版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.()A. B. C. D.2.已知函數(shù)且,則實(shí)數(shù)的取值范圍是()A. B. C. D.3.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.4.在中,,則()A. B. C. D.5.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.6.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為則()A. B.C. D.7.甲在微信群中發(fā)了一個(gè)6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)多于其他任何人)的概率是()A. B. C. D.8.費(fèi)馬素?cái)?shù)是法國(guó)大數(shù)學(xué)家費(fèi)馬命名的,形如的素?cái)?shù)(如:)為費(fèi)馬索數(shù),在不超過(guò)30的正偶數(shù)中隨機(jī)選取一數(shù),則它能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的概率是()A. B. C. D.9.記為數(shù)列的前項(xiàng)和數(shù)列對(duì)任意的滿足.若,則當(dāng)取最小值時(shí),等于()A.6 B.7 C.8 D.910.已知與分別為函數(shù)與函數(shù)的圖象上一點(diǎn),則線段的最小值為()A. B. C. D.611.雙曲線的右焦點(diǎn)為,過(guò)點(diǎn)且與軸垂直的直線交兩漸近線于兩點(diǎn),與雙曲線的其中一個(gè)交點(diǎn)為,若,且,則該雙曲線的離心率為()A. B. C. D.12.已知集合,,則A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開(kāi)式中含有的項(xiàng)的系數(shù)是,則展開(kāi)式中各項(xiàng)系數(shù)和為_(kāi)_____.14.?dāng)?shù)列滿足遞推公式,且,則___________.15.若直線與直線交于點(diǎn),則長(zhǎng)度的最大值為_(kāi)___.16.已知直線與圓心為的圓相交于兩點(diǎn),且,則實(shí)數(shù)的值為_(kāi)________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)點(diǎn),動(dòng)圓經(jīng)過(guò)點(diǎn)且和直線相切.記動(dòng)圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過(guò)點(diǎn)的直線與曲線交于、兩點(diǎn),且直線與軸交于點(diǎn),設(shè),,求證:為定值.18.(12分)對(duì)于非負(fù)整數(shù)集合(非空),若對(duì)任意,或者,或者,則稱為一個(gè)好集合.以下記為的元素個(gè)數(shù).(1)給出所有的元素均小于的好集合.(給出結(jié)論即可)(2)求出所有滿足的好集合.(同時(shí)說(shuō)明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.19.(12分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),證明:對(duì);(2)若函數(shù)在上存在極值,求實(shí)數(shù)的取值范圍。20.(12分)已知橢圓的左、右焦點(diǎn)分別為直線垂直于軸,垂足為,與拋物線交于不同的兩點(diǎn),且過(guò)的直線與橢圓交于兩點(diǎn),設(shè)且.(1)求點(diǎn)的坐標(biāo);(2)求的取值范圍.21.(12分)已知橢圓:(),四點(diǎn),,,中恰有三點(diǎn)在橢圓上.(1)求橢圓的方程;(2)設(shè)橢圓的左右頂點(diǎn)分別為.是橢圓上異于的動(dòng)點(diǎn),求的正切的最大值.22.(10分)交通部門調(diào)查在高速公路上的平均車速情況,隨機(jī)抽查了60名家庭轎車駕駛員,統(tǒng)計(jì)其中有40名男性駕駛員,其中平均車速超過(guò)的有30人,不超過(guò)的有10人;在其余20名女性駕駛員中,平均車速超過(guò)的有5人,不超過(guò)的有15人.(1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為,家庭轎車平均車速超過(guò)與駕駛員的性別有關(guān);平均車速超過(guò)的人數(shù)平均車速不超過(guò)的人數(shù)合計(jì)男性駕駛員女性駕駛員合計(jì)(2)根據(jù)這些樣本數(shù)據(jù)來(lái)估計(jì)總體,隨機(jī)調(diào)查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過(guò)的人數(shù)為,假定抽取的結(jié)果相互獨(dú)立,求的分布列和數(shù)學(xué)期望.參考公式:其中臨界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用,根據(jù)誘導(dǎo)公式進(jìn)行化簡(jiǎn),可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.2、B【解析】
構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域?yàn)?,且,所以為奇函?shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.3、B【解析】
由三視圖判斷出原圖,將幾何體補(bǔ)形為長(zhǎng)方體,由此計(jì)算出幾何體外接球的直徑,進(jìn)而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個(gè)底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長(zhǎng)為2且與底面垂直,因?yàn)橹比庵梢詮?fù)原成一個(gè)長(zhǎng)方體,該長(zhǎng)方體外接球就是該三棱柱的外接球,長(zhǎng)方體對(duì)角線就是外接球直徑,則,那么.故選:B【點(diǎn)睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計(jì)算,屬于基礎(chǔ)題.4、A【解析】
先根據(jù)得到為的重心,從而,故可得,利用可得,故可計(jì)算的值.【詳解】因?yàn)樗詾榈闹匦?,所?所以,所以,因?yàn)?,所以,故選A.【點(diǎn)睛】對(duì)于,一般地,如果為的重心,那么,反之,如果為平面上一點(diǎn),且滿足,那么為的重心.5、D【解析】
根據(jù)底面為等邊三角形,取中點(diǎn),可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關(guān)系,設(shè)球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進(jìn)而得球的表面積.【詳解】設(shè)為中點(diǎn),是等邊三角形,所以,又因?yàn)?,且,所以平面,則,由三線合一性質(zhì)可知所以三棱錐為正三棱錐,設(shè)底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設(shè)為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線上,設(shè)球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點(diǎn)睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關(guān)計(jì)算,正三棱錐的外接球半徑求法,球的表面積求法,對(duì)空間想象能力要求較高,屬于中檔題.6、B【解析】
根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡(jiǎn)即可求解.【詳解】在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則,,∵,代入可得,解得.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.7、B【解析】
將所有可能的情況全部枚舉出來(lái),再根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個(gè),其中符合乙獲得“最佳手氣”的有3個(gè),故所求概率為,故選:B.【點(diǎn)睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.8、B【解析】
基本事件總數(shù),能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和只有,,,共有個(gè),根據(jù)古典概型求出概率.【詳解】在不超過(guò)的正偶數(shù)中隨機(jī)選取一數(shù),基本事件總數(shù)能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的只有,,,共有個(gè)則它能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的概率是本題正確選項(xiàng):【點(diǎn)睛】本題考查概率的求法,考查列舉法解決古典概型問(wèn)題,是基礎(chǔ)題.9、A【解析】
先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對(duì)任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當(dāng)時(shí),取最小值.故選:A【點(diǎn)睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項(xiàng),采用了賦值法,屬于中檔題.10、C【解析】
利用導(dǎo)數(shù)法和兩直線平行性質(zhì),將線段的最小值轉(zhuǎn)化成切點(diǎn)到直線距離.【詳解】已知與分別為函數(shù)與函數(shù)的圖象上一點(diǎn),可知拋物線存在某條切線與直線平行,則,設(shè)拋物線的切點(diǎn)為,則由可得,,所以切點(diǎn)為,則切點(diǎn)到直線的距離為線段的最小值,則.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用,以及點(diǎn)到直線的距離公式的應(yīng)用,考查轉(zhuǎn)化思想和計(jì)算能力.11、D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點(diǎn),再利用,求出點(diǎn),因?yàn)辄c(diǎn)在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因?yàn)?,即可得到,故選:D.【點(diǎn)睛】本題主要考查的是雙曲線的簡(jiǎn)單幾何性質(zhì)和向量的坐標(biāo)運(yùn)算,離心率問(wèn)題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計(jì)算雙曲線的離心率或范圍,屬于中檔題.12、C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點(diǎn)睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問(wèn)題時(shí)要先將參與運(yùn)算的集合化為最簡(jiǎn)形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進(jìn)行運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由二項(xiàng)式定理及展開(kāi)式通項(xiàng)公式得:,解得,令得:展開(kāi)式中各項(xiàng)系數(shù)和,得解.【詳解】解:由的展開(kāi)式的通項(xiàng),令,得含有的項(xiàng)的系數(shù)是,解得,令得:展開(kāi)式中各項(xiàng)系數(shù)和為,故答案為:1.【點(diǎn)睛】本題考查了二項(xiàng)式定理及展開(kāi)式通項(xiàng)公式,屬于中檔題.14、2020【解析】
可對(duì)左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點(diǎn)睛】本題考查數(shù)列遞推式和累加法的應(yīng)用,屬于基礎(chǔ)題15、【解析】
根據(jù)題意可知,直線與直線分別過(guò)定點(diǎn),且這兩條直線互相垂直,由此可知,其交點(diǎn)在以為直徑的圓上,結(jié)合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過(guò)定點(diǎn),直線可化為,所以其過(guò)定點(diǎn),且滿足,所以直線與直線互相垂直,其交點(diǎn)在以為直徑的圓上,作圖如下:結(jié)合圖形可知,線段的最大值為,因?yàn)闉榫€段的中點(diǎn),所以由中點(diǎn)坐標(biāo)公式可得,所以線段的最大值為.故答案為:【點(diǎn)睛】本題考查過(guò)交點(diǎn)的直線系方程、動(dòng)點(diǎn)的軌跡問(wèn)題及點(diǎn)與圓的位置關(guān)系;考查數(shù)形結(jié)合思想和運(yùn)算求解能力;根據(jù)圓的定義得到交點(diǎn)在以為直徑的圓上是求解本題的關(guān)鍵;屬于中檔題.16、0或6【解析】
計(jì)算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點(diǎn)睛】本題考查了根據(jù)直線和圓的位置關(guān)系求參數(shù),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力。三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析.【解析】
(1)已知點(diǎn)軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,由此可得曲線的方程;(2)設(shè)直線方程為,,則,設(shè),由直線方程與拋物線方程聯(lián)立消元應(yīng)用韋達(dá)定理得,,由,,用橫坐標(biāo)表示出,然后計(jì)算,并代入,可得結(jié)論.【詳解】(1)設(shè)動(dòng)圓圓心,由拋物線定義知:點(diǎn)軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,設(shè)其方程為,則,解得.∴曲線的方程為;(2)證明:設(shè)直線方程為,,則,設(shè),由得,①,則,,②,由,,得,,整理得,,∴,代入②得:.【點(diǎn)睛】本題考查求曲線方程,考查拋物線的定義,考查直線與拋物線相交問(wèn)題中的定值問(wèn)題.解題方法是設(shè)而不求的思想方法,即設(shè)交點(diǎn)坐標(biāo),設(shè)直線方程,直線方程代入拋物線(或圓錐曲線)方程得一元二次方程,應(yīng)用韋達(dá)定理得,,代入題中其他條件所求式子中化簡(jiǎn)變形.18、(1),,,.(2);證明見(jiàn)解析.(3)證明見(jiàn)解析.【解析】
(1)根據(jù)好集合的定義列舉即可得到結(jié)果;(2)設(shè),其中,由知;由可知或,分別討論兩種情況可的結(jié)果;(3)記,則,設(shè),由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.【詳解】(1),,,.(2)設(shè),其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,,,則,,但此時(shí),,不滿足題意;若,此時(shí),滿足題意,,其中為相異正整數(shù).(3)記,則,首先,,設(shè),其中,分別考慮和其他任一元素,由題意可得:也在中,而,,,對(duì)于,考慮,,其和大于,故其差,特別的,,,由,且,,以此類推:,,此時(shí),故中存在元素,使得中所有元素均為的整數(shù)倍.【點(diǎn)睛】本題考查集合中的新定義問(wèn)題的求解,關(guān)鍵是明確已知中所給的新定義的具體要求,根據(jù)集合元素的要求進(jìn)行推理說(shuō)明,對(duì)于學(xué)生分析和解決問(wèn)題能力、邏輯推理能力有較高的要求,屬于較難題.19、(1)見(jiàn)證明;(2)【解析】
(1)利用導(dǎo)數(shù)說(shuō)明函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最小值,得到要證明的結(jié)論;(2)問(wèn)題轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有解,法一:對(duì)a分類討論,分別研究a的不同取值下,導(dǎo)函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點(diǎn)存在定理說(shuō)明函數(shù)存在極值.【詳解】(1)當(dāng)時(shí),,于是,.又因?yàn)椋?dāng)時(shí),且.故當(dāng)時(shí),,即.所以,函數(shù)為上的增函數(shù),于是,.因此,對(duì),;(2)方法一:由題意在上存在極值,則在上存在零點(diǎn),①當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);所以為函數(shù)的極小值點(diǎn);②當(dāng)時(shí),在上成立,所以在上單調(diào)遞增,所以在上沒(méi)有極值;③當(dāng)時(shí),在上成立,所以在上單調(diào)遞減,所以在上沒(méi)有極值,綜上所述,使在上存在極值的的取值范圍是.方法二:由題意,函數(shù)在上存在極值,則在上存在零點(diǎn).即在上存在零點(diǎn).設(shè),,則由單調(diào)性的性質(zhì)可得為上的減函數(shù).即的值域?yàn)椋?,?dāng)實(shí)數(shù)時(shí),在上存在零點(diǎn).下面證明,當(dāng)時(shí),函數(shù)在上存在極值.事實(shí)上,當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);即為函數(shù)的極小值點(diǎn).綜上所述,當(dāng)時(shí),函數(shù)在上存在極值.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的最值,涉及函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,函數(shù)的最值的求法,考查構(gòu)造法的應(yīng)用,是一道綜合題.20、(1);(2).【解析】
(1)設(shè)出的坐標(biāo),代入,結(jié)合在拋物線上,求得兩點(diǎn)的橫坐標(biāo),進(jìn)而求得點(diǎn)的坐標(biāo).(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,結(jié)合,求得的表達(dá)式,結(jié)合二次函數(shù)的性
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級(jí)下冊(cè)《買鮮花》課件版
- 2021屆浙江省寧波市九校高一上學(xué)期期末聯(lián)考數(shù)學(xué)試題(解析版)
- 人教版八年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷-(含答案)
- 《風(fēng)險(xiǎn)投資方法》課件
- 2025年1月八省聯(lián)考高考綜合改革適應(yīng)性測(cè)試-高三化學(xué)(內(nèi)蒙古卷)
- 天津市和平區(qū)2023-2024學(xué)年高三上學(xué)期期末質(zhì)量調(diào)查英語(yǔ)試卷
- 醫(yī)藥行業(yè)前臺(tái)接待工作心得
- 家政服務(wù)保姆照顧技能培訓(xùn)總結(jié)
- 環(huán)保行業(yè)美工工作總結(jié)
- 貴州省安順市紫云縣2021-2022學(xué)年九年級(jí)上學(xué)期期末化學(xué)試題
- 物業(yè)年會(huì)講話稿范文
- TCUWA40055-2023排水管道工程自密實(shí)回填材料應(yīng)用技術(shù)規(guī)程
- 2024年國(guó)家公務(wù)員考試《申論》真題(地市級(jí))及答案解析
- 公眾號(hào)年終總結(jié)個(gè)人
- 私募股權(quán)投資基金績(jī)效考核制度
- 初三生活學(xué)習(xí)總結(jié)模板
- 2024-2025學(xué)年第一學(xué)期期中考試 初一語(yǔ)文 試卷
- 單位內(nèi)部發(fā)生治安案件、涉嫌刑事犯罪事件的報(bào)告制度
- 2023年心理學(xué)基礎(chǔ)知識(shí)試題及答案
- 湖南省岳陽(yáng)市2023-2024學(xué)年高三上學(xué)期教學(xué)質(zhì)量監(jiān)測(cè)(一)(一模) 英語(yǔ) 含解析
- 河南省道德與法治初二上學(xué)期期末試題與參考答案(2024-2025學(xué)年)
評(píng)論
0/150
提交評(píng)論