版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
NuclearMagneticResonance-Nuclearmagneticresonanceisamagneticresonancephenomenonwhichisrelatedtothenucleusresonancetransitiononthenuclearenergylevel.Thistechniquecanbeusedtoprecisemeasurethenuclearmagneticmoment,magneticfieldandstudythematerialstructure.Stern(OttoStern1888—1969)usedthemolecularbeammethodtoprovethatthenuclearmagneticmomentisspacezedin1922,whichlaidafoundationtodeterminethemagneticmomentofsubatomicparticlessuchasprotons.Sincethen,Rabidevelopedthemolecularbeamresonancemethodwhichcanbeusedtomeasurethenuclearmagneticmomentandspectralhyperfinestructure.Bloch,in1946(FelixBloch1905—thenucleusinduction,nowcallednuclearmagneticresonanceLaterthatyear,Purcellfirstreportedthenuclearmagneticresonancephenomenonobservedinthecondensedmatter.In1957,SternwasawardedtheNobelprizeinphysicsforhiscontributionsonthedevelopmentofmolecularbeammethodanddiscoveryoftheprotonnuclearmagneticmoment.In1944,RabiwontheNobelprizeinphysicsbyrecordingthemagneticpropertiesofatomicnucleiwiththeresonancemethod.BlochandEdwarddevelopedanewmethodfornuclearmagneticprecisionmeasurements,forwhichtheysharedtheNobelprizeinphysicsin1952.Onthebasisofsteady-statenuclearmagneticresonance,thepulsednuclearmagneticresonancemethod,withhighsensitivityandhighresolutionnuclearmagneticresonancesignal,appearedinthe1950s.Anumberofhigh-tech,includingthree-dimensionalmagneticresonanceimagingtechnologywhichisusedinmedicaldiagnostic,wasdevelopedbycombiningtheNMRwithcomputer.Weonlystudythesteady-satenuclearmagneticresonancemethodsinthisexperiment.Understandthebasicprinciplesof9UsingtheNMRmethodtodeterminethegyromagneticratioγ,Landéfactorgandsoonofproton(1Hnucleus)andfluorineatom19(19F).9MasteramethodformeasuringmagneticinductionSpinandMagneticmomentofInadditiontothechargeandquality,thenuclearspinthatisthenuclearintrinsicmomentumisalsotheimportantfeatureofnucleus.Nuclearmagneticmomentcanbeobtainedfromnuclearspin.Wefirstreviewtheelectronicmagneticmoment.μe e
(ge,lLge,
Here,Listheorbitalangularmomentum,Sisthespinangularmomentum,whicharesatisfiedcorrespondingequalities,respectively.L2l(L
S2s(s
Theorbitalandspingfactorsofanelectronarege,l=1andgμe
(L2S)(L
Here,μBistheBohrmagnetonwhichistheminimumunitofelectronicmagneticmoment.Inthe1930s,basedontherequirementofDirac’stheory,peoplethattheproton’sspinwhichisthesameasthatofelectronis12proton’sgfactorisgμp
(L
IntroductionofnuclearBohrmagnetonμN,hereinafterreferredtoasnuclearmagneton,correspondingtoBohrmagnetonμBN
5.0508241027JqBecausetheprotonmassis1836timeslargerthantheelectronmass,thenuclearmagnetonμNis1836timessmallerthantheBohrmagnetonμB.Substitutingthenuclearmagnetonintoformula(4):μp
(L
S)(L
However,theexperimentalresultsshowedthatthegp,sfactorofproton(hydrogennuclei)is5.58thatdidn’tmatchtherequirementsofDiractheory,whosegp,s=2.Therefore,tocorrectlycalculatetheatomicnuclearmagneticmoment,itisnecessarytogivearationaldescriptionofmotionofnucleus,namelytoestablishapropernuclearmodel.Fortheneutron,becausethattheneutronhasnocharge,accordingtheoldtheory,thegn,l=0,gn,s=0.However,theexperimentalresultsμn
gn,sS
gn,
Neutronhasnocharge,itsmagneticmomentthatisassociatedwiththeorbitalangularmomentumiszero.However,themagneticmomentwhichisassociatedwiththespinangularmomentumisnotzero,whichindicatedthat,althoughtheneutrondisyselectricallyneutral,thereischargedistributionwithinit.Thesymboloftheneutronspinmagneticmomentindicatesthatastheelectronics,thespinpointingisintheoppositedirectiontothemagneticmoment.NuclearMagneticNuclearmagneticmomentarisesfromthenuclearspin,therefore,weonlyconsiderthecontributionsofnuclearspintoangularWeuseItodenotethenuclearangularquantumnumbers,andPItodenotetheangularmomentum.Byzationcondition,PI
I(I1)
AngularquantumnumberIisanintegralmultipleof1/2.Theexperimentsshowsthatwhenthenucleiisinthegroundstate,alltheeven-evennuclei(bothprotonsandneutronsofthenucleiareeven)spinsarezero,nuclear(bothprotonsandneutronsofthenucleiareodd),I=I=1,2,3….Fortheodd-evenandeven-oddnuclei,Iisthemultiplesofhalf-integer,I=3/2,5/2,…;forexample,for1Hand19F, Thenuclearmagneticmomentisinthesamedirectionoftheangularmomentum,theformula(5)canberewrittenasfollows,nuclearmoment
μ
N
N WheregNisnuclearlandefactor,γisthegyromagneticratiooftheμ μNIntheconstantexternalmagneticfield,therelativespatialorientationofthenuclearmagneticmomentμandspinangularmomentumPIandtheirinctionsarezed.ExternalmagneticfieldBisprovidedalongthez-axisdirection,similartotheelectronspinresonance,theprojectionnuclearmagneticmomentμalongzdirectionzmgN
mismagneticquantumnumber,m=I,I-1,…,-I+1,-I.Anuclearenergylevelcanbesplitintoseveralsub-levels,sub-levelsareEiμBzBmigNN
Forproton,I=1/2,thenm1=+1/2,m2=-1/2,theenergybetweenthetwoadjacentlevelΔEEE2E1m2gNNB(m1gNN(m2m1)gNNBmgNNgNN
Here,thetransitionsobeytheselection Δm=m2-m1=IfaelectromagneticwaveofthefrequencyisbeingappliedinadirectionperpendiculartoBtomatchtheenergydifferencebetweentwoadjacentlevel,whichthat
hEgNN
thenuclearmagneticresonancewilloccur.Nucleiabsorbenergyhνfromtheelectromagneticwaves(radiofrequencyormicrowave)andleveltransitionoccurs.Here,ωistheangularfrequencyofelectromagneticParticledifferentialandresonancesignalAlargenumberofatomicnucleiintheNMRsamplesareidentical.Inthermalequilibriumstate,thenumberofparticlesontheupperlevelandlowerlevelobeyBoltzmannas
N
exp(E
N1
1For1H,whenthemagneticfieldintensityis1T,T=30012EKT7106,2
N1
N1
N7106,which1thatthenumberofparticlesonlowenergylevelonlysevenmorethanthatonhighenergylevelpermillionparticles,inotherwords,onlysevenparticlesinvolvedinnuclearmagneticresonancepremillionparticlesonlowenergylevel.SotheNMRsignalisveryweak.Formula(11)and(14)indicatethathighmagneticfieldB,lowtemperatureconditionwilllead1togreatparticledifferentialandstrongresonancesignals.Inaddition,externalmagneticfieldBshouldbehighlyuniforminthesampleThesaturationofresonanceabsorptionAfterabsorbingenergyfromRFfields,resonanceandstimulatedtransitionsofparticlesoccur.Thenumberofparticlesdifferencebetweentheupperandlowerenergyleveldecreasesexponentiallywiththeelapsedtime.UndertheeffectofRF,particlesdifferencetendstobezero,thenthesamplenolongerabsorbenergyandreachsaturation.Atthesametime,theparticlesontheupperenergylevelundergonon-radiativetransitiontothelowerenergycontinuously,thenumberofparticlesinaccordancewiththedistributionofenergylevelswillautomaticallyreturntoitsoriginalequilibriumstate.Thisprocessiscalledrelaxationprocessandthistransitionisthethermalrelaxationtransition,theelapsedtimeiscalledrelaxationtime.Inthemagneticresonanceprocess,stimulatedtransitionsandrelaxationprocessescoexist.Underdynamicbalancestate,thenumberofparticlesdifferencebetweentheupperandlowerenergylevelnSisnS
1
Zn0
wheren0N1N2,ρisstimulatedtransitionprobability,T1isonehalftheaveragevalueofthethermalrelaxationtransitionprobability(downwardandupward).Ziscalledthesaturationfactor.WhenρT1<<1,Z≈1,nS≈n0nosaturationWhenρT1>>1,Z≈0,nS≈0compleysaturated.Inthissituation,willnotseethephenomenonofresonanceDCexcitation ACexcitation直流繞磁交流繞樣及Sampleandradio-frequencyDCexcitation ACexcitation直流繞磁交流繞樣及Sampleandradio-frequency 頻線頻率邊振蕩示波ACicDC移相電磁電磁電RFrequencyFrequencyMarginFigure(1)BlockdiagramofNMRexperimentForsteady-stateNMRexperiment,weuseoscilloscopetoobservetheabsorptionsignal,theretwomethods:(1)Frequencymodulation(FM):usingsteadyexternalmagneticfieldB0,graduallychangingtheRFfrequency,RFelectromagneticwave“sweepfrequency”;(2)Fieldmodulation:FixedtheRFfrequency,graduallychangingthesizeoftheexternalmagneticfieldB,theexternalmagneticfield“sweepthefield”.BecauseofthechangingofωofRFelectromagneticwavesorBofexternalmagneticfield,theoscilloscopewilldisytheabsorptionsignalatthepointwhereresonancecondition0B0issatisfied.Forthisexperiment,weusefieldmethod.Theexternalmagneticfieldformedbyalow-frequencyalternatingmagneticfieldsuperposedonsteadymagneticfield.ThefrequencyofRFelectromagneticwavescanbemanuallyadjusted,inordertochooseadifferentω.Figure(1)showstheexperimentalfacility.ItiscomposedoftheelectromagnetandpowerthatproducetheexternalmagneticfieldB,probe,marginoscillator,frequencymeter,oscilloscope,SteadymagneticWeuseelectromagnet.Therequirementsforsteadymagneticfieldaregoodstabilityandhighlyuniforminthesamplerange.Inthisexperiment,steadymagneticfieldcoil(DCwinding)ispoweredbyDCcurrentregulator.Carefullyadjustingthepositionofthesample,highlyuniformpartofthemagneticfieldcanbefoundinthecentralregionofthemagneticpole.Tomeetequation(11),(12),wecanadjustthecurrenttochangemagneticinductionintensityMagneticfieldThestrengthofmainmagneticfieldBDshouldbesetnearthewhichisrequiredbyresonance.ThemodulatingmagneticfieldBAthatisweakerthansteadymagneticfieldisproducedbytwomodulatedcoils(ACwinding)with50Hzalternatingcurrent.BAsuperposedonthesteadymagneticfield,thenthetotalmagneticfieldperiodicallyoscillateswith50Hz.WhenB0=BD+BA,hgNBsatisfiedandsampleresonanceoccurs.Inthissituation,theoscilloscopedisyanabsorptionpeak.Figure(2)showstheresults.Asweuse50HzACsignaltoscan,thesweeptimeintheresonanceareaisnotmuchlongerthantherelaxationtime.Therefore,thereisacodawaveoftheresonancesignal.TheprobeandcircuitofProbeandmarginoscillatorarethecorepartsoftheexperimentinstrument.TheynotonlyprovideaRFelectromagneticwavewhichmeettheresonancecondition,butalsoreceiveandamplifytheresonancesignalforobservation.MarginoscillatorisaLCoscillator.Intheexperiment,weadjustthemarginoscillatorontheedgeofstart-uposcillationandsetaweakRFelectromagneticwave.Inthecircuit,theinductanceListheRFcoilinsertedthesample.Cisadjustablecapacitance.ThefrequencyofmarginoscillatorcanbechangedbyadjustingC.Whenthesampleabsorbdifferentenergy(QvalueofRFcoilchange),theamplitudeoftheoscillatorwillhaveagreaterchange.Whenresonanceoccur,thesampleabsorbtheenergyoftheRFfield,whichlowertheQvalueofLCandtheamplitudeofLCoscillator.Afterdetection,amplification,theresonanceabsorptionsignalthatreflecttheamplitudeofoscillatorcanbedisyedbyoscilloscope.Phase-shiftInadditiontousingthesawtoothwave(timesignal),thefieldmodulationsignalcanalsobeusedasthex-axisoftheoscilloscope.Weconnectthefieldmodulationsignaltothex-axisbythephaseshiftcircuit,thenadjustthephaseshiftcircuittochangethephasewhichisinputtedfromx-axisbetweenthefieldmodulationvoltageandmodulationmagneticfield.Thischangestherelativepositionofthetworesonancepeakswhicharedisyedinoscilloscope.Whenthefieldmodulationsignalisconnectedtothex-axisofoscilloscope, yzethevariationofoscilloscopedisy.Inaddition,usethefrequencymetertomeasuretheRFfrequencyandusetheoscilloscopetoobserve,detecttheNMRabsorptionsignal.Figure(2)Therelationshipbetweenscanningfieldandpeak,leftfigureBDB0,rightfigureBDInthisexperiment,weusethecomparativemethodtomeasuregyromagneticratioof19F.First:Usingthe1Hnucleussampleto H1themagneticfield,thegfactorof nucleusasaknownty,H1F9thenmeasuringthe nucleussample.SpecificF9H1Using nucleussample(watersample)tocalibrateH1magneticH1Connectthewireofinstrumentcircuit,installtheH1
sampletotheelectromagnet,opentheNMR,oscilloscopeandthepowerswitchofthefrequencymeter.Adjustthe“scanningfield”(scanningmagneticfieldthatsuperposedonthesteadymagneticfield)totheumvalue;Carefullyadjustthe“frequencymodulation”(theRFfrequencyofmarginoscillator),“edgevibrationmodulation”andthe“magneticfield”(steadymagneticfieldB),keepthevalueofexcitationcurrenttobebetween1.5Aand2.2AandtheRFfrequencytobearound15MH,obtaintheresonancesignal(absorptionpeak).Adjustthepositionofthesampleinthemagneticfieldtogetthestrongestabsorptionpeak.Adjustthe“phase”totakethetwoabsorptionpeakclosetogether.Note:Thepeakpositionwhichmovewiththevariationoffrequencyormagneticfieldalongthex-axisdirectionoftheoscilloscopeistheonlyabsorptionpeak.Therearetwoabsorptionpeaksineveryscanningfieldcycle.Whenthetwopeaksareinthesymmetricpositionofthedisyedwaveform,themagneticfieldB=B0.Measuring10resonancepointswhichareequallydistributedintherangeof14.5-16.5MHz,recordingthefrequencyandexcitationcurrent.Note:Identifythemeasuringpoint.Whenthepeakpositionisinthemiddleofthescreen,wecangetthemeasuringpoint.F9DeterminationofγandgfactorsofF9Itisthesamewayasabove.Recet
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年產(chǎn)20000噸高端紡織面料技術(shù)改造項目可行性研究報告模板-立項備案
- 二零二五年度建材材料采購與環(huán)保評價服務(wù)合同范本3篇
- 中國長期護理保險制度發(fā)展現(xiàn)狀及建議
- 護士職業(yè)生涯規(guī)劃
- 云南省騰沖市第四中學(xué)2024-2025學(xué)年七年級上學(xué)期期末考試 語文試題(含答案)
- 中圖版高中信息技術(shù)必修1說課稿-2.3 甄別信息的方法-
- Unit 2 Special Days Lesson 1(說課稿)-2023-2024學(xué)年人教新起點版英語五年級下冊
- 二年級上冊六 制作標(biāo)本-表內(nèi)除法第4課時《連乘、連除和乘除混合運算》(說課稿)-2024-2025學(xué)年二年級上冊數(shù)學(xué)青島版(五四學(xué)制)
- 福建省龍巖市新羅區(qū)2024-2025學(xué)年三年級上學(xué)期期末數(shù)學(xué)試題
- 甘肅省天水市(2024年-2025年小學(xué)六年級語文)部編版小升初真題(下學(xué)期)試卷及答案
- 廣東深圳市龍崗區(qū)產(chǎn)服集團招聘筆試題庫2024
- 公路施工表格
- 2024至2030年中國昆明市酒店行業(yè)發(fā)展監(jiān)測及市場發(fā)展?jié)摿︻A(yù)測報告
- 《中國心力衰竭診斷和治療指南2024》解讀(總)
- 科學(xué)新課程標(biāo)準(zhǔn)中核心素養(yǎng)的內(nèi)涵解讀及實施方略講解課件
- 輪扣式高支模施工方案
- 醫(yī)療質(zhì)量信息數(shù)據(jù)內(nèi)部驗證制度
- 子宮內(nèi)膜間質(zhì)肉瘤的畫像組學(xué)研究
- 福建省廈門市2022-2023學(xué)年高一年級上冊期末質(zhì)量檢測物理試題(含答案)
- 2023年公路養(yǎng)護工知識考試題庫附答案
- 高警示(高危)藥品考試試題與答案
評論
0/150
提交評論