




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Word版本,下載可自由編輯初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)最全
初中數(shù)學(xué)的學(xué)問點(diǎn)總結(jié)
有理數(shù)的加法運(yùn)算
同號(hào)兩數(shù)來相加,肯定值加不變號(hào)。
異號(hào)相加大減小,大數(shù)打算和符號(hào)。
互為相反數(shù)求和,結(jié)果是零須記好。
【注】“大”減“小”是指肯定值的大小。
有理數(shù)的減法運(yùn)算
減正等于加負(fù),減負(fù)等于加正。
有理數(shù)的乘法運(yùn)算符號(hào)法則
同號(hào)得正異號(hào)負(fù),一項(xiàng)為零積是零。
合并同類項(xiàng)
說起合并同類項(xiàng),法則千萬不能忘。
只求系數(shù)代數(shù)和,字母指數(shù)留原樣。
去、添括號(hào)法則
去括號(hào)或添括號(hào),關(guān)鍵要看銜接號(hào)。
擴(kuò)號(hào)前面是正號(hào),去添括號(hào)不變號(hào)。
括號(hào)前面是負(fù)號(hào),去添括號(hào)都變號(hào)。
解方程
已知未知鬧分別,分別要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。
積化和差變兩項(xiàng),徹低平方不是它。
徹低平方公式
二數(shù)和或差平方,綻開式它共三項(xiàng)。
首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結(jié),先減后加差平方。
徹低平方公式
首平方又末平方,二倍首末在。
和的平方加再加,先減后加差平方。
解一元一次方程
先去分母再括號(hào),移項(xiàng)變號(hào)要記牢。
同類各項(xiàng)去合并,系數(shù)化“1”還沒好。
求得未知須檢驗(yàn),回代值等才算了。
解一元一次方程
先去分母再括號(hào),移項(xiàng)合并同類項(xiàng)。
系數(shù)化1還沒好,精確?????無誤不白忙。
因式分解與乘法
和差化積是乘法,乘法本身是運(yùn)算。
積化和差是分解,因式分解非運(yùn)算。
因式分解
兩式平方符號(hào)異,因式分解你別怕。
兩底和乘兩底差,分解結(jié)果就是它。
兩式平方符號(hào)同,底積2倍坐。
因式分解能與否,符號(hào)上面有(文章)。
同和異差先平方,還要加上正負(fù)號(hào)。
同正則正負(fù)就負(fù),異則需添冪符號(hào)。
因式分解
一提二套三分組,十字相乘也上數(shù)。
四種(辦法)都不可,拆項(xiàng)添項(xiàng)去重組。
重組絕望試求根,換元或者算余數(shù)。
多種辦法靈便選,連乘結(jié)果是基礎(chǔ)。
同式相乘若浮現(xiàn),乘方表示要記住。
【注】一提(提公因式)二套(套公式)
因式分解
一提二套三分組,叉乘求根也上數(shù)。
五種辦法都不可,拆項(xiàng)添項(xiàng)去重組。
對(duì)癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。
二次三項(xiàng)式的因式分解
先想徹低平方式,十字相乘是第二。
兩種辦法行不通,求根分解去試試。
比和比例
兩數(shù)相除也叫比,兩比相等叫比例。
外項(xiàng)積等內(nèi)項(xiàng)積,等積可化八比例。
分離交換內(nèi)外項(xiàng),統(tǒng)統(tǒng)都要叫更比。
同時(shí)交換內(nèi)外項(xiàng),便要稱其為反比。
前后項(xiàng)和比后項(xiàng),比值不變叫合比。
前后項(xiàng)差比后項(xiàng),組成比例是分比。
兩項(xiàng)和比兩項(xiàng)差,比值相等合分比。
前項(xiàng)和比后項(xiàng)和,比值不變叫等比。
解比例
外項(xiàng)積等內(nèi)項(xiàng)積,列出方程并解之。
求比值
由已知去求比值,多種途徑可通過。
活用比例七性質(zhì),變量替換也走紅。
消元也是好方法,殊途同歸會(huì)變通。
正比例與反比例
約定變量成正比,積定變量成反比。
正比例與反比例
變化過程商一定,兩個(gè)變量成正比。
變化過程積一定,兩個(gè)變量成反比。
推斷四數(shù)成比例
四數(shù)是否成比例,遞增遞減先排序。
兩端積等中間積,四數(shù)一定成比例。
推斷四式成比例
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項(xiàng)
成比例的四項(xiàng)中,外項(xiàng)相同會(huì)碰到。
有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)少不了。
比例中項(xiàng)很重要,多種場(chǎng)合會(huì)遇到。
成比例的四項(xiàng)中,外項(xiàng)相同有不少。
有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)浮現(xiàn)了。
同數(shù)平方等異積,比例中項(xiàng)無處逃。
根式與無理式
表示方根代數(shù)式,都可稱其為根式。
根式異于無理式,被開方式無限制。
被開方式有字母,才干稱為無理式。
無理式都是根式,區(qū)別它們有標(biāo)志。
被開方式有字母,又可稱為無理式。
求定義域
求定義域有考究,四項(xiàng)原則須留意。
負(fù)數(shù)不能開平方,分母為零無意義。
指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次冪。
限制條件不唯一,滿足多個(gè)不等式。
求定義域要過關(guān),四項(xiàng)原則須注重。
負(fù)數(shù)不能開平方,分母為零無意義。
分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。
限制條件不唯一,不等式組求解集。
解一元一次不等式
先去分母再括號(hào),移項(xiàng)合并同類項(xiàng)。
系數(shù)化“1”有考究,同乘除負(fù)要變向。
先去分母再括號(hào),移項(xiàng)別忘要變號(hào)。
同類各項(xiàng)去合并,系數(shù)化“1”注重了。
同乘除正無防礙,同乘除負(fù)也變號(hào)。
解一元一次不等式組
大于頭來小于尾,大小不一中間找。
大大小小沒有解,四種狀況全來了。
同向取兩邊,異向取中間。
中間無元素,無解便浮現(xiàn)。
幼兒園小鬼當(dāng)家,(同小相對(duì)取較小)
敬老院以老為榮,(同大就要取較大)
軍營(yíng)里沒老沒少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成普通式,構(gòu)造函數(shù)其次站。
判別式值若非負(fù),曲線橫軸有交點(diǎn)。
a正開口它向上,大于零則取兩邊。
代數(shù)式若小于零,解集交點(diǎn)數(shù)之間。
方程若無實(shí)數(shù)根,口上大零解為全。
小于零將沒有解,開口向下正相反。
用平方差公式因式分解
異號(hào)兩個(gè)平方項(xiàng),因式分解有方法。
兩底和乘兩底差,分解結(jié)果就是它。
用盡全平方公式因式分解
兩平方項(xiàng)在兩端,底積2倍在中部。
同正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,方正倍積要為負(fù)。
兩邊為負(fù)中間正,底差平方相反數(shù)。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,兩端為正倍積負(fù)。
兩邊若負(fù)中間正,底差平方相反數(shù)。
用公式法解一元二次方程
要用公式解方程,首先化成普通式。
調(diào)節(jié)系數(shù)隨其后,使其成為最簡(jiǎn)比。
確定參數(shù)abc,計(jì)算方程判別式。
判別式值與零比,有無實(shí)根便得知。
有實(shí)根可套公式,沒有實(shí)根要告之。
用常規(guī)配辦法解一元二次方程
左未右已先分別,二系化“1”是第二。
一系折半再平方,兩邊同加沒問題。
左邊分解右合并,直接開方去解題。
該種解法叫配方,解方程時(shí)多練習(xí)。
用間接配辦法解一元二次方程
已知未知先分別,因式分解是第二。
調(diào)節(jié)系數(shù)等互反,和差積套恒等式。
徹低平方等常數(shù),間接配方顯優(yōu)勢(shì)
【注】恒等式
解一元二次方程
方程沒有一次項(xiàng),直接開方最抱負(fù)。
假如缺少常數(shù)項(xiàng),因式分解沒商議?。
b、c相等都為零,等根是零不要忘。
b、c同時(shí)不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數(shù)的鑒別
推斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走。
一量表示另一量,有沒有。
若有再去看取值,全體實(shí)數(shù)都需要。
區(qū)別正比例函數(shù),衡量可分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實(shí)數(shù)都要有。
正比例函數(shù)的圖象與性質(zhì)
正比函數(shù)圖直線,經(jīng)過和原點(diǎn)。
K正一三負(fù)二四,變化趨勢(shì)記心間。
K正左低右邊高,同大同小向爬山。
K負(fù)左高右邊低,一大另小下山巒。
一次函數(shù)
一次函數(shù)圖直線,經(jīng)過點(diǎn)。
K正左低右邊高,越走越高向爬山。
K負(fù)左高右邊低,越來越低很顯然。
K稱斜率b截距,截距為零變正函。
反比例函數(shù)
反比函數(shù)雙曲線,經(jīng)過點(diǎn)。
K正一三負(fù)二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負(fù)左低右邊高,二四象限如爬山。
二次函數(shù)
二次方程零換y,二次函數(shù)便浮現(xiàn)。
全體實(shí)數(shù)定義域,圖像叫做拋物線。
拋物線有對(duì)稱軸,兩邊單調(diào)正相反。
A定開口及大小,線軸交點(diǎn)叫頂點(diǎn)。
頂點(diǎn)非高即最低。上低下高很惹眼。
假如要畫拋物線,平移也可去描點(diǎn),
提取配方定頂點(diǎn),兩條途徑再選擇。
列表描點(diǎn)后連線,平移邏輯記心間。
左加右減括號(hào)內(nèi),號(hào)外上加下要減。
二次方程零換y,就獲得二次函數(shù)。
圖像叫做拋物線,定義域全體實(shí)數(shù)。
A定開口及大小,開口向上是正數(shù)。
肯定值大開口小,開口向下A負(fù)數(shù)。
拋物線有對(duì)稱軸,增減特性可看圖。
線軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。
假如要畫拋物線,描點(diǎn)平移兩條路。
提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。
列表描點(diǎn)后連線,三點(diǎn)大致定全圖。
若要平移也不難,先畫基礎(chǔ)拋物線,
頂點(diǎn)移到新位置,開口大小隨基礎(chǔ)。
【注】基礎(chǔ)拋物線
直線、射線與線段
直線射線與線段,外形相像有關(guān)聯(lián)。
直線長(zhǎng)短不確定,可向兩方無限延。
射線僅有一端點(diǎn),反向延伸成直線。
線段定長(zhǎng)兩端點(diǎn),雙向延長(zhǎng)變直線。
兩點(diǎn)定線是個(gè)性,組成圖形最常見。
角
一點(diǎn)動(dòng)身兩射線,組成圖形叫做角。
共線反向是平角,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
直平之間是鈍角,平周之間叫優(yōu)角。
互余兩角和直角,和是平角互補(bǔ)角。
一點(diǎn)動(dòng)身兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
鈍角界于直平間,平周之間叫優(yōu)角。
和為直角叫互余,互為補(bǔ)角和平角。
證等積或比例線段
等積或比例線段,多種途徑能夠證。
證等積要改等比,對(duì)比圖形看特點(diǎn)。
共點(diǎn)共線線相交,平行截比把題證。
三點(diǎn)定型非常像,主意來把相像證。
圖形顯然不相像,等線段比替換證。
換后結(jié)論能成立,本來命題即得證。
實(shí)在不可用面積,射影角分線也成。
只要學(xué)習(xí)肯登攀,手腦并用無不勝。
解無理方程
一無一有各一邊,兩無也要放兩邊。
乘方根號(hào)無蹤跡,方程可解無負(fù)擔(dān)。
兩無一有相對(duì)難,兩次乘方也好辦。
特別狀況去換元,得解驗(yàn)根是必定。
解分式方程
先約后乘公分母,整式方程轉(zhuǎn)化出。
特別狀況可換元,去掉分母是出路。
求得解后要驗(yàn)根,原留增舍別模糊。
列方程解應(yīng)用題
列方程解應(yīng)用題,審設(shè)列解雙檢答。
審題弄清已未知,設(shè)元直間兩方法。
列表畫圖造方程,解方程時(shí)守章法。
檢驗(yàn)準(zhǔn)且合題意,問求同一才作答。
添加輔助線
學(xué)習(xí)幾何體味深,成敗大概一線牽。
簇?fù)項(xiàng)l件要集中,常要添加輔助線。
畏懼心理不要有,第二要把觀念變。
熟能生巧有邏輯,真知灼見靠實(shí)踐。
圖中已知有中線,倍長(zhǎng)中線把線連。
旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。
多條中線連中點(diǎn),便可獲得中位線。
倘若知角平分線,既可兩邊作垂線。
也可沿線去翻折,全等圖形立展現(xiàn)。
角分線若加垂線,等腰三角形可見。
角分線加平行線,等線段角位置變。
已知線段中垂線,銜接兩端等線段。
輔助線必畫虛線,便與原圖聯(lián)系看。
兩點(diǎn)間距離公式
同軸兩點(diǎn)求距離,大減小數(shù)就為之。
與軸等距兩個(gè)點(diǎn),間距求法亦如此。
平面隨意兩個(gè)點(diǎn),橫縱標(biāo)差先求值。
差方相加開平方,距離公式要銘記。
矩形的判定
隨意一個(gè)四邊形,三個(gè)直角成矩形;
對(duì)角線等互平分,四邊形它是矩形。
已知平行四邊形,一個(gè)直角叫矩形;
兩對(duì)角線若相等,理所固然為矩形。
菱形的判定
隨意一個(gè)四邊形,四邊相等成菱形;
四邊形的對(duì)角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;
兩對(duì)角線若垂直,順理成章為菱形。
初中數(shù)學(xué)必考學(xué)問點(diǎn)歸納
1、不在同向來線上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5、圓的內(nèi)部能夠看作是圓心的距離小于半徑的點(diǎn)的集合
6、圓的外部能夠看作是圓心的距離大于半徑的點(diǎn)的集合
7、同圓或等圓的半徑相等
8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10、推論在同圓或等圓中,假如兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
12、①直線L和⊙O相交d
②直線L和⊙O相切d=r
③直線L和⊙O相離dr
13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑
15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
16、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
17、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角
19、假如兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20、①兩圓外離dR+r
②兩圓外切d=R+r
③兩圓相交R-rr)
④兩圓內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dr)
初中數(shù)學(xué)學(xué)問點(diǎn)復(fù)習(xí)提綱
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 甘蔗產(chǎn)量預(yù)測(cè)模型與可視化趨勢(shì)分析
- 黑龍江鐵力市四中學(xué)2025屆七年級(jí)數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析
- 重慶十一中2025屆八上數(shù)學(xué)期末調(diào)研試題含解析
- 企業(yè)稅收優(yōu)惠政策解讀與應(yīng)用合同范本
- 學(xué)校學(xué)生自救自護(hù)的消防技能學(xué)習(xí)資料
- 《1+X網(wǎng)店運(yùn)營(yíng)推廣考證》課件
- 大數(shù)據(jù)技術(shù)及其在各領(lǐng)域的應(yīng)用研究
- 2025至2030基于細(xì)胞的分析行業(yè)產(chǎn)業(yè)運(yùn)行態(tài)勢(shì)及投資規(guī)劃深度研究報(bào)告
- 游樂場(chǎng)及動(dòng)物園的排水優(yōu)化策略
- 2025至2030滌棉行業(yè)發(fā)展趨勢(shì)分析與未來投資戰(zhàn)略咨詢研究報(bào)告
- 歷史人教部編版八年級(jí)(上冊(cè))第13課五四運(yùn)動(dòng)課件(23張)2024版新教材
- 美國(guó)技術(shù)服務(wù)合同英文翻譯
- 企業(yè)數(shù)字化生存指南
- 醫(yī)院醫(yī)療器械臨床試驗(yàn)項(xiàng)目資料備案清單
- YDT 5206-2023寬帶光纖接入工程技術(shù)規(guī)范
- 新疆警察學(xué)院面試問題及答案
- 小學(xué)三到六年級(jí)全冊(cè)單詞默寫(素材)-2023-2024學(xué)年譯林版(三起)小學(xué)英語
- 鐵嶺市高校畢業(yè)生“三支一扶”計(jì)劃招募筆試真題2022
- 天然氣泄漏事故演練方案及評(píng)估
- 《養(yǎng)老機(jī)構(gòu)認(rèn)知障礙照護(hù)專區(qū)設(shè)置與服務(wù)規(guī)范》
- 婦科炎癥健康教育課件
評(píng)論
0/150
提交評(píng)論