2023屆江蘇省泰興市黃橋東區(qū)域市級名校中考數(shù)學(xué)四模試卷含解析_第1頁
2023屆江蘇省泰興市黃橋東區(qū)域市級名校中考數(shù)學(xué)四模試卷含解析_第2頁
2023屆江蘇省泰興市黃橋東區(qū)域市級名校中考數(shù)學(xué)四模試卷含解析_第3頁
2023屆江蘇省泰興市黃橋東區(qū)域市級名校中考數(shù)學(xué)四模試卷含解析_第4頁
2023屆江蘇省泰興市黃橋東區(qū)域市級名校中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列圖標中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.2.在剛剛結(jié)束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數(shù)是9 B.眾數(shù)為16 C.平均分為7.78 D.方差為23.如圖,在以O(shè)為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k的值是()A. B. C. D.124.分式的值為0,則x的取值為()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-15.下列計算中正確的是()A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x6.關(guān)于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a(chǎn)≠±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.a(chǎn)=±17.已知圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,要使這兩圓沒有公共點,那么d的值可以?。ǎ〢.11; B.6; C.3; D.1.8.右圖是由四個小正方體疊成的一個立體圖形,那么它的俯視圖是()A. B. C. D.9.在下列函數(shù)中,其圖象與x軸沒有交點的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=10.如圖,數(shù)軸上的三點所表示的數(shù)分別為,其中,如果|那么該數(shù)軸的原點的位置應(yīng)該在()A.點的左邊 B.點與點之間 C.點與點之間 D.點的右邊11.計算(—2)2-3的值是()A、1B、2C、—1D、—212.一個三角形框架模型的三邊長分別為20厘米、30厘米、40厘米,木工要以一根長為60厘米的木條為一邊,做一個與模型三角形相似的三角形,那么另兩條邊的木條長度不符合條件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知圓錐的底面半徑為3cm,側(cè)面積為15πcm2,則這個圓錐的側(cè)面展開圖的圓心角°.14.當﹣4≤x≤2時,函數(shù)y=﹣(x+3)2+2的取值范圍為_____________.15.已知ab=﹣2,a﹣b=3,則a3b﹣2a2b2+ab3的值為_______.16.規(guī)定一種新運算“*”:a*b=a-b,則方程x*2=1*x的解為________.17.閱讀下面材料:在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:已知:求作:的內(nèi)切圓.小明的作法如下:如圖2,作,的平分線BE和CF,兩線相交于點O;過點O作,垂足為點D;

點O為圓心,OD長為半徑作所以,即為所求作的圓.請回答:該尺規(guī)作圖的依據(jù)是______.18.在一張直角三角形紙片的兩直角邊上各取一點,分別沿斜邊中點與這兩點的連線剪去兩個三角形,剩下的部分是如圖所示的四邊形,AB∥CD,CD⊥BC于C,且AB、BC、CD邊長分別為2,4,3,則原直角三角形紙片的斜邊長是_______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)解不等式組.20.(6分)我市正在創(chuàng)建“全國文明城市”,某校擬舉辦“創(chuàng)文知識”搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元.A、B兩種獎品每件各多少元?現(xiàn)要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?21.(6分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF,(1)求證:AF=DC;(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.22.(8分)如圖①,一次函數(shù)y=x﹣2的圖象交x軸于點A,交y軸于點B,二次函數(shù)y=x2+bx+c的圖象經(jīng)過A、B兩點,與x軸交于另一點C.(1)求二次函數(shù)的關(guān)系式及點C的坐標;(2)如圖②,若點P是直線AB上方的拋物線上一點,過點P作PD∥x軸交AB于點D,PE∥y軸交AB于點E,求PD+PE的最大值;(3)如圖③,若點M在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點M的坐標.23.(8分)小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時間x(分)之間的函數(shù)圖象如圖所示.求小張騎自行車的速度;求小張停留后再出發(fā)時y與x之間的函數(shù)表達式;求小張與小李相遇時x的值.24.(10分)圖1是某市2009年4月5日至14日每天最低氣溫的折線統(tǒng)計圖.圖2是該市2007年4月5日至14日每天最低氣溫的頻數(shù)分布直方圖,根據(jù)圖1提供的信息,補全圖2中頻數(shù)分布直方圖;在這10天中,最低氣溫的眾數(shù)是____,中位數(shù)是____,方差是_____.請用扇形圖表示出這十天里溫度的分布情況.25.(10分)如圖1,在直角梯形ABCD中,AB⊥BC,AD∥BC,點P為DC上一點,且AP=AB,過點C作CE⊥BP交直線BP于E.(1)若ABBC=3(2)若AB=BC.①如圖2,當點P與E重合時,求PDPC②如圖3,設(shè)∠DAP的平分線AF交直線BP于F,當CE=1,PDPC26.(12分)一個不透明的袋子中,裝有標號分別為1、-1、2的三個小球,他們除標號不同外,其余都完全相同;攪勻后,從中任意取一個球,標號為正數(shù)的概率是;攪勻后,從中任取一個球,標號記為k,然后放回攪勻再取一個球,標號記為b,求直線y=kx+b經(jīng)過一、二、三象限的概率.27.(12分)如圖,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圓,過點C作⊙O的切線交BA的延長線于點E,BD⊥CE于點D,連接DO交BC于點M.(1)求證:BC平分∠DBA;(2)若,求的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的概念,可知:A既不是軸對稱圖形,也不是中心對稱圖形,故不正確;B不是軸對稱圖形,但是中心對稱圖形,故不正確;C是軸對稱圖形,但不是中心對稱圖形,故不正確;D即是軸對稱圖形,也是中心對稱圖形,故正確.故選D.考點:軸對稱圖形和中心對稱圖形識別2、A【解析】

根據(jù)中位數(shù),眾數(shù),平均數(shù),方差等知識即可判斷;【詳解】觀察圖象可知,共有50個學(xué)生,從低到高排列后,中位數(shù)是25位與26位的平均數(shù),即為1.故選A.【點睛】本題考查中位數(shù),眾數(shù),平均數(shù),方差的定義,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.3、C【解析】

設(shè)B點的坐標為(a,b),由BD=3AD,得D(,b),根據(jù)反比例函數(shù)定義求出關(guān)鍵點坐標,根據(jù)S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【詳解】∵四邊形OCBA是矩形,∴AB=OC,OA=BC,設(shè)B點的坐標為(a,b),∵BD=3AD,∴D(,b),∵點D,E在反比例函數(shù)的圖象上,∴=k,∴E(a,

),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-?-?-??(b-)=9,∴k=,故選:C【點睛】考核知識點:反比例函數(shù)系數(shù)k的幾何意義.結(jié)合圖形,分析圖形面積關(guān)系是關(guān)鍵.4、A【解析】

分式的值為2的條件是:(2)分子等于2;(2)分母不為2.兩個條件需同時具備,缺一不可.據(jù)此可以解答本題.【詳解】∵原式的值為2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故選:A.【點睛】此題考查的是對分式的值為2的條件的理解,該類型的題易忽略分母不為2這個條件.5、C【解析】

根據(jù)合并同類項的方法、同底數(shù)冪的除法法則、冪的乘方、負整數(shù)指數(shù)冪的意義逐項求解,利用排除法即可得到答案.【詳解】A.x2+x2=2x2,故不正確;B.x6÷x3=x3,故不正確;C.(x3)2=x6,故正確;D.x﹣1=,故不正確;故選C.【點睛】本題考查了合并同類項的方法、同底數(shù)冪的除法法則、冪的乘方、負整數(shù)指數(shù)冪的意義,解答本題的關(guān)鍵是熟練掌握各知識點.6、C【解析】

根據(jù)一元一次方程的定義即可求出答案.【詳解】由題意可知:,解得a=?1故選C.【點睛】本題考查一元二次方程的定義,解題的關(guān)鍵是熟練運用一元二次方程的定義,本題屬于基礎(chǔ)題型.7、D【解析】∵圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,∴當d>4+7或d<7-4時,這兩個圓沒有公共點,即d>11或d<3,∴上述四個數(shù)中,只有D選項中的1符合要求.故選D.點睛:兩圓沒有公共點,存在兩種情況:(1)兩圓外離,此時圓心距>兩圓半徑的和;(1)兩圓內(nèi)含,此時圓心距<大圓半徑-小圓半徑.8、B【解析】解:從上面看,上面一排有兩個正方形,下面一排只有一個正方形,故選B.9、D【解析】

依據(jù)一次函數(shù)的圖象,二次函數(shù)的圖象以及反比例函數(shù)的圖象進行判斷即可.【詳解】A.正比例函數(shù)y=2x與x軸交于(0,0),不合題意;B.一次函數(shù)y=-3x+1與x軸交于(,0),不合題意;C.二次函數(shù)y=x2與x軸交于(0,0),不合題意;D.反比例函數(shù)y=與x軸沒有交點,符合題意;故選D.10、C【解析】

根據(jù)絕對值是數(shù)軸上表示數(shù)的點到原點的距離,分別判斷出點A、B、C到原點的距離的大小,從而得到原點的位置,即可得解.【詳解】∵|a|>|c|>|b|,

∴點A到原點的距離最大,點C其次,點B最小,

又∵AB=BC,

∴原點O的位置是在點B、C之間且靠近點B的地方.

故選:C.【點睛】此題考查了實數(shù)與數(shù)軸,理解絕對值的定義是解題的關(guān)鍵.11、A【解析】本題考查的是有理數(shù)的混合運算根據(jù)有理數(shù)的加法、乘方法則,先算乘方,再算加法,即得結(jié)果。解答本題的關(guān)鍵是掌握好有理數(shù)的加法、乘方法則。12、C【解析】當60cm的木條與20cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為90cm與120cm;當60cm的木條與30cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為40cm與80cm;當60cm的木條與40cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為30cm與45cm;所以A、B、D選項不符合題意,C選項符合題意,故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】試題分析:根據(jù)圓錐的側(cè)面積公式S=πrl得出圓錐的母線長,再結(jié)合扇形面積即可求出圓心角的度數(shù).解:∵側(cè)面積為15πcm2,∴圓錐側(cè)面積公式為:S=πrl=π×3×l=15π,解得:l=5,∴扇形面積為15π=,解得:n=1,∴側(cè)面展開圖的圓心角是1度.故答案為1.考點:圓錐的計算.14、-23≤y≤2【解析】

先根據(jù)a=-1判斷出拋物線的開口向下,故有最大值,可知對稱軸x=-3,再根據(jù)-4≤x≤2,可知當x=-3時y最大,把x=2時y最小代入即可得出結(jié)論.【詳解】解:∵a=-1,

∴拋物線的開口向下,故有最大值,

∵對稱軸x=-3,

∴當x=-3時y最大為2,

當x=2時y最小為-23,

∴函數(shù)y的取值范圍為-23≤y≤2,故答案為:-23≤y≤2.【點睛】本題考查二次函數(shù)的性質(zhì),掌握拋物線的開口方向、對稱軸以及增減性是解題關(guān)鍵.15、﹣18【解析】

要求代數(shù)式a3b﹣2a2b2+ab3的值,而代數(shù)式a3b﹣2a2b2+ab3恰好可以分解為兩個已知條件ab,(a﹣b)的乘積,因此可以運用整體的數(shù)學(xué)思想來解答.【詳解】a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,當a﹣b=3,ab=﹣2時,原式=﹣2×32=﹣18,故答案為:﹣18.【點睛】本題考查了因式分解在代數(shù)式求值中的應(yīng)用,熟練掌握因式分解的方法以及運用整體的數(shù)學(xué)思想是解題的關(guān)鍵.16、【解析】

根據(jù)題中的新定義化簡所求方程,求出方程的解即可.【詳解】根據(jù)題意得:x-×2=×1-,x=,解得:x=,故答案為x=.【點睛】此題的關(guān)鍵是掌握新運算規(guī)則,轉(zhuǎn)化成一元一元一次方程,再解這個一元一次方程即可.17、到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線.【解析】

根據(jù)三角形的內(nèi)切圓,三角形的內(nèi)心的定義,角平分線的性質(zhì)即可解答.【詳解】解:該尺規(guī)作圖的依據(jù)是到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線;故答案為到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線.【點睛】此題主要考查了復(fù)雜作圖,三角形的內(nèi)切圓與內(nèi)心,關(guān)鍵是掌握角平分線的性質(zhì).18、45或1【解析】

先根據(jù)題意畫出圖形,再根據(jù)勾股定理求出斜邊上的中線,最后即可求出斜邊的長.【詳解】①如圖:因為AC=22+4點A是斜邊EF的中點,所以EF=2AC=45,②如圖:因為BD=32點D是斜邊EF的中點,所以EF=2BD=1,綜上所述,原直角三角形紙片的斜邊長是45或1,故答案是:45或1.【點睛】此題考查了圖形的剪拼,解題的關(guān)鍵是能夠根據(jù)題意畫出圖形,在解題時要注意分兩種情況畫圖,不要漏解.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、x<﹣1.【解析】分析:按照解一元一次不等式組的一般步驟解答即可.詳解:,由①得x≤1,由②得x<﹣1,∴原不等式組的解集是x<﹣1.點睛:“熟練掌握一元一次不等式組的解法”是正確解答本題的關(guān)鍵.20、(1)A種獎品每件16元,B種獎品每件4元.(2)A種獎品最多購買41件.【解析】【分析】(1)設(shè)A種獎品每件x元,B種獎品每件y元,根據(jù)“如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)A種獎品購買a件,則B種獎品購買(100﹣a)件,根據(jù)總價=單價×購買數(shù)量結(jié)合總費用不超過900元,即可得出關(guān)于a的一元一次不等式,解之取其中最大的整數(shù)即可得出結(jié)論.【詳解】(1)設(shè)A種獎品每件x元,B種獎品每件y元,根據(jù)題意得:,解得:,答:A種獎品每件16元,B種獎品每件4元;(2)設(shè)A種獎品購買a件,則B種獎品購買(100﹣a)件,根據(jù)題意得:16a+4(100﹣a)≤900,解得:a≤,∵a為整數(shù),∴a≤41,答:A種獎品最多購買41件.【點睛】本題考查了一元一次不等式的應(yīng)用以及二元一次方程組的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出二元一次方程組;(2)根據(jù)不等關(guān)系,正確列出不等式.21、(1)見解析(2)見解析【解析】

(1)根據(jù)AAS證△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四邊形ADCF是平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì)得出CD=AD,根據(jù)菱形的判定推出即可.【詳解】解:(1)證明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中點,AD是BC邊上的中線,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四邊形ADCF是菱形,證明如下:∵AF∥BC,AF=DC,∴四邊形ADCF是平行四邊形.∵AC⊥AB,AD是斜邊BC的中線,∴AD=DC.∴平行四邊形ADCF是菱形22、(1)二次函數(shù)的關(guān)系式為y=;C(1,0);(2)當m=2時,PD+PE有最大值3;(3)點M的坐標為(,)或(,).【解析】

(1)先求出A、B的坐標,然后把A、B的坐標分別代入二次函數(shù)的解析式,解方程組即可得到結(jié)論;(2)先證明△PDE∽△OAB,得到PD=2PE.設(shè)P(m,),則E(m,),PD+PE=3PE,然后配方即可得到結(jié)論.(3)分兩種情況討論:①當點M在在直線AB上方時,則點M在△ABC的外接圓上,如圖1.求出圓心O1的坐標和半徑,利用MO1=半徑即可得到結(jié)論.②當點M在在直線AB下方時,作O1關(guān)于AB的對稱點O2,如圖2.求出點O2的坐標,算出DM的長,即可得到結(jié)論.【詳解】解:(1)令y==0,得:x=4,∴A(4,0).令x=0,得:y=-2,∴B(0,-2).∵二次函數(shù)y=的圖像經(jīng)過A、B兩點,∴,解得:,∴二次函數(shù)的關(guān)系式為y=.令y==0,解得:x=1或x=4,∴C(1,0).(2)∵PD∥x軸,PE∥y軸,∴∠PDE=∠OAB,∠PED=∠OBA,∴△PDE∽△OAB.∴===2,∴PD=2PE.設(shè)P(m,),則E(m,).∴PD+PE=3PE=3×[()-()]==.∵0<m<4,∴當m=2時,PD+PE有最大值3.(3)①當點M在在直線AB上方時,則點M在△ABC的外接圓上,如圖1.∵△ABC的外接圓O1的圓心在對稱軸上,設(shè)圓心O1的坐標為(,-t).∴=,解得:t=2,∴圓心O1的坐標為(,-2),∴半徑為.設(shè)M(,y).∵MO1=,∴,解得:y=,∴點M的坐標為().②當點M在在直線AB下方時,作O1關(guān)于AB的對稱點O2,如圖2.∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x軸,∴∠O1BA=∠OAB,∴∠O1AB=∠OAB,O2在x軸上,∴點O2的坐標為(,0),∴O2D=1,∴DM==,∴點M的坐標為(,).綜上所述:點M的坐標為(,)或(,).點睛:本題是二次函數(shù)的綜合題.考查了求二次函數(shù)的解析式,求二次函數(shù)的最值,圓的有關(guān)性質(zhì).難度比較大,解答第(3)問的關(guān)鍵是求出△ABC外接圓的圓心坐標.23、(1)300米/分;(2)y=﹣300x+3000;(3)分.【解析】

(1)由圖象看出所需時間.再根據(jù)路程÷時間=速度算出小張騎自行車的速度.

(2)根據(jù)由小張的速度可知:B(10,0),設(shè)出一次函數(shù)解析式,用待定系數(shù)法求解即可.(3)求出CD的解析式,列出方程,求解即可.【詳解】解:(1)由題意得:(米/分),答:小張騎自行車的速度是300米/分;(2)由小張的速度可知:B(10,0),設(shè)直線AB的解析式為:y=kx+b,把A(6,1200)和B(10,0)代入得:解得:∴小張停留后再出發(fā)時y與x之間的函數(shù)表達式;(3)小李騎摩托車所用的時間:∵C(6,0),D(9,2400),同理得:CD的解析式為:y=800x﹣4800,則答:小張與小李相遇時x的值是分.【點睛】考查一次函數(shù)的應(yīng)用,考查學(xué)生觀察圖象的能力,熟練掌握待定系數(shù)法求一次函數(shù)解析式是解題的關(guān)鍵.24、(1)作圖見解析;(2)7,7.5,2.8;(3)見解析.【解析】

(1)根據(jù)圖1找出8、9、10℃的天數(shù),然后補全統(tǒng)計圖即可;(2)根據(jù)眾數(shù)的定義,找出出現(xiàn)頻率最高的溫度;按照從低到高排列,求出第5、6兩個溫度的平均數(shù)即為中位數(shù);先求出平均數(shù),再根據(jù)方差的定義列式進行計算即可得解;(3)求出7、8、9、10、11℃的天數(shù)在扇形統(tǒng)計圖中所占的度數(shù),然后作出扇形統(tǒng)計圖即可.【詳解】(1)由圖1可知,8℃有2天,9℃有0天,10℃有2天,補全統(tǒng)計圖如圖;(2)根據(jù)條形統(tǒng)計圖,7℃出現(xiàn)的頻率最高,為3天,所以,眾數(shù)是7;按照溫度從小到大的順序排列,第5個溫度為7℃,第6個溫度為8℃,所以,中位數(shù)為(7+8)=7.5;平均數(shù)為(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=(8+3+0+8+9),=×28,=2.8;(3)6℃的度數(shù),×360°=72°,7℃的度數(shù),×360°=108°,8℃的度數(shù),×360°=72°,10℃的度數(shù),×360°=72°,11℃的度數(shù),×360°=36°,作出扇形統(tǒng)計圖如圖所示.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.同時考查中位數(shù)、眾數(shù)的求法:給定n個數(shù)據(jù),按從小到大排序,如果n為奇數(shù),位于中間的那個數(shù)就是中位數(shù);如果n為偶數(shù),位于中間兩個數(shù)的平均數(shù)就是中位數(shù).任何一組數(shù)據(jù),都一定存在中位數(shù)的,但中位數(shù)不一定是這組數(shù)據(jù)量的數(shù).給定一組數(shù)據(jù),出現(xiàn)次數(shù)最多的那個數(shù),稱為這組數(shù)據(jù)的眾數(shù).25、(1)證明見解析;(2)①32【解析】

(1)過點A作AF⊥BP于F,根據(jù)等腰三角形的性質(zhì)得到BF=BP,易證Rt△ABF∽Rt△BCE,根據(jù)相似三角形的性質(zhì)得到ABBC=BF(2)①延長BP、AD交于點F,過點A作AG⊥BP于G,證明△ABG≌△BCP,根據(jù)全等三角形的性質(zhì)得BG=CP,設(shè)BG=1,則PG=PC=1,BC=AB=5,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出PDPC②延長BF、AD交于點G,過點A作AH⊥BE于H,證明△ABH≌△BCE,根據(jù)全等三角形的性質(zhì)得BG=CP,設(shè)BH=BP=CE=1,又PDPC=PGPB=74,得到PG=7AH=AB2【詳解】解:(1)過點A作AF⊥BP于F∵AB=AP∴BF=BP,∵Rt△ABF∽Rt△BCE∴AB∴BP=32(2)①延長BP、AD交于點F,過點A作AG⊥BP于G∵AB=BC∴△ABG≌△BCP(AAS)∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論