareoccasionallyperformedeventothisday.Frederickwasoneofthefirstpatronsoftheartstorecognizethevirtuesofthenewlydeveloped"piano-forte"("soft-loud").Thepianohadbeendevelopedinthefirsthalfoftheeighteenthcenturyasamodificationoftheharpsichord.Theproblemwiththeharpsichordwasthatpiecescouldonlybeplayedataratheruniformloudness-therewasnowaytostrikeonenotemoreloudlythanitsneighbors.The"soft-loud",asitsnameimplies,providedaremedytothisproblem.FromItaly,whereBartolommeoCristoforihadmadethefirstone,thesoft-loudideahadspreadwidely.GottfriedSilbermann,theforemostGermanorganbuilderoftheday,wasendeavoringtomakea"perfect"piano-forte.UndoubtedlyKingFrederickwasthegreatestsupporterofhisefforts-itissaidthattheKingownedasmanyasfifteenSilbermannpianos!

Bach

Frederickwasanadmirernotonlyofpianos,butalsoofanorganistandcomposerbythenameofJ.S.Bach.ThisBach'scompositionsweresomewhatnotorious.Somecalledthem"turgidandconfused",whileothersclaimedtheywereincomparablemasterpieces.ButnoonedisputedBach'sabilitytoimproviseontheorgan.Inthosedays,beinganorganistnotonlymeantbeingabletoplay,butalsotoextemporize,andBachwasknownfarandwideforhisremarkableextemporizations.(ForsomedelightfulanecdotesaboutBach'sextemporization,seeTheBachReader,byH.T.DavidandA.Mendel.)

In1747,Bachwassixty-two,andhisfame,aswellasoneofhissons,hadreachedPotsdam:infact,CarlPhilippEmanuelBachwastheCapellmeister(choirmaster)atthecourtofKingFrederick.ForyearstheKinghadletitbeknown,throughgentlehintstoPhilippEmanuel,how

Introduction:AMusico-LogicalOffering 11

pleasedhewouldbetohavetheelderBachcomeandpayhimavisit;butthiswishhadneverbeenrealized.FrederickwasparticularlyeagerforBachtotryouthisnewSilbermannpianos,whichlie(Frederick)correctlyforesawasthegreatnewwaveinmusic.

ItwasFrederick'scustomtohaveeveningconcertsofchambermusicinhiscourt.OftenhehimselfwouldbethesoloistinaconcertoforfluteHerewehavereproducedapaintingofsuchaneveningbytheGermanpainterAdolphvonMenzel,who,inthe1800's,madeaseriesofpaintingsillustratingthelifeofFredericktheGreat.AtthecembaloisC.P.E.Bach,andthefigurefurthesttotherightisJoachimQuantz,theKing'sflutemaster-andtheonlypersonallowedtofindfaultwiththeKing'sfluteplaying.OneMayeveningin1747,anunexpectedguestshowedup.JohannNikolausForkel,oneofBach'searliestbiographers,tellsthestoryasfollows:

Oneevening,justasliewasgettinghisfluteready,andhismusiciansweressembled,anofficerbroughthimalistofthestrangerswhohadarrived.Withhisfluteinhishandheraneverthelist,butimmediatelyturnedtotheassembledmusicians,andsaid,withakindofagitation,"Gentlemen,oldBachiscome."TheHutewasnowlaidaside,andoldBach,whohadalightedathisson'slodgings,wasimmediatelysummonedtothePalace.WilhelmFriedemann,whoaccompaniedhisfather,toldmethisstory,andImustsaythat1stillthinkwithpleasureonthemannerinwhichlierelatedit.Atthattimeitwasthefashiontomakeratherprolixcompliments.ThefirstappearanceofJ.S.BachbeforesegreataKing,whodidnotevengivehimtimetochangehistravelingdressforablackchanter'sgown,mustnecessarilybeattendedwithmanyapologies.Iwillnetheredwellentheseapologies,butmerelyobserve,thatinWilhelmFriedemann'smouththeymadeaformalDialoguebetweentheKingandtheApologist.

ButwhatismereimportantthanthisisthattheKinggaveuphisConcertforthisevening,andinvitedBach,thenalreadycalledtheOldBach,totryhisfortepianos,madebySilbermann,whichsteedinseveralroomsofthepalace.[Forkelhereinsertsthisfootnote:"ThepianofortesmanufacturedbySilbermann,ofFrevberg,pleasedtheKingsemuch,thatheresolvedtobuythemallup.Hecollectedfifteen.IhearthattheyallnowstandunfitforuseinvariouscornersoftheRoyalPalace."]Themusicianswentwithhimfromroomtoroom,andBachwasinvitedeverywheretotrythemandtoplayunpremeditatedcompositions.Afterhehadgeneenforsometime,heaskedtheKingtogivehimasubjectforaFugue,inordertoexecuteitimmediatelywithoutanypreparation.TheKingadmiredthelearnedmannerinwhichhissubjectwasthusexecutedextempore:and,probablytoseehewfarsucharttcouldbecarried,expressedawishtohearaFuguewithsixObligatoparts.Butasitisnoteverysubjectthatisfitforsuchfullharmony,Bachchoseonehimself,andimmediatelyexecutedittotheastonishmentofallpresentinthesamemagnificentandlearnedmannerashehaddonethatoftheKing.HisMajestydesiredalsotohearhisperformanceentheorgan.ThenextdaythereforeBachwastakentoalltheorgansinPotsdam,asliehadbeforebeentoSilbermann'sfortepianos.AfterhisreturntoLeipzig,hecomposedthesubject,whichhehadreceivedfromtheKing,inthreeandsixparts.addedseveralartificialpassagesinstrictcanontoit,andhaditengraved,underthetitleof"MusikalischesOpfer"[MusicalOffering],anddedicatedittotheInventor.'

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論