2023屆上海市靜安區(qū)市級名校高二數(shù)學第二學期期末達標檢測試題含解析_第1頁
2023屆上海市靜安區(qū)市級名校高二數(shù)學第二學期期末達標檢測試題含解析_第2頁
2023屆上海市靜安區(qū)市級名校高二數(shù)學第二學期期末達標檢測試題含解析_第3頁
2023屆上海市靜安區(qū)市級名校高二數(shù)學第二學期期末達標檢測試題含解析_第4頁
2023屆上海市靜安區(qū)市級名校高二數(shù)學第二學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023高二下數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某個命題與正整數(shù)有關,如果當時命題成立,那么可推得當時命題也成立?,F(xiàn)已知當n=8時該命題不成立,那么可推得A.當n=7時該命題不成立 B.當n=7時該命題成立C.當n=9時該命題不成立 D.當n=9時該命題成立2.已知函數(shù),若存在唯一的零點,且,則的取值范圍是A. B. C. D.3.設集合,集合,則()A. B. C. D.4.為了研究經(jīng)常使用手機是否對數(shù)學學習成績有影響,某校高二數(shù)學研究性學習小組進行了調(diào)查,隨機抽取高二年級50名學生的一次數(shù)學單元測試成績,并制成下面的2×2列聯(lián)表:及格不及格合計很少使用手機20525經(jīng)常使用手機101525合計302050則有()的把握認為經(jīng)常使用手機對數(shù)學學習成績有影響.參考公式:,其中0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828A.97.5% B.99% C.99.5% D.99.9%5.實驗女排和育才女排兩隊進行比賽,在一局比賽中實驗女排獲勝的概率是,沒有平局.若采用三局兩勝制,即先勝兩局者獲勝且比賽結束,則實驗女排獲勝的概率等于()A. B. C. D.6.從班委會5名成員中選出3名,分別擔任班級學習委員、文娛委員與體育委員,其中甲、乙二人不能擔任文娛委員,則不同的選法共有()種.A.36 B.30 C.12 D.67.已知雙曲線的焦點坐標為,,點是雙曲線右支上的一點,,的面積為,則該雙曲線的離心率為()A. B. C. D.8.焦點為且與雙曲線有相同的漸近線的雙曲線方程是A. B. C. D.9.已知,,且,則向量在方向上的正射影的數(shù)量為A.1 B.C. D.10.已知命題p:|x-1|≥2,命題q:x∈Z,若“p且q”與“非q”同時為假命題,則滿足條件的x為()A.{x|x≥3或x≤-1,x∈Z}B.{x|-1≤x≤3,x∈Z}C.{0,1,2}D.{-1,0,1,2,3}11.把座位編號為1,2,3,4,5,6的六張電影票全部分給甲、乙、丙、丁四個人,每人最多得兩張,甲、乙各分得一張電影票,且甲所得電影票的編號總大于乙所得電影票的編號,則不同的分法共有()A.90種 B.120種 C.180種 D.240種12.現(xiàn)有8個人排成一排照相,其中甲、乙、丙三人兩兩不相鄰的排法的種數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),.則函數(shù)f(x)的最小正周期_______14.用簡單隨機抽樣的方法從含有100個個體的總體中依次抽取一個容量為5的樣本,則個體m被抽到的概率為_____.15.已知,設,若存在不相等的實數(shù)同時滿足方程和,則實數(shù)的取值范圍為______.16.已知冪函數(shù)的圖象經(jīng)過點,則實數(shù)α的值是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,內(nèi)角,,的對邊分別為,,,且.(1)求角的大?。唬?)若,,求的面積.18.(12分)已知點,橢圓:的離心率為,是橢圓的焦點,直線的斜率為,為坐標原點.(Ⅰ)求的方程;(Ⅱ)設過點的直線與相交于,兩點,求面積的取值范圍.19.(12分)如圖,四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,,,且,E為PD中點.(I)求證:平面ABCD;(II)求二面角B-AE-C的正弦值.20.(12分)已知21.(12分)(1)已知,都是正數(shù),并且,求證:;(2)若,都是正實數(shù),且,求證:與中至少有一個成立.22.(10分)在△中,分別為內(nèi)角的對邊,已知.(Ⅰ)求;(Ⅱ)若,求△的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)逆否命題和原命題的真假一致性得,當時命題不成立,則命題也不成立,所以選A.【詳解】根據(jù)逆否命題和原命題的真假一致性得,當時命題不成立,則命題也不成立,所以當時命題不成立,則命題也不成立,故答案為:A【點睛】(1)本題主要考查數(shù)學歸納法和逆否命題,意在考查學生對這些知識的掌握水平和分析推理能力.(2)互為逆否關系的命題同真同假,即原命題與逆否命題的真假性相同,原命題的逆命題和否命題的真假性相同.所以,如果某些命題(特別是含有否定概念的命題)的真假性難以判斷,一般可以判斷它的逆否命題的真假性.2、C【解析】試題分析:當時,,函數(shù)有兩個零點和,不滿足題意,舍去;當時,,令,得或.時,;時,;時,,且,此時在必有零點,故不滿足題意,舍去;當時,時,;時,;時,,且,要使得存在唯一的零點,且,只需,即,則,選C.考點:1、函數(shù)的零點;2、利用導數(shù)求函數(shù)的極值;3、利用導數(shù)判斷函數(shù)的單調(diào)性.3、C【解析】分析:解不等式,得到和,由集合的交集運算可得到解。詳解:解絕對值不等式,得;由對數(shù)函數(shù)的真數(shù)大于0,得根據(jù)集合的運算得所以選C點睛:本題考查了解絕對值不等式,對數(shù)函數(shù)的定義域,集合的基本運算,是基礎題。4、C【解析】

根據(jù)2×2列聯(lián)表,求出的觀測值,結合題中表格數(shù)據(jù)即可得出結論.【詳解】由題意,可得:,所以有99.5%的把握認為經(jīng)常使用手機對數(shù)學學習成績有影響.故選C.【點睛】本題考查了獨立性檢驗的應用,考查了計算能力,屬于基礎題.5、B【解析】試題分析:實驗女排要獲勝必須贏得其中兩局,可以是1,2局,也可以是1,3局,也可以是2,3局.故獲勝的概率為:,故選B.考點:獨立事件概率計算.6、A【解析】從班委會5名成員中選出3名,分別擔任班級學習委員、文娛委員與體育委員,其中甲、乙二人不能擔任文娛委員,因為先從其余3人中選出1人擔任文藝委員,再從4人中選2人擔任學習委員和體育委員,所以不同的選法共有種.本題選擇A選項.7、B【解析】

由的面積為,可得,再由余弦定理求出,根據(jù)雙曲線的定義可得,從而可得結論.【詳解】因為的面積為,,所以,可得,,,所以離心率,故選B.【點睛】本題主要考查雙曲線的定義及離心率,屬于中檔題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.8、A【解析】

根據(jù)題目要求解的雙曲線與雙曲線有相同的漸近線,且焦點在y軸上可知,設雙曲線的方程為,將方程化成標準形式,根據(jù)雙曲線的性質(zhì),求解出的值,即可求出答案.【詳解】由題意知,設雙曲線的方程為,化簡得.解得.所以雙曲線的方程為,故答案選A.【點睛】本題主要考查了共漸近線的雙曲線方程求解問題,共漸近線的雙曲線系方程與雙曲線有相同漸近線的雙曲線方程可設為,若,則雙曲線的焦點在x軸上,若,則雙曲線的焦點在y軸上.9、D【解析】

由與、可得出,向量在方向上的正射影的數(shù)量=【詳解】向量在方向上的正射影的數(shù)量=【點睛】本題考查兩向量垂直,其數(shù)量積等于0.向量在方向上的正射影的數(shù)量=.10、C【解析】試題分析:由題意知q真,p假,∴|x-1|<1.∴-1<x<3且x∈Z.∴x=0,1,1.選C.考點:命題否定11、A【解析】

從6張電影票中任選2張給甲、乙兩人,共種方法;再將剩余4張票平均分給丙丁2人,共有種方法;根據(jù)分步乘法計數(shù)原理即可求得結果.【詳解】分兩步:先從6張電影票中任選2張給甲,乙兩人,有種分法;再分配剩余的4張,而每人最多兩張,所以每人各得兩張,有種分法,由分步原理得,共有種分法.故選:A【點睛】本題主要考查分步乘法計數(shù)原理與組合的綜合問題.12、C【解析】先排剩下5人,再從產(chǎn)生的6個空格中選3個位置排甲、乙、丙三人,即,選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

首先根據(jù)二倍角公式先化簡以及輔助角公式化簡,再根據(jù)即可?!驹斀狻坑深}意得:,∴函數(shù)f(x)的最小正周期;【點睛】本題主要考查了三角函數(shù)的化簡以及周期的計算,屬于基礎題。14、【解析】

總體含100個個體,從中抽取容量為5的樣本,則每個個體被抽到的概率為.【詳解】因為總體含100個個體,所以從中抽取容量為5的樣本,則每個個體被抽到的概率為.【點睛】本題考查簡單隨機抽樣的概念,即若總體有個個體,從中抽取個個體做為樣本,則每個個體被抽到的概率均為.15、【解析】

根據(jù)奇偶性定義求得為奇函數(shù),從而可得且,從而可將整理為:,通過求解函數(shù)的值域可得到的取值范圍.【詳解】為上的奇函數(shù)又且且即:令,則在上單調(diào)遞增又本題正確結果:【點睛】本題考查函數(shù)性質(zhì)的綜合應用問題,涉及到奇偶性的判定、單調(diào)性的應用,關鍵是能夠將問題轉化為的值域的求解問題;易錯點是在求解的取值范圍時,忽略的條件,錯誤求解為,造成增根.16、【解析】

由冪函數(shù)的定義,把代入可求解.【詳解】點在冪函數(shù)的圖象上,,,故答案為:【點睛】本題考查冪函數(shù)的定義.冪函數(shù)的性質(zhì):(1)冪函數(shù)在上都有定義;(2)冪函數(shù)的圖象過定點;(3)當時,冪函數(shù)的圖象都過點和,且在上單調(diào)遞增;(4)當時,冪函數(shù)的圖象都過點,且在上單調(diào)遞減;(5)當為奇數(shù)時,冪函數(shù)為奇函數(shù);當為偶數(shù)時,冪函數(shù)為偶函數(shù).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)直接由正弦定理可得,從而可得答案.

(2)由余弦定理可得,再由面積公式可求答案.【詳解】解:(1)由,得,,∴,又因為為銳角三角形,∴.(2)由余弦定理可知,,即,解得,∴.【點睛】本題考查正弦定理和余弦定理的應用以及三角形的面積,屬于基礎題.18、(Ⅰ);(Ⅱ).【解析】分析:(1)根據(jù)題意得到關于a,c的方程組,解方程組得E的方程.(2)設:,先求,再求點到直線的距離,最后求,再利用基本不等式求面積的取值范圍.詳解:(Ⅰ)設,由條件知,,得,又,所以,,故的方程為.(Ⅱ)當軸時不合題意,故設:,,,將代入得,當,即時,,從而,又點到直線的距離,所以的面積,設,則,,因為,所以的面積的取值范圍為.點睛:(1)本題主要考查橢圓的標準方程,考查直線和橢圓的位置關系,考查橢圓中面積的最值問題,意在考查學生對這些知識的掌握水平和分析推理能力基本計算能力.(2)解答本題的關鍵由兩點,其一是求出,其二是先換元法再利用基本不等式求的面積的取值范圍,設,得到.19、(I)見解析(II)【解析】

(I)根據(jù)題目所給條件,利用直線與平面垂直的判定方法分別證明出平面PAB以及平面,進而得到和,從而推得線面垂直.(II)根據(jù)已知條件,以A為原點,AB為軸,AD為軸,AP為軸建立直角坐標系,分別求出平面ABE和平面AEC的法向量,最后利用向量法求出二面角B-AE-C的正弦值.【詳解】解:(I)證明:∵底面ABCD為正方形,∴,又,,∴平面PAB,∴.同理,∴平面ABCD(II)建立如圖的空間直角坐標系A-xyz,則,,,,易知設為平面ABE的一個法向量,又,,∴令,,得.設為平面AEC的一個法向量,又∴令,得.∴二面角B-AE-C的正弦值為.【點睛】本題主要考查了通過證明直線與平面垂直來推出直線與直線垂直,以及利用向量法求二面角的問題,解題時要注意根據(jù)圖形特征或者已知要求確定二面角是銳角或鈍角,從而得出問題的結果.20、【解析】

把z1、z2代入關系式,化簡即可【詳解】,【點睛】復數(shù)的運算,難點是乘除法法則,設,則,.21、(1)詳見解析;(2)詳見解析.【解析】

(1)利用綜合法,將兩式做差,化簡整理,即可證明(2)利用反證法,先假設原命題不成立,再推理證明,得出矛盾,即得原命題成立?!驹斀狻浚?)因為,都是正數(shù),所以,又,所以,所以,所以,即.(2)假設和都不成立,即和同時成立.且,,.兩式相加得,即.此與已知條件相矛盾,和中至少有一個成立.【點睛】本題主要考查綜合法和反證法證明,其中用反證法證明時,要從否定結論開始,經(jīng)過正確的推理,得出矛盾,即假設不成立,原命題成立,進而得證。22、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)方法一:由A∈(0,π

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論