版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.兩條直線和,,在同一直角坐標(biāo)系中的圖象可能是()A. B.C. D.2.正四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都是1,則側(cè)棱與底面所成的角為()A.75°B.60°C.45°D.30°3.已知直線平面,直線平面,下列四個(gè)命題中正確的是().()()()()A.()與() B.()與() C.()與() D.()與()4.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說(shuō)法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對(duì)稱5.將函數(shù)(其中)的圖象向右平移個(gè)單位,若所得圖象與原圖象重合,則不可能等于()A.0 B. C. D.6.已知三棱錐O-ABC,側(cè)棱OA,OB,OC兩兩垂直,且OA=OB=OC=2,則以O(shè)為球心且1為半徑的球與三棱錐O-ABC重疊部分的體積是()A.π8 B.π6 C.π7.如圖2所示,程序框圖的輸出結(jié)果是()A.3 B.4 C.5 D.88.設(shè)的內(nèi)角所對(duì)邊的長(zhǎng)分別為,若,則角=()A. B.C. D.9.函數(shù)()的部分圖象如圖所示,若,且,則()A.1 B. C. D.10.在平面直角坐標(biāo)系xOy中,角與角均以O(shè)x為始邊,它們的終邊關(guān)于y軸對(duì)稱.若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,若角的終邊經(jīng)過(guò)點(diǎn),求的值.12.體積為8的一個(gè)正方體,其全面積與球的表面積相等,則球的體積等于________.13.設(shè),數(shù)列滿足,,將數(shù)列的前100項(xiàng)從大到小排列得到數(shù)列,若,則k的值為_(kāi)_____;14.甲船在島的正南處,,甲船以每小時(shí)的速度向正北方向航行,同時(shí)乙船自出發(fā)以每小時(shí)的速度向北偏東的方向駛?cè)ィ?、乙兩船相距最近的距離是_____.15.若數(shù)列滿足,,,則______.16.利用直線與圓的有關(guān)知識(shí)求函數(shù)的最小值為_(kāi)______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知0<α<π,cos(1)求tanα+(2)求sin2α+118.已知的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,其外接圓的面積為,且.(1)求邊長(zhǎng)c;(2)若的面積為,求的周長(zhǎng).19.對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖:分組頻數(shù)頻率2440.120.05合計(jì)1(1)求出表中,及圖中的值;(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù);(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.20.某網(wǎng)站推出了關(guān)于掃黑除惡情況的調(diào)查,調(diào)查數(shù)據(jù)表明,掃黑除惡仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問(wèn)題的約占.現(xiàn)從參與關(guān)注掃黑除惡的人群中隨機(jī)選出人,并將這人按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.(1)求出的值;(2)求這人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)(精確到小數(shù)點(diǎn)后一位).21.如圖,在中,,點(diǎn)在邊上,(1)求的度數(shù);(2)求的長(zhǎng)度.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
由方程得出直線的截距,逐個(gè)選項(xiàng)驗(yàn)證即可.【詳解】由截距式方程可得直線的橫、縱截距分別為,直線的橫、縱截距分別為選項(xiàng)A,由的圖象可得,可得直線的截距均為正數(shù),故A正確;選項(xiàng)B,只有當(dāng)時(shí),才有直線平行,故B錯(cuò)誤;選項(xiàng)C,只有當(dāng)時(shí),才有直線的縱截距相等,故C錯(cuò)誤;選項(xiàng)D,由的圖象可得,可得直線的橫截距為正數(shù),縱截距為負(fù)數(shù),由圖像不對(duì)應(yīng),故D錯(cuò)誤;故選:A【點(diǎn)睛】本題考查了直線的截距式方程,需理解截距的定義,屬于基礎(chǔ)題.2、C【解析】如圖:是底面中心,是側(cè)棱與底面所成的角;在直角中,故選C3、D【解析】
∵直線l⊥平面α,若α∥β,則直線l⊥平面β,又∵直線m?平面β,∴l(xiāng)⊥m,即(1)正確;∵直線l⊥平面α,若α⊥β,則l與m可能平行、異面也可能相交,故(2)錯(cuò)誤;∵直線l⊥平面α,若l∥m,則m⊥平面α,∵直線m?平面β,∴α⊥β;故(3)正確;∵直線l⊥平面α,若l⊥m,則m∥α或m?α,則α與β平行或相交,故(4)錯(cuò)誤;故選D.4、B【解析】
根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對(duì)稱中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱.故選B.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.5、D【解析】由題意,所以,因此,從而,可知不可能等于.6、B【解析】
根據(jù)三棱錐三條側(cè)棱的關(guān)系,得到球與三棱錐的重疊部分為球的18【詳解】∵三棱錐O-ABC,側(cè)棱OA,OB,OC兩兩互相垂直,且OA=OB=OC=2,以O(shè)為球心且1為半徑的球與三棱錐O-ABC重疊部分的為球的18即對(duì)應(yīng)的體積為18【點(diǎn)睛】本題主要考查球體體積公式的應(yīng)用,解題的關(guān)鍵就是利用三棱錐與球的關(guān)系,考查空間想象能力,屬于中等題。7、B【解析】
由框圖可知,①,滿足條件,則;②,滿足條件,則;③,滿足條件,則;④,不滿足條件,輸出;故選B8、B【解析】
試題分析:,由正弦定理可得即;因?yàn)?,所以,所以,而,所以,故選B.考點(diǎn):1.正弦定理;2.余弦定理.9、D【解析】
由三角函數(shù)的圖象求得,再根據(jù)三角函數(shù)的圖象與性質(zhì),即可求解.【詳解】由圖象可知,,即,所以,即,又因?yàn)?,則,解得,又由,所以,所以,又因?yàn)?,所以圖中的最高點(diǎn)坐標(biāo)為.結(jié)合圖象和已知條件可知,所以,故選D.【點(diǎn)睛】本題主要考查了由三角函數(shù)的部分圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、D【解析】
由題意得到,再由兩角差的余弦及同角三角函數(shù)的基本關(guān)系式化簡(jiǎn)求解.【詳解】解:∵角與角均以O(shè)x為始邊,它們的終邊關(guān)于y軸對(duì)稱,
∴,
,
故選:D.【點(diǎn)睛】本題考查了兩角差的余弦公式的應(yīng)用,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由條件利用任意角的三角函數(shù)的定義,求得和的值,從而可得的值.【詳解】因?yàn)榻堑慕K邊經(jīng)過(guò)點(diǎn),所以,,則.故答案為:【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.12、【解析】
由體積為的一個(gè)正方體,棱長(zhǎng)為,全面積為,則,,球的體積為,故答案為.考點(diǎn):正方體與球的表面積及體積的算法.13、【解析】
根據(jù)遞推公式利用數(shù)學(xué)歸納法分析出與的關(guān)系,然后考慮將的前項(xiàng)按要求排列,再根據(jù)項(xiàng)的序號(hào)計(jì)算出滿足的值即可.【詳解】由已知,a1=a,0<a<1;并且函數(shù)y=ax單調(diào)遞減;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……當(dāng)為奇數(shù)時(shí),用數(shù)學(xué)歸納法證明,當(dāng)時(shí),成立,設(shè)時(shí),,當(dāng)時(shí),因?yàn)?,結(jié)合的單調(diào)性,所以,所以即,所以時(shí)成立,所以為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),用數(shù)學(xué)歸納法證明,當(dāng)時(shí),成立,設(shè)時(shí),,當(dāng)時(shí),因?yàn)?,結(jié)合的單調(diào)性,所以,所以即,所以時(shí)成立,所以為偶數(shù)時(shí),;用數(shù)學(xué)歸納法證明:任意偶數(shù)項(xiàng)大于相鄰的奇數(shù)項(xiàng)即證:當(dāng)為奇數(shù),,當(dāng)時(shí),符合,設(shè)時(shí),,當(dāng)時(shí),因?yàn)?,結(jié)合的單調(diào)性,所以,所以,所以,所以時(shí)成立,所以當(dāng)為奇數(shù)時(shí),,據(jù)此可知:,當(dāng)時(shí),若,則有,此時(shí)無(wú)解;當(dāng)時(shí),此時(shí)的下標(biāo)成首項(xiàng)為公差為的等差數(shù)列,通項(xiàng)即為,若,所以,所以.故答案為:.【點(diǎn)睛】本題考查數(shù)列與函數(shù)的綜合應(yīng)用,難度較難.(1)分析數(shù)列的單調(diào)性時(shí),要注意到數(shù)列作為特殊的函數(shù),其定義域?yàn)椋?2)證明數(shù)列的單調(diào)性可從與的關(guān)系入手分析.14、【解析】
根據(jù)條件畫出示意圖,在三角形中利用余弦定理求解相距的距離,利用二次函數(shù)對(duì)稱軸及可求解出最值.【詳解】假設(shè)經(jīng)過(guò)小時(shí)兩船相距最近,甲、乙分別行至,,如圖所示,可知,,,.當(dāng)小時(shí)時(shí)甲、乙兩船相距最近,最近距離為.【點(diǎn)睛】本題考查解三角形的實(shí)際應(yīng)用,難度較易.關(guān)鍵是通過(guò)題意將示意圖畫出來(lái),然后將待求量用未知數(shù)表示,最后利用函數(shù)思想求最值.15、【解析】
由,化簡(jiǎn)得,則為等差數(shù)列,結(jié)合已知條件得.【詳解】由,化簡(jiǎn)得,且,,得,所以是以為首項(xiàng),以為公差的等差數(shù)列,所以,即故答案為:【點(diǎn)睛】本題考查了數(shù)列的遞推式,考查了判斷數(shù)列是等差數(shù)列的方法,屬于中檔題.16、【解析】
令得,轉(zhuǎn)化為z==,再利用圓心到直線距離求最值即可【詳解】令,則故轉(zhuǎn)化為z==,表示上半個(gè)圓上的點(diǎn)到直線的距離的最小值的5倍,即故答案為3【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式,考查數(shù)形結(jié)合思想,是中檔題三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)12;(2)1【解析】
(1)利用同角三角函數(shù)平方和商數(shù)關(guān)系求得tanα;利用兩角和差正切公式求得結(jié)果;(2)利用二倍角公式化簡(jiǎn)所求式子,分子分母同時(shí)除以cos2α【詳解】(1)∵0<α<π,cosα=-3∴tanα=(2)sin=【點(diǎn)睛】本題考查利用同角三角函數(shù)、兩角和差正切公式、二倍角的正余弦公式化簡(jiǎn)求值問(wèn)題,關(guān)鍵是能夠利用求解關(guān)于正余弦的齊次式的方式,將問(wèn)題轉(zhuǎn)化為與tanα18、(1)(2)【解析】
(1)計(jì)算得到,,利用正弦定理計(jì)算得到答案.(2)根據(jù)余弦定理得到,根據(jù)面積公式得到,得到答案.【詳解】(1),.,.,,.(2)由余弦定理得:.,,,,.的周長(zhǎng)為.【點(diǎn)睛】本題考查了正弦定理,余弦定理和面積公式,意在考查學(xué)生的計(jì)算能力.19、(1);;;(2)60人.(3)【解析】
(1)根據(jù)頻率,頻數(shù)和樣本容量之間的關(guān)系即頻率等于頻數(shù)除以樣本容量,寫出算式,求出式子中的字母的值;(2)該校高三學(xué)生有240人,分組內(nèi)的頻率是0.25,估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在此區(qū)間內(nèi)的人數(shù)為60人;(3)設(shè)在區(qū)間內(nèi)的人為,,,,在區(qū)間內(nèi)的人為,,寫出任選2人的所有基本事件,利用對(duì)立事件求得答案.【詳解】(1)由分組內(nèi)的頻數(shù)是10,頻率是0.25知,,∴.∵頻數(shù)之和為40,∴,,.∵是對(duì)應(yīng)分組的頻率與組距的商,∴;(2)因?yàn)樵撔8呷龑W(xué)生有240人,分組內(nèi)的頻率是0.25,∴估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在此區(qū)間內(nèi)的人數(shù)為60人.(3)這個(gè)樣本參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生共有人,設(shè)在區(qū)間內(nèi)的人為,,,,在區(qū)間內(nèi)的人為,.則任選2人共有,,,,,,,,,,,,,,15種情況,而兩人都在內(nèi)只能是一種,∴所求概率為.【點(diǎn)睛】本題以圖表為背景,考查從圖表中提取信息,同時(shí)在統(tǒng)計(jì)的基礎(chǔ)上,考查古典概型的計(jì)算,考查基本數(shù)據(jù)處理能力.20、(1)0.035(2)平均數(shù)為:41.5歲中位數(shù)為:42.1歲【解析】
(1)根據(jù)頻率之和為1,結(jié)合題中條件,直接列出式子計(jì)算,即可得出結(jié)果;(2)根據(jù)每組的中間值乘該組的頻率再求和,即可得出平均數(shù);根據(jù)中位數(shù)兩邊的頻率之和相等,即可求出
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度牧草種植與出口貿(mào)易合同3篇
- 2024碼頭場(chǎng)地租賃及船舶維修服務(wù)合同3篇
- 2024物業(yè)公司物業(yè)招商合同
- 2024路面鋪裝工程進(jìn)度付款與工期延誤賠償合同
- 農(nóng)業(yè)行業(yè)農(nóng)作物種植風(fēng)險(xiǎn)告知免責(zé)協(xié)議書
- 林業(yè)資源開(kāi)發(fā)合作合同
- 體育行業(yè)運(yùn)動(dòng)員受傷免責(zé)協(xié)議
- 2024年國(guó)際技術(shù)交流合作協(xié)議
- 可再生能源領(lǐng)域技術(shù)研發(fā)合作項(xiàng)目投資合同
- 環(huán)??萍柬?xiàng)目技術(shù)轉(zhuǎn)讓協(xié)議
- 廣東省廣州市2024年中考數(shù)學(xué)真題試卷(含答案)
- 內(nèi)審檢查表完整版本
- 初二數(shù)學(xué)幾何試題(含答案)
- 人教部編版七年級(jí)語(yǔ)文上冊(cè)《閱讀綜合實(shí)踐》示范課教學(xué)設(shè)計(jì)
- 孤殘兒童護(hù)理員技能鑒定考試題庫(kù)(含答案)
- (正式版)QC∕T 1206.1-2024 電動(dòng)汽車動(dòng)力蓄電池?zé)峁芾硐到y(tǒng) 第1部分:通 用要求
- 《煤礦地質(zhì)工作細(xì)則》礦安﹝2024﹞192號(hào)
- 消防控制室值班服務(wù)人員培訓(xùn)方案
- 《貴州旅游介紹》課件2
- 2024年中職單招(護(hù)理)專業(yè)綜合知識(shí)考試題庫(kù)(含答案)
- 無(wú)人機(jī)應(yīng)用平臺(tái)實(shí)施方案
評(píng)論
0/150
提交評(píng)論