




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
、思方法結(jié)構(gòu)平面解析幾何是中學(xué)數(shù)學(xué)中獨(dú)具特色的一門學(xué)科.它學(xué)科思想是用代數(shù)方法解決幾何問題解幾何課教學(xué)的根本任務(wù)就是要引導(dǎo)學(xué)生能深刻領(lǐng)會(huì)“平面解析幾何”的學(xué)科思想,把握“平面解析幾何”這門學(xué)科的思維方.在平面解析幾何的綜合性問題的教學(xué)中,要突出解析幾何的研究問題的一般方法,要能夠明確用代數(shù)方法解決幾何問題的幾個(gè)關(guān)鍵的步驟:(要夠根據(jù)問題的條件讀幾何對(duì)象的幾何特從兩個(gè)方面去分析對(duì)于單個(gè)的幾何對(duì)象,要研究它的幾何性質(zhì),對(duì)于不同的幾何對(duì)象,要關(guān)注它們之間的位置關(guān).再此基礎(chǔ)上做出圖形直地表達(dá)所分析出來(lái)的幾何對(duì)象的幾何特征明了幾何對(duì)象的幾何特征的基礎(chǔ)上,要進(jìn)行有效的、合理的代數(shù).括幾何元素的代數(shù)化、位置關(guān)系的代數(shù)化、所要研究問題的目標(biāo)進(jìn)行代數(shù)化等行代數(shù)運(yùn)包解所聯(lián)系的方程組、消去所引進(jìn)的參數(shù)、運(yùn)用函數(shù)的研究方法解決有關(guān)的最值問題,等()據(jù)經(jīng)過(guò)代數(shù)運(yùn)算得到的代數(shù)結(jié)果,分析得出幾何的結(jié).
2222平面解析幾何綜合題的教學(xué),要夠教出味道,教出東西來(lái)學(xué)解決問題的過(guò)程中去體會(huì)平面解析幾何的基思想,掌握平面研究解析幾何問題的一般方法要這個(gè)目標(biāo)師就要打破模式化束縛決題思層去學(xué)生思考問題與解決問題,要讓學(xué)生能夠從學(xué)科的思方法角度理解解題的環(huán)節(jié)種理性地認(rèn)識(shí)我們的解題過(guò)程能夠真正地讓學(xué)生們掌握究問題的方法教中的教的邏輯才能夠得以實(shí)施的邏輯也才能夠讓學(xué)生理解和接.二、例知圓
:x
22
兩點(diǎn)m,0,m,0m0,C存在點(diǎn)P
,使得
APB90則最大值為何理解
xa
1過(guò)點(diǎn)M”3.如果)2m)
總存在兩點(diǎn)到原點(diǎn)距離為1求數(shù)m的值范.4.在面直角坐標(biāo)系中點(diǎn)
A,直2x4
.設(shè)圓C
的半徑為,圓心在l上若C存在點(diǎn)M,
MA
,求圓心C的橫坐標(biāo)a的范.5.過(guò)點(diǎn)M(4,2)互相垂的兩條直線l和l,分與x軸y交于點(diǎn),2線段中點(diǎn)為P,求
OP
的最小值6.
滿足條件AB
2BC
的三角形
ABC
的面積的最大值7.直2axby1
與圓
x2
相交于
A
、
B
兩點(diǎn)(其中數(shù)
是直角三角(
O
是坐標(biāo)原,則點(diǎn)
與
之間距離的最大值為()A
2
B.
2
C.
2
D
2
1x1x8.如線AB=8點(diǎn)C線段AB上且AC=2,為段CB一動(dòng)點(diǎn)點(diǎn)A繞旋轉(zhuǎn)后與點(diǎn)
B
繞點(diǎn)
P
旋轉(zhuǎn)后重合于點(diǎn)
D
.設(shè)=x
,△的積為
f()
.則
f()
的定義域?yàn)椋?/p>
f')
的零點(diǎn)是.DA
C
B已點(diǎn)A在數(shù)yx的個(gè)數(shù)為
的圖象上,則使得△的積為2的點(diǎn)10.直
y=kx
與圓x
y
交于M兩,于直線x+y=0
對(duì)+k稱求11.雙曲線
的值.2y2169
,右支上一點(diǎn)M,
M12
的內(nèi)切圓與x軸于點(diǎn),則
12
的值是12.直
與2y
的位置關(guān)系是設(shè)關(guān)于
,y的等式組
2x0,表示的平面區(qū)域內(nèi)存在點(diǎn)
,求得的取值范圍是A.
B..
23
.
53
14.若數(shù)滿
x
2
y
2
,則
xx
的最小值是
.15點(diǎn)P在左右焦點(diǎn)分別為
,12
y的雙曲線
上,若
PF9,1
則
PF2
=16已橢圓
y
的左右焦點(diǎn)分別為
1
,點(diǎn)P在圓上若,
,F12
是一個(gè)直角三角形的三個(gè)頂點(diǎn),則點(diǎn)P到軸的距為17.已知橢圓C:
y.確定的值范圍,使得對(duì)于直線
y
,上有兩個(gè)不
同的點(diǎn)關(guān)于該直線對(duì).18.拋線y
上存在兩點(diǎn)
A,
關(guān)于直線
l:
對(duì)稱,求的值范圍19.已知菱形ABCD的點(diǎn)、在圓
2
y
2
上,對(duì)角線D在直線的斜率為1.(Ⅰ)當(dāng)直線
BD
過(guò)點(diǎn)(0,1)
時(shí),求直線
AC
的方程(Ⅱ)當(dāng)
ABC
時(shí),求菱形ABCD面積的最大值20.,B分為橢圓
2y243
的左、右頂點(diǎn),設(shè)為線x4
上不同于點(diǎn)(4,)的任意一點(diǎn),若直線
AP
分別與橢圓相交于異于
A,
的點(diǎn)M,證明點(diǎn)
B
在以MN為直徑的圓.21.已知:AB在px
上,直線OB傾角為且
4
.證明直線AB過(guò)點(diǎn)22.已知橢圓
C:x
4
.設(shè)O為點(diǎn),若點(diǎn)在橢圓C上,點(diǎn)B在線2上且
,試判斷與x2
的位置關(guān)系,并證明你的結(jié)論23.已知
2y2
A是W上的不同兩點(diǎn)是坐標(biāo)原點(diǎn)OA
的最小值三、如何會(huì)學(xué)生解決學(xué)問題的方如何找到解決數(shù)學(xué)問題的方法呢過(guò)去我強(qiáng)調(diào)比較多的是解決數(shù)學(xué)問題的一般方法,但是這樣的闡述就解決數(shù)學(xué)問題而言還不是全面的.我經(jīng)的一個(gè)觀點(diǎn)是解決數(shù)學(xué)問題的方法越少越好,就是針對(duì)解決數(shù)學(xué)問題的一般方法而言的.但解決數(shù)學(xué)問題只靠一般方法就能解決嗎?換句話說(shuō)數(shù)問題的一般方法是解決哪個(gè)方面的問題?為什么叫一般方法或通性通法呢?我們常見的數(shù)學(xué)問這里專指學(xué)生做的數(shù)學(xué)題目包含兩個(gè)要素一是這個(gè)問題中涉及到的研究對(duì)象函數(shù)的解析式線方程間幾何體列的通項(xiàng)等,這個(gè)對(duì)象不一定是一個(gè)許是兩個(gè)或更多有個(gè)要素是針對(duì)研究對(duì)象所提出來(lái)的需要解決的具體問題因,要解決一個(gè)數(shù)學(xué)問題,首先就要對(duì)數(shù)學(xué)問題的對(duì)象(也可以稱之為數(shù)學(xué)問題的主體)進(jìn)行研.要究單個(gè)對(duì)象的屬性、性質(zhì)以及兩個(gè)及以上對(duì)象之間的關(guān).如對(duì)一個(gè)函數(shù)要研究其所有的性質(zhì)于兩個(gè)函數(shù)不僅要研究它們各自的性質(zhì)還要研
究它們的代數(shù)關(guān)系;同樣,對(duì)于兩個(gè)幾何對(duì)象也要研究它們之間的位置關(guān)系,等等.這方法是研究問題主體的性質(zhì)性關(guān)系的是解決任何一個(gè)數(shù)學(xué)問題都需要面對(duì)的并加以解決的從個(gè)意義上來(lái)說(shuō),這種研究數(shù)學(xué)問題的方法就是一般方法、通性通.解決針對(duì)這個(gè)研究對(duì)象的具體問題的方法是怎么得到的呢?在教學(xué)實(shí)踐中,教師經(jīng)常會(huì)結(jié)合例題來(lái)講解決問題的方法,通常是對(duì)數(shù)學(xué)問題分類,針對(duì)不同類型的問題對(duì)應(yīng)著不同的方法進(jìn)行教學(xué)為了讓學(xué)生能夠熟練地掌握老師教給的方法,常常需要通過(guò)一定量的練習(xí)、考試等手段達(dá)到教學(xué)目的.在種理念下進(jìn)行的教學(xué),教師不太關(guān)注解決數(shù)學(xué)問題的方法是如何得到的把教學(xué)的重點(diǎn)放在了學(xué)生會(huì)不會(huì)熟練運(yùn)用方法去解決問.課堂上如果涉及這個(gè)方法是從哪里來(lái)的時(shí)候師常會(huì)說(shuō)和這個(gè)問題類似的我們什么時(shí)候做過(guò)、上周我們講過(guò),所以解決這個(gè)問題的方法是什么等等.這種說(shuō)辭掩蓋了解決數(shù)學(xué)問題方法的本質(zhì),就是說(shuō)方法是老師教的,只要會(huì)用就夠了如,在學(xué)生的數(shù)學(xué)思維中于方法的思維活動(dòng)就變得缺乏邏輯學(xué)學(xué)就很容易演變成對(duì)解題方法熟練運(yùn)用的教學(xué),解決數(shù)學(xué)問題的思維活動(dòng)越來(lái)越偏離數(shù)學(xué)學(xué)科的本.我認(rèn)為,解決數(shù)學(xué)具體問題的方法是數(shù)學(xué)問題的研究對(duì)象的性質(zhì)及關(guān)系轉(zhuǎn)化而來(lái)的,是對(duì)研究對(duì)象的性質(zhì)及關(guān)系研究之后并深刻理解的基礎(chǔ)上得到的.這方法不是前面我們所說(shuō)的一般方法是運(yùn)用一方法之后的解決具體數(shù)學(xué)問題的具體方學(xué)生要體會(huì)到:這種具體方法不是老師告訴的樣方法沒有套路可循樣的方法是學(xué)生自己根據(jù)對(duì)問題對(duì)象的性質(zhì)及關(guān)系的研究基礎(chǔ)上找到的如不分析研究對(duì)象的性質(zhì)及關(guān)系,就不會(huì)有解決數(shù)學(xué)具體問題的具體方.這樣,我們就看到解決數(shù)學(xué)問題的方法實(shí)際上是兩個(gè)方法,即一般方法和具體方法.一般方法不多但由于對(duì)數(shù)學(xué)具體問題分理解不同研究對(duì)象的性質(zhì)和關(guān)系運(yùn)用的角度不同,就出現(xiàn)了各種各樣的具體方法但是,有經(jīng)驗(yàn)的數(shù)學(xué)教師會(huì)從多種多樣的具體方法中提煉概括,讓學(xué)生感受到這些具體方法都是來(lái)源于問題對(duì)象的性質(zhì)或關(guān)系如果學(xué)生面對(duì)數(shù)學(xué)問題時(shí)再急急忙忙地進(jìn)行運(yùn)算或套用現(xiàn)成的方法是夠比較從容的對(duì)數(shù)學(xué)問題的研究對(duì)象進(jìn)行理解和深入研究能夠在研究的基礎(chǔ)上到解決
具體問題的具體方法,那么他的解決數(shù)學(xué)問題的活動(dòng)就是有邏輯的數(shù)學(xué)思維活動(dòng).這種能力一旦獲得他就不需要依賴?yán)蠋煼裰v過(guò)類似的題目也不再靠
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年中國(guó)佛教協(xié)會(huì)和中國(guó)佛學(xué)院招聘筆試真題
- 包倉(cāng)庫(kù)合同范本
- 保溫棉合同范本
- 2024年清遠(yuǎn)市英德市市區(qū)學(xué)校選調(diào)教師考試真題
- 鄉(xiāng)下老宅轉(zhuǎn)讓合同范本
- 包山正規(guī)合同范本
- 《三、應(yīng)用設(shè)計(jì)模板》教學(xué)設(shè)計(jì) -2024-2025學(xué)年初中信息技術(shù)人教版七年級(jí)上冊(cè)
- 三層樓房施工合同范本
- Unit 8 Lesson 46 教學(xué)設(shè)計(jì) - 2024-2025學(xué)年冀教版英語(yǔ)八年級(jí)下冊(cè)
- 第2單元 單元備課說(shuō)明2024-2025學(xué)年新教材七年級(jí)語(yǔ)文上冊(cè)同步教學(xué)設(shè)計(jì)(統(tǒng)編版2024)河北專版
- 電梯維護(hù)保養(yǎng)規(guī)則(TSG T5002-2017)
- 義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)解讀與案例分析
- 體育概論課外體育活動(dòng)
- 招商代理及商業(yè)運(yùn)營(yíng)服務(wù) 投標(biāo)方案(技術(shù)方案)
- 屋頂拆除方案
- 如何避免時(shí)間浪費(fèi)
- 小學(xué)數(shù)學(xué)六年級(jí)解方程練習(xí)600題及答案
- IP地址介紹和子網(wǎng)劃分
- 架空絕緣配電線路設(shè)計(jì)規(guī)范
- 2023-2024學(xué)年北京重點(diǎn)大學(xué)附屬實(shí)驗(yàn)中學(xué)八年級(jí)(下)開學(xué)數(shù)學(xué)試卷(含解析)
- 2024年新青島版(六三制)六年級(jí)下冊(cè)科學(xué)全冊(cè)知識(shí)點(diǎn)
評(píng)論
0/150
提交評(píng)論