版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.若是關(guān)于x的方程的一個(gè)根,則方程的另一個(gè)根是()A.9 B.4 C.4 D.32.如圖是一個(gè)正方體被截去一角后得到的幾何體,從上面看得到的平面圖形是()A. B. C. D.3.如圖,△A′B′C′是△ABC以點(diǎn)O為位似中心經(jīng)過位似變換得到的,若△A′B′C′的面積與△ABC的面積比是4:9,則OB′:OB為()A.2:3 B.3:2 C.4:5 D.4:94.已知關(guān)于x的一元二次方程有兩個(gè)相等的實(shí)根,則k的值為()A. B. C.2或3 D.或5.二次函數(shù)y=ax2+c的圖象如圖所示,正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標(biāo)系中的圖象可能是()A. B. C. D.6.如圖,平行于x軸的直線與函數(shù),的圖象分別相交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的右側(cè),C為x軸上的一個(gè)動(dòng)點(diǎn),若的面積為4,則的值為A.8 B. C.4 D.7.如果菱形的一邊長是8,那么它的周長是()A.16 B.32 C.163 D.3238.如圖是由5個(gè)相同的小正方體組成的立體圖形,這個(gè)立體圖形的俯視圖是()A. B. C. D.9.關(guān)于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個(gè)不相等的正實(shí)數(shù)根,則m的取值范圍是()A.m> B.m>且m≠2 C.﹣<m<2 D.<m<210.一個(gè)數(shù)和它的倒數(shù)相等,則這個(gè)數(shù)是()A.1 B.0 C.±1 D.±1和0二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.關(guān)于x的一元二次方程x2+2x+k=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是_____.12.不等式組的最小整數(shù)解是_____.13.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.14.如圖,中,,,,,平分,與相交于點(diǎn),則的長等于_____.15.同時(shí)拋擲兩枚質(zhì)地均勻的骰子,則事件“兩枚骰子的點(diǎn)數(shù)和小于8且為偶數(shù)”的概率是.16.如圖,點(diǎn)A1,B1,C1,D1,E1,F(xiàn)1分別是正六邊形ABCDEF六條邊的中點(diǎn),連接AB1,BC1,CD1,DE1,EF1,F(xiàn)A1后得到六邊形GHIJKL,則S六邊形GHIJKI:S六邊形ABCDEF的值為____.三、解答題(共8題,共72分)17.(8分)計(jì)算:﹣(﹣2)2+|﹣3|﹣20180×18.(8分)如圖,AB是半圓O的直徑,過點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,交AC于點(diǎn)C,使∠BED=∠C.(1)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論;(2)若AC=8,cos∠BED=4519.(8分)如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺(tái)的A處測(cè)得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測(cè)得兩建筑物之間的距離BC是28米,請(qǐng)你幫助小明求出建筑物CD的高度(精確到1米).20.(8分)如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).求拋物線的函數(shù)解析式;點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);在第二問的條件下,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請(qǐng)你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).21.(8分)如圖,在等邊△ABC中,點(diǎn)D是AB邊上一點(diǎn),連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.22.(10分)如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點(diǎn),過點(diǎn)G作DE⊥BC,垂足為E,交BA的延長線于點(diǎn)D(1)求證:DE是的⊙O切線;(2)若AB=6,BG=4,求BE的長;(3)若AB=6,CE=1.2,請(qǐng)直接寫出AD的長.23.(12分)如圖,將矩形OABC放在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,B(8,6),點(diǎn)D是射線AO上的一點(diǎn),把△BAD沿直線BD折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′.(1)若點(diǎn)A′落在矩形的對(duì)角線OB上時(shí),OA′的長=;(2)若點(diǎn)A′落在邊AB的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo);(3)若點(diǎn)A′落在邊AO的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可).24.如圖1,矩形ABCD中,E是AD的中點(diǎn),以點(diǎn)E直角頂點(diǎn)的直角三角形EFG的兩邊EF,EG分別過點(diǎn)B,C,∠F=30°.(1)求證:BE=CE(2)將△EFG繞點(diǎn)E按順時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時(shí)停止轉(zhuǎn)動(dòng).若EF,EG分別與AB,BC相交于點(diǎn)M,N.(如圖2)①求證:△BEM≌△CEN;②若AB=2,求△BMN面積的最大值;③當(dāng)旋轉(zhuǎn)停止時(shí),點(diǎn)B恰好在FG上(如圖3),求sin∠EBG的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
解:設(shè)方程的另一個(gè)根為a,由一元二次方程根與系數(shù)的故選可得,解得a=,故選D.2、B【解析】
根據(jù)俯視圖是從上面看到的圖形可得俯視圖為正方形以及右下角一個(gè)三角形.【詳解】從上面看,是正方形右邊有一條斜線,如圖:故選B.【點(diǎn)睛】考查了三視圖的知識(shí),根據(jù)俯視圖是從物體的上面看得到的視圖得出是解題關(guān)鍵.3、A【解析】
根據(jù)位似的性質(zhì)得△ABC∽△A′B′C′,再根據(jù)相似三角形的性質(zhì)進(jìn)行求解即可得.【詳解】由位似變換的性質(zhì)可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'與△ABC的面積的比4:9,∴△A'B'C'與△ABC的相似比為2:3,∴,故選A.【點(diǎn)睛】本題考查了位似變換:如果兩個(gè)圖形不僅是相似圖形,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對(duì)應(yīng)邊互相平行,那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心.4、A【解析】
根據(jù)方程有兩個(gè)相等的實(shí)數(shù)根結(jié)合根的判別式即可得出關(guān)于k的方程,解之即可得出結(jié)論.【詳解】∵方程有兩個(gè)相等的實(shí)根,∴△=k2-4×2×3=k2-24=0,解得:k=.故選A.【點(diǎn)睛】本題考查了根的判別式,熟練掌握“當(dāng)△=0時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根”是解題的關(guān)鍵.5、C【解析】
根據(jù)二次函數(shù)圖像位置確定a0,c0,即可確定正比例函數(shù)和反比例函數(shù)圖像位置.【詳解】解:由二次函數(shù)的圖像可知a0,c0,∴正比例函數(shù)過二四象限,反比例函數(shù)過一三象限.故選C.【點(diǎn)睛】本題考查了函數(shù)圖像的性質(zhì),屬于簡單題,熟悉系數(shù)與函數(shù)圖像的關(guān)系是解題關(guān)鍵.6、A【解析】【分析】設(shè),,根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得出,根據(jù)三角形的面積公式得到,即可求出.【詳解】軸,,B兩點(diǎn)縱坐標(biāo)相同,設(shè),,則,,,,故選A.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,三角形的面積,熟知點(diǎn)在函數(shù)的圖象上,則點(diǎn)的坐標(biāo)滿足函數(shù)的解析式是解題的關(guān)鍵.7、B【解析】
根據(jù)菱形的四邊相等,可得周長【詳解】菱形的四邊相等∴菱形的周長=4×8=32故選B.【點(diǎn)睛】本題考查了菱形的性質(zhì),并靈活掌握及運(yùn)用菱形的性質(zhì)8、C【解析】
從上面看共有2行,上面一行有3個(gè)正方形,第二行中間有一個(gè)正方形,故選C.9、D【解析】
根據(jù)一元二次方程的根的判別式的意義得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2)>0,解得m>且m≠﹣2,再利用根與系數(shù)的關(guān)系得到,m﹣2≠0,解得<m<2,即可求出答案.【詳解】解:由題意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,∴m>且m≠﹣2,∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個(gè)不相等的正實(shí)數(shù)根,∴﹣>0,m﹣2≠0,∴<m<2,∵m>,∴<m<2,故選:D.【點(diǎn)睛】本題主要考查對(duì)根的判別式和根與系數(shù)的關(guān)系的理解能力及計(jì)算能力,掌握根據(jù)方程根的情況確定方程中字母系數(shù)的取值范圍是解題的關(guān)鍵.10、C【解析】
根據(jù)倒數(shù)的定義即可求解.【詳解】的倒數(shù)等于它本身,故符合題意.
故選:.【點(diǎn)睛】主要考查倒數(shù)的概念及性質(zhì).倒數(shù)的定義:若兩個(gè)數(shù)的乘積是1,我們就稱這兩個(gè)數(shù)互為倒數(shù).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、k<1【解析】
根據(jù)一元二次方程根的判別式結(jié)合題意進(jìn)行分析解答即可.【詳解】∵關(guān)于x的一元二次方程x2+2x+k=0有兩個(gè)不相等的實(shí)數(shù)根,∴△=22解得:k<1.故答案為:k<1.【點(diǎn)睛】熟知“在一元二次方程ax2+bx+c=0(a≠0)12、-1【解析】分析:先求出每個(gè)不等式的解集,再求出不等式組的解集,即可得出答案.詳解:.∵解不等式①得:x>-3,解不等式②得:x≤1,∴不等式組的解集為-3<x≤1,∴不等式組的最小整數(shù)解是-1,故答案為:-1.點(diǎn)睛:本題考查了解一元一次不等式組和不等式組的整數(shù)解,能根據(jù)不等式的解集得出不等式組的解集是解此題的關(guān)鍵.13、【解析】
連接BD,易證△DAB是等邊三角形,即可求得△ABD的高為,再證明△ABG≌△DBH,即可得四邊形GBHD的面積等于△ABD的面積,由圖中陰影部分的面積為S扇形EBF﹣S△ABD即可求解.【詳解】如圖,連接BD.∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點(diǎn)G,設(shè)BF、DC相交于點(diǎn)H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=﹣×2×=.故答案是:.【點(diǎn)睛】本題考查了扇形的面積計(jì)算以及全等三角形的判定與性質(zhì)等知識(shí),根據(jù)已知得出四邊形GBHD的面積等于△ABD的面積是解題關(guān)鍵.14、3【解析】
如圖,延長CE、DE,分別交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等邊三角形,根據(jù)等腰直角三角形的性質(zhì)可知CG⊥AB,可求出AG的長,進(jìn)而可得GH的長,根據(jù)含30°角的直角三角形的性質(zhì)可求出EH的長,根據(jù)DE=DH-EH即可得答案.【詳解】如圖,延長CE、DE,分別交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等邊三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴AB==8,AG=AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案為:3【點(diǎn)睛】本題考查等邊三角形的判定及性質(zhì)、等腰直角三角形的性質(zhì)及含30°角的直角三角形的性質(zhì),熟記30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì)并正確作出輔助線是解題關(guān)鍵.15、.【解析】試題分析:畫樹狀圖為:共有36種等可能的結(jié)果數(shù),其中“兩枚骰子的點(diǎn)數(shù)和小于8且為偶數(shù)”的結(jié)果數(shù)為9,所以“兩枚骰子的點(diǎn)數(shù)和小于8且為偶數(shù)”的概率==.故答案為.考點(diǎn):列表法與樹狀圖法.16、.【解析】
設(shè)正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a.求出正六邊形的邊長,根據(jù)S六邊形GHIJKI:S六邊形ABCDEF=()2,計(jì)算即可;【詳解】設(shè)正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a,作A1M⊥FA交FA的延長線于M,在Rt△AMA1中,∵∠MAA1=60°,∴∠MA1A=30°,∴AM=AA1=a,∴MA1=AA1·cos30°=a,F(xiàn)M=5a,在Rt△A1FM中,F(xiàn)A1=,∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,∴△F1FL∽△A1FA,∴,∴,∴FL=a,F(xiàn)1L=a,根據(jù)對(duì)稱性可知:GA1=F1L=a,∴GL=2a﹣a=a,∴S六邊形GHIJKI:S六邊形ABCDEF=()2=,故答案為:.【點(diǎn)睛】本題考查正六邊形與圓,解直角三角形,勾股定理,相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會(huì)利用參數(shù)解決問題.三、解答題(共8題,共72分)17、﹣1【解析】
根據(jù)乘方的意義、絕對(duì)值的性質(zhì)、零指數(shù)冪的性質(zhì)及立方根的定義依次計(jì)算各項(xiàng)后,再根據(jù)有理數(shù)的運(yùn)算法則進(jìn)行計(jì)算即可.【詳解】原式=﹣1+3﹣1×3=﹣1.【點(diǎn)睛】本題考查了乘方的意義、絕對(duì)值的性質(zhì)、零指數(shù)冪的性質(zhì)、立方根的定義及有理數(shù)的混合運(yùn)算,熟知乘方的意義、絕對(duì)值的性質(zhì)、零指數(shù)冪的性質(zhì)、立方根的定義及有理數(shù)的混合運(yùn)算順序是解決問題的關(guān)鍵.18、(1)AC與⊙O相切,證明參見解析;(2).【解析】試題分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,從而有∠C+∠AOC=90°,再利用三角形內(nèi)角和定理,可求∠OAC=90°,即AC是⊙O的切線;(2)連接BD,AB是直徑,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函數(shù)值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同樣利用三角函數(shù)值,可求AD.試題解析:(1)AC與⊙O相切.∵弧BD是∠BED與∠BAD所對(duì)的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC與⊙O相切;(2)連接BD.∵AB是⊙O直徑,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB?cos∠OAD=12×=.考點(diǎn):1.切線的判定;2.解直角三角形.19、39米【解析】
過點(diǎn)A作AE⊥CD,垂足為點(diǎn)E,在Rt△ADE中,利用三角函數(shù)求出的長,在Rt△ACE中,求出的長即可得.【詳解】解:過點(diǎn)A作AE⊥CD,垂足為點(diǎn)E,由題意得,AE=BC=28,∠EAD=25°,∠EAC=43°,在Rt△ADE中,∵,∴,在Rt△ACE中,∵,∴,∴(米),答:建筑物CD的高度約為39米.20、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點(diǎn)坐標(biāo)(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解析】
(1)將A,B兩點(diǎn)坐標(biāo)代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據(jù)解析式求出C點(diǎn)坐標(biāo),及頂點(diǎn)E的坐標(biāo),設(shè)點(diǎn)D的坐標(biāo)為(0,m),作EF⊥y軸于點(diǎn)F,利用勾股定理表示出DC,DE的長.再建立相等關(guān)系式求出m值,進(jìn)而求出D點(diǎn)坐標(biāo);(3)先根據(jù)邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當(dāng)以C、D、P為頂點(diǎn)的三角形與△DOC相似時(shí),根據(jù)對(duì)應(yīng)邊不同進(jìn)行分類討論:①當(dāng)OC與CD是對(duì)應(yīng)邊時(shí),有比例式,能求出DP的值,又因?yàn)镈E=DC,所以過點(diǎn)P作PG⊥y軸于點(diǎn)G,利用平行線分線段成比例定理即可求出DG,PG的長度,根據(jù)點(diǎn)P在點(diǎn)D的左邊和右邊,得到符合條件的兩個(gè)P點(diǎn)坐標(biāo);②當(dāng)OC與DP是對(duì)應(yīng)邊時(shí),有比例式,易求出DP,仍過點(diǎn)P作PG⊥y軸于點(diǎn)G,利用比例式求出DG,PG的長度,然后根據(jù)點(diǎn)P在點(diǎn)D的左邊和右邊,得到符合條件的兩個(gè)P點(diǎn)坐標(biāo);這樣,直線DE上根據(jù)對(duì)應(yīng)邊不同,點(diǎn)P所在位置不同,就得到了符合條件的4個(gè)P點(diǎn)坐標(biāo).【詳解】解:(1)∵拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(0,﹣3),∴,解得,故拋物線的函數(shù)解析式為y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則點(diǎn)C的坐標(biāo)為(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴點(diǎn)E坐標(biāo)為(1,﹣4),設(shè)點(diǎn)D的坐標(biāo)為(0,m),作EF⊥y軸于點(diǎn)F(如下圖),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴點(diǎn)D的坐標(biāo)為(0,﹣1);(3)∵點(diǎn)C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根據(jù)勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①當(dāng)OC與CD是對(duì)應(yīng)邊時(shí),∵△DOC∽△PDC,∴,即=,解得DP=,過點(diǎn)P作PG⊥y軸于點(diǎn)G,則,即,解得DG=1,PG=,當(dāng)點(diǎn)P在點(diǎn)D的左邊時(shí),OG=DG﹣DO=1﹣1=0,所以點(diǎn)P(﹣,0),當(dāng)點(diǎn)P在點(diǎn)D的右邊時(shí),OG=DO+DG=1+1=2,所以,點(diǎn)P(,﹣2);②當(dāng)OC與DP是對(duì)應(yīng)邊時(shí),∵△DOC∽△CDP,∴,即=,解得DP=3,過點(diǎn)P作PG⊥y軸于點(diǎn)G,則,即,解得DG=9,PG=3,當(dāng)點(diǎn)P在點(diǎn)D的左邊時(shí),OG=DG﹣OD=9﹣1=8,所以,點(diǎn)P的坐標(biāo)是(﹣3,8),當(dāng)點(diǎn)P在點(diǎn)D的右邊時(shí),OG=OD+DG=1+9=10,所以,點(diǎn)P的坐標(biāo)是(3,﹣10),綜上所述,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,滿足條件的點(diǎn)P共有4個(gè),其坐標(biāo)分別為(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).考點(diǎn):1.相似三角形的判定與性質(zhì);2.二次函數(shù)動(dòng)點(diǎn)問題;3.一次函數(shù)與二次函數(shù)綜合題.21、見解析【解析】試題分析:根據(jù)等邊三角形的性質(zhì)得出AC=BC,∠B=∠ACB=60°,根據(jù)旋轉(zhuǎn)的性質(zhì)得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根據(jù)SAS推出△BCD≌△ACE,根據(jù)全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根據(jù)平行線的判定得出即可.試題解析:∵△ABC是等邊三角形,∴AC=BC,∠B=∠ACB=60°,∵線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD與△ACE中,,
∴△BCD≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE∥BC.22、(1)證明見解析;(1);(3)1.【解析】
(1)要證明DE是的⊙O切線,證明OG⊥DE即可;(1)先證明△GBA∽△EBG,即可得出=,根據(jù)已知條件即可求出BE;(3)先證明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根據(jù)OG∥BE得出=,即可計(jì)算出AD.【詳解】證明:(1)如圖,連接OG,GB,∵G是弧AF的中點(diǎn),∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G為半徑外端,∴DE為⊙O切線;(1)∵AB為⊙O直徑,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴,∴;(3)AD=1,根據(jù)SAS可知△AGB≌△CGB,則BC=AB=6,∴BE=4.8,∵OG∥BE,∴,即,解得:AD=1.【點(diǎn)睛】本題考查了相似三角形與全等三角形的判定與性質(zhì)與切線的性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì)與切線的性質(zhì).23、(1)1;(2)點(diǎn)D(8﹣23,0);(3)點(diǎn)D的坐標(biāo)為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點(diǎn)B的坐標(biāo)知OA=8、AB=1、OB=10,根據(jù)折疊性質(zhì)可得BA=BA′=1,據(jù)此可得答案;(Ⅱ)連接AA′,利用折疊的性質(zhì)和中垂線的性質(zhì)證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據(jù)此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點(diǎn)D在OA上和點(diǎn)D在AO延長線上這兩種情況,利用相似三角形的判定和性質(zhì)分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點(diǎn)A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點(diǎn)D(8﹣23,0);(Ⅲ)①如圖3,當(dāng)點(diǎn)D在OA上時(shí).由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點(diǎn)A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當(dāng)點(diǎn)D在AO延長線上時(shí),過點(diǎn)A′作x軸的平行線交y軸于點(diǎn)M,延長AB交所作直線于點(diǎn)N,則BN=CM,MN=BC=OA=8,由旋轉(zhuǎn)知△BDA′≌△BD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年北師大版八年級(jí)英語上冊(cè)月考試卷
- 2024年新科版八年級(jí)生物下冊(cè)階段測(cè)試試卷
- 商業(yè)領(lǐng)域中社交媒體的創(chuàng)新思維實(shí)踐
- 2024年甲方對(duì)乙方出售汽車制造用廠房合同
- 2025中國郵政集團(tuán)公司松原市分公司招聘7人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 工業(yè)縫制機(jī)械相關(guān)行業(yè)投資規(guī)劃報(bào)告范本
- 2025中國電信湖北十堰分公司招聘17人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國建筑第二工程局限公司招聘實(shí)習(xí)生40人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國華電集團(tuán)限公司校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中共佛山市禪城區(qū)委組織部公開招聘專業(yè)技術(shù)崗位雇員1人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 設(shè)計(jì)中的重點(diǎn)、難點(diǎn)及關(guān)鍵技術(shù)問題的把握控制及相應(yīng)措施
- 幼兒園教學(xué)活動(dòng) 幼兒園教學(xué)活動(dòng)概述 幼兒園教學(xué)活動(dòng)的特點(diǎn)
- 6.2.1向量的加法運(yùn)算 課件(共14張PPT)
- YY/T 1866-2023一次性使用無菌肛腸套扎器膠圈或彈力線式
- 海蒂(世界文學(xué)名著經(jīng)典)
- 中國馬克思主義與當(dāng)代知到章節(jié)答案智慧樹2023年西安交通大學(xué)
- 變電站檢修規(guī)程完整
- 海南文昌2x460MW級(jí)燃?xì)?蒸汽聯(lián)合循環(huán)電廠
- 形式邏輯學(xué)全套課件
- 姜安《政治學(xué)概論》(第2版)筆記和典型題(含考研真題)詳解
- 國開電大公共行政學(xué)形考任務(wù)二答案
評(píng)論
0/150
提交評(píng)論