版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
、 知識(shí)點(diǎn)(第十章重積分)0101二重積分的概念010101二重積分的定義010102010103二重積分的物理意義0102重積分的性質(zhì)010201二重積分的性質(zhì)010202二重積分的對(duì)稱(chēng)性0103二重積分的直角坐標(biāo)計(jì)算法010301用直角坐標(biāo)計(jì)算二重積分010302交換積分次序0104二重積分的極坐標(biāo)計(jì)算法010401二重積分化為極坐標(biāo)系下二次積分三重積分0201三重積分的概念020101三重積分的概念020102三重積分的性質(zhì)020103三重積分的對(duì)稱(chēng)性0202三重積分的計(jì)算用直角坐標(biāo)計(jì)算三重積分用柱面坐標(biāo)計(jì)算三重積分用球面坐標(biāo)計(jì)算三重積分0301幾何應(yīng)用030101計(jì)算曲面的面積030102計(jì)算立體體積0302物理應(yīng)用030201計(jì)算物體質(zhì)心030202計(jì)算轉(zhuǎn)動(dòng)慣量030203計(jì)算引力[100101][][0.2][][ ][][
f(x,y)DDii,n)
),m
f(,)存i i i
0
i1
i i i(是 )
f(x,y)Df(x,y.D[] i,n)。i[100102][][0.2][][
f(x,y)DDnii,n),
選),m
f(,)i i
0
i1
i i i(i。
i,n) []fxyD上[100103][][0.2][何知識(shí)2][][]D面S= .D[]2S.[100104][][較0.3][何含][][何含,坐系下][]D面S,坐系下Drdrd= .D[]S.[100105][][較0.3][何][角坐系下計(jì)算][計(jì)算][]D(0,0)))三角形區(qū)域計(jì)算二重積分xy
=___________.D[答案評(píng)分標(biāo)準(zhǔn)]16.[100106][填空][易0.2][二重積分物理意義][二重積分計(jì)算][二重積分計(jì)算,二重積分物理意義][]D其上(xy處面密度(xy如果(xy)在D上連續(xù)則薄片質(zhì)量m= _.[答案評(píng)分標(biāo)準(zhǔn)](xy)d ((x).D D[100107][填空][較易0.3][二重積分幾何意義][二重積分計(jì)算][二重積分幾何意義,二重積分計(jì)算]根據(jù)二重積分
1x2
y2d
=___________ 其中D:x2y2
D1.[答案評(píng)分標(biāo)準(zhǔn)]2.3[100108][填空][較易0.3][二重積分幾何意義二重積分概念][]
f(t連續(xù)函數(shù)z0x2y2
1zf(xy)]2所圍立體體積可用二重積分表示_.[答案評(píng)分標(biāo)準(zhǔn)]x2y2
[f(xy)]2dxdy[100109][填空][較易0.4][二重積分幾何意義][][二重積分,極坐標(biāo)系下二重積分計(jì)算][]
D:0r1,02
,1r2rdrd= _.D[答案評(píng)分標(biāo)準(zhǔn)]16][][]
fx,yDf(x,y)0,
f(x,y)d
D[]z
f(x,y)D。][0.3][計(jì)算][][]D:0y
a2x2,0x
知 a
x2
y2dxdyD= .[]1a36][較0.3][][計(jì)算][][]Dx2y2
2,由
2x2
y2dxdy= .D[]4 234 23][較0.4][][計(jì)算][][]Dx2y2
2x由
2xx2
y2dxdy= .D[]2.3][較0.3][對(duì)稱(chēng)性][計(jì)算對(duì)稱(chēng)性][]Dx2y2
4y0,x3y2
= .D[0][較0.3][對(duì)稱(chēng)性][計(jì)算對(duì)稱(chēng)性][]
fx,yy軸對(duì)稱(chēng)D
f(x,y)f(x,y),則f(x,
=__________.D[0][0.3][][][]D:x2y2a2,y0m為奇數(shù)時(shí), xmyn= _.D[0][0.3][][][]D0xaa
ya,n
xmyn= _.D[]0][0.4][交換][][交換次序]f(x,y)1y10 y
f(x交換次序后為_(kāi)______________.[]1x0 0
f(x,y)dy.][0.4][交換][][交換次序]f(x,y)1yy0 y
f(x,
交換次序后為_(kāi)_____________.[]1x
f(x,y)dy0 x2[100120][][0.4][交換][][交換次序][]f(x,y)為連續(xù)函數(shù),次axx0 0
f(x,y)dy
交換次序后為_(kāi)________________.[]ay
f(x,y.0 y[100121][][0.4][][][][]f(x,y)2xx20 0
f(x,y
.[]4y20
f(x,y[100122][][0.4][][][][]f(x,y)1xx
f(x,y
.[]
0 x21y0 y
f(x,yx2[100123][][0.5][下x2[]
f(x,y
在下先對(duì)r為 .[]
1 00 0
f(rcos,r)rdr[100124][][0.5][下][][下]aa
dx
a2x2a2x
f(x,y
在下先對(duì)r .[]20 0
f(rcos,r)rdr.[編號(hào)][][0.5][下][][下][]1x0 0
x
f(x,y
在下先對(duì)r為 .[]2d20 0
f(rcos,r)rdr[][][0.7][][][][]Dx2y
1x2y
2x
f(xyDr.3[]33d3
f(r,r)rdr +
d
f(rcos,r)rdr + 02
032d2
f(r,r)rdr 03[][][0.3][][][][]fx[04上連續(xù)Dx2y2
4
f(x2
y2
Dr.[]2d0 0
f(r2[][][0.3][幾何意義][][計(jì)算,幾何意義][]
4x2
y2dxdy
= D:x2y
Dy0.[]4.3[][][0.3][幾何意義][][計(jì)算,幾何意義][]根據(jù)幾何意義 a
x2
y2dxdy =
Dx2y
a2
y
a0.D[]1a3.3[][][0.3][][][,][]D0
x
0
xxD
y2
= .[]13[][][0.4][][][,][]。則質(zhì)量公式為 .[]M=[][][中等0.6][][直線][,][]D0xx yy。則關(guān)于直線 0
0z
為 .[]
0 0|AxByCzD|Ixx)2(yy)2] 0 0
B2
C2[][][0.35][對(duì)稱(chēng)性][][]
(ey2|y|1
sin
y3z2x3)dv
則I= 。[]I24[][][0.35][對(duì)稱(chēng)性][][]
x2y2z1
[x3ezx2)
= 。[答案及評(píng)分標(biāo)準(zhǔn)]I4[編號(hào)填空易0.2][重積分的性質(zhì)三重積分][]
f(x,y,z)在有界閉區(qū)域上可積, ,則2I
f(x,y,z)dv
f(x,yz)dv。 1[答案及評(píng)分標(biāo)準(zhǔn)]2 1
f(x,y,z)dv[編號(hào)填空易0.2][重積分的性質(zhì)三重積分][]
(x23y2
(3xy1x2)dv2 [答案及評(píng)分標(biāo)準(zhǔn)]I(3xy3x23y2)dv2[編號(hào)填空][0.4][重積分的物理應(yīng)用三重積分]設(shè)(x,y,z)設(shè)M(x,y,z)為其重心,關(guān)于xoy平面的靜矩定義為:Mxy .[答案及評(píng)分標(biāo)準(zhǔn)]
,
M 的三重積分計(jì)算式為xyM xy
[][0.4][,][]x2
y2z2
R2
z
f(t((C)
f(x0f(x0
f(xf(x
0
f(x)dv [A[][][0.35][][][][]:x21
y2z2
R2
:x22
y2z2
R2
x
y
z0.u
f(t)是((0(A)
xf(x)dv4xf(x)dv
(B)
f(x
f(xz)dv4 4(C)
f(x
y)dv
2
f(x
y)dv
(D)
1
f(xyz)dv
4
f(xyz)dv 1 2 1 2[](D)[][][0.2][][D
f
mn0i
f,i i
A ; B C ; D 。[]D[][][0.2][][]
x1i n
y12jn
,
j,n
域D:1
x1
y3割成一系列方形(x2y2)dmnni1
nj
D12;nn12;nn )2 )2]n n
n
)2
j 12i)2] ;in
i
j
n n nnmnm
ni1ni1
i 1 1 )2 ; n n n )2n n n[]A[][][0.2][][][][]f(xDAfx,yBDx,yCfDD fD。[]C[][][0.2][][][][]x
i,yn
j,(i,n
jnD0
x1,0
y1割成一系列小正方形則
xydxdy
n i
Di1n
i1
n n n2mn
nnj
ii1n n n2
n i1i1n
i1
n n n2D
nn(i
i)11n
i1
n n n n[]B[][][0.2][][][][]f(x,y)Df(x,y
DA ; B C D 。[答案及評(píng)標(biāo)準(zhǔn)]B[][][0.2][][][][]f(x,y)Df(x,y)d
DA ; B C D 。[答案及評(píng)標(biāo)準(zhǔn)]C[][][0.3][直角坐標(biāo)系下計(jì)算][]xydx
(D0
x2,0
1)值為D1 1 1 1A B C D6 12 2 4[答案及評(píng)標(biāo)準(zhǔn)]B計(jì)算][對(duì)稱(chēng)性][計(jì)算][]若區(qū)D為0
x2,|
2,則xy2dx=A 0 B 323
DC 64 D 3[答案及評(píng)標(biāo)準(zhǔn)]A計(jì)算][性質(zhì)][計(jì)算][]設(shè)
fxyx2y
1使x2y2
f(x,y)dx
41x0
x
f(x,y)dy成立f(x,
f(x,
f(x,y)f(x,y)f(x,
f(x,
f(x,
f(x,y)C f(x,f(x,f(x,f(x,D f(x,f(x,
f(x,
f(x,y)[]B[][][0.3][][][][]Dxoyxy1f域1D:xy1f(2,2)y
f(x2,y2DDD1A 2 B 4 C 8 D 12[]B[][][0.3][][][]f(,y)exnx1 0
f(x,y)dy次序結(jié)果為eyn1 0
f(x,y)dxeey
y1f(,)x0nxy
f(x,y)dx1y
f(x,y)dx0 1[]D
0 ey[][][0.3][][][]f(,y)1yy322xA 1xx32y2yB0 0yx1322y0 0C 1x232y2yD0 01x232y2y0 00 0[]C]f(x,y)axx0 0
f(x,y)dy
(a0)ay
f(x,y)dx
ay
f(x,y)dx0 0 0 aayaf(x,y)x D ay
f(x,y)dx0 y 0 0]C]f(x,y)1xx0 0
f(x,y
xy1f(x,y)x0 0
1y0 0
f(x,y)dx1y1f(x,y)x0 0
1y0 0
f(x,y)dx]D]f(x,y)0x
x
f(x,y)dy=1yy1f(x,y
2y
1y2f(xy2
x10 1 1 11yy1f(x,y)xy2y21yy1f(x,y)x
2y
f(x,y)dx0 1 y22y2
f(x,y)dx0 1]C][]f(x,y
D:y
x
yx
分f(x,y
可化累D0xx
f(x,y)dyx0xx
f(x,yx1dyy
f(x,y)dx0 y1dyy
f(x,y)dx0 y[]C[][][0.5][下二重積的計(jì)算二重積][內(nèi)容]
f(x,y)1y0
3yy22
f(xy)dx可交換積次序?yàn)?x
2xf(x,y)dy
3
3x2
f(x,y)dy0 0 1 021x2
2xf(x,y)dy
2x1f(x,y)y
3
3x
f(x,y)dy0 1x
3x
12f(x,y)dy
0 2 00 2xD 3
f(rr)rdr2 2cos0[]B[][][0.5][下二重積的計(jì)算二重積][內(nèi)容]
fxy為連續(xù)函數(shù),則積分1xx2
f(x,y)y2x2
f(x,y)dy0 0 1 0可交換積次序?yàn)?y
f(x,y)x2y2
f(x,y)dx0 0 1 01yx
f(x,y)x2y2
f(x,y)dx0 0 1 01y2
f(x,y)dx0 y1y2
f(x,y)dx0 x2[]C[][][較易0.4][極下二重積的計(jì)算二重積的計(jì)算][]D(x1)2y
1,
f(x,y)dxdy
0 0
Df(rr)rdr22
2co02co0
f(rr)rdrf(rrsin)rdr2D 2d2co20 0
f(rcos,r)rdr[]C[][][0.4][][][][]Dx2y
2x(xy
x2y2dxdyD22con) 2r2 02n)2cor30 022in)d2cor3dr0 022n)2cor3 02[]D[][][0.4][][][][]Dx2y
1,fD上連續(xù)函數(shù)f(
x2y2)dxdy=D1f(r)01f(r)0C 1f(r2)0D rf(r)0[]A[][][0.4][][][][]I1
xD1
I (x2D
I sin7(x,其3DD
x0,y0,
xy ,
xy1I,I,III I1 2 3
2I I I3 2 1
1 2 3II I1 3 2
I II3 1 2[]C[][][0.4][][][][]2
dxdy1x
IyA I31
B 2I3C 0I D2
1I0[]A[][][0.4][][][][]I1
xy)dD1
I (xy)2d2D
I (xy)dD3Dx0,
y0,
xy xy1I,I,IA I I I3 2 1
2B II I1 2 3
1 2 3II I1 3 2
I II3 1 2[]B[][][0.4][][][]
( )[]DDoyD
f(x,y1 2 1 2D D上連續(xù)函數(shù)D1 2D
f(x2,A
f(x2,y)dxdy
B
f(x2,D D1 2C D1
f(x2,y)dxdy
D 12D2
f(x2,y)dxdy[]A[][][0.4][][]D1,1,)=A e
De1C 0 D []C[][][0.4][][]Dx2y2
a2
(a)a
a2x2y2dxdyD3234323412A 1 B C D[]B[][][0.4][][]0
x1;0
y1;0
z1
f(xyz
f(xyz。m
f i i i 13
n
i i i 1n
i1
( , , )( )nn n n
n
i1
f( , , )nn n nm
n
f i j k 13
nn
i j k 1n
i1
jk
( , , )( )nn n n
n
i1
j
k
f( , , )nn n n[]C[][][0.4][][]0
x1;0
y1;0z1
f(xyz有界函數(shù)。若m
n
f i j k 13n
i1
jk
( , , )( nn n n
I則A f(x,y,z)積 B f(x,y,z)一定
f(xyzI0
f(xyz必試題答案及評(píng)分標(biāo)準(zhǔn)]B]試題內(nèi)容F(xyz有界閉域(xy
f(x,y,
(x,y,z),則:1 2F(x,y,f(x,y,f(x,y,1 2 A 式成立 B 式成立C f(x,y,時(shí)成立 D1
f(xy也未必成立1試題答案及評(píng)分標(biāo)準(zhǔn)]C]試題內(nèi)容設(shè),是空間有界閉區(qū)域,
f(xyz, , 2
f(x,y,
f(x,y,
f(x,y,z)dv的充要條件是 3 1 2A f(x,y,z)是奇函數(shù) B4
f(x,y,z)0
(x,y,4C 4
D
f(x,y,z)dv0試題答案及評(píng)分標(biāo)準(zhǔn)]D
4答( )]試題內(nèi)容設(shè)f(xyz是一全空間的連續(xù)函數(shù),由中值定理
f(x,y,
f(,,V.(,,而V為的體,則:A f(xyzxyz為奇函數(shù)時(shí)B f(,,)0
f(,,)0若x2y2
1
f(,,)
f(0,0,0)f(,,xyz的奇偶性無(wú)必然聯(lián)系試題答案及評(píng)分標(biāo)準(zhǔn)]D[][][0.3][三重積分的性質(zhì)三重積分的性質(zhì)]
( )[內(nèi)容]設(shè)uf(t在(是上半單位x2y2
1,z0,
I
f(xy,則A I0
B I0I0
I的符不定[案及評(píng)分標(biāo)準(zhǔn)]B[][][0.3][三重積分的性質(zhì)三重積分的性質(zhì)][內(nèi)容]設(shè)u
ft)是(,)|x1,|y1,|z1
I
f
a,b,c為常數(shù),則I0
I0I0 D I的符由ac確定[案及評(píng)分標(biāo)準(zhǔn)]C[][][0.3][三重積分的性質(zhì)三重積分的性質(zhì)]
( )[內(nèi)容]設(shè)uf(t是(上嚴(yán)格單調(diào)減少的奇函數(shù),I x2y2z2A I0
kf(xyz
k0B
I0C I0 D 當(dāng)k0I0;當(dāng)k0I0[案及評(píng)分標(biāo)準(zhǔn)]A[][][0.3][三重積分的性質(zhì)三重積分的性質(zhì)]
( )內(nèi)容為單位球體
x2y2
1
位于1
z
部分的半球體,I(xyf(x2y2z2,則I0
I0I0
D I(xyf(x2y2z21[案及評(píng)分標(biāo)準(zhǔn)]C[][][0.3][][][][]x2y2I
1,
f(x,y,)
x2(x,y2,,A 4 x2y2z2y0,z0
x2(x,y2,z3
B 4 x2y2z2x0,y0
x2yzf(x,y2,z3)dvC 2 x2y2z2z0
x2(x,y2,z3D 0[]D[][][0.4][][][][ ] Ie1
x2y2z2dv ,
I x2y2z2,2I 3
x2y2z2,z
x2y2
x2y2
1I,1
I, I2 3A. II1
I; B3
II1
I; C2
I II; D.I I2 1 3 3
I.1[]B[][][0.4][][][][]1
:x2y2
R2
z0;2
:x2y2
R2;x0,y0,z0.則A dvx99dv
. B y99dvdv Cx9v4y9C
1()9v 4() . . 99 1 2[]A
1 2( )[][][0.5][][][][]x0
y0
z02xyz1
則
f(x,y,z)dvA 1y1x2x0 0 0
f(x,y,2B 1yyx2x20 0 0
f(x,y,z)dz2C 1y1x20 0 0
f(x,y,z)dz2D 1dz1dx220 0 0
f(x,y,z)dy]B]3x2y2
z
z1x2
f(xyz1414z2
f(xyzy23zy23zy23zy23Af xyz
(, , )
21
(, , )1y2B2dx dy f xyz0 z 1y2B2dx dy f xyz14z214z221x y3x2y2f(,14z214z22
y y2 f(,y,)1 2
1z2
2
3x2y22121y2D( )]zx2y2, yx, y0,z1一卦限部f(x,y,z)A1A1yy2x1 f(x,y,)Bdx 22 yy10yx2y20yx2y2
f(xy2
f(x,y,z)dzC dy 22 yx1 C dy 22 yx1 f(,y,D22dy1y2x10yx2y20y0]C]
( )x2y2
2z,
zx2y2確定立體體A 1r
1r2dz
B rr
1r2dz0 0 r2 0 0 11r2C 1rr2 z D 1rr21r20 0 []C
0 0 r2[][][0.5][三重積化為三次積三重積的計(jì)算][內(nèi)容]設(shè)x2y2(z于
f(t
f(x2y2z2)dvA d1f(r2)r2n0 0 0C d1f(2rs)r2n0 0 0
Bd1f(r2rs)r2n0 0 02D2d1f(2rs)r2sindr20 0 0[]Bx2y2[][][0.5][三重積化為三次積x2y2[內(nèi)容]設(shè)是由1x2y2
4; z
2 2
f(z)dv于2 A 4d2 0 0 1
f(r)r2sindr
B d0 0 1
f(rcos)r2sindr2C 2d0 0 12
f(cos)r2sindr
D 2d20 0 2
4r2
f(rcos)r2sindr[]A[][][0.4][][][][]
f(xyxy2D0
1, 0
1。[答案及評(píng)準(zhǔn)]D
f(x,y)dx
1xx1y2y1 50 0 6而D當(dāng)面1, 71f(x,y)D.6 10[][][0.2][次][][次]3y2(x2)x1 1[答案及評(píng)準(zhǔn)]1原式(31)(3
x3x)2 712(78 3 3[][][0.2][次][][次]4x2
ydy.[答案及評(píng)準(zhǔn)]43xdx
2 x x522=9. 10[][][0.2][次][][次]2ynyexx.1 0[答案及評(píng)準(zhǔn)]21
1)dy1 102[][][0.2][次][][次]2 2 []x1 0
xydy.[答案及評(píng)準(zhǔn)]原式
221dx 531x22 103[][][0.2][次][][次]axxy.0 0[]a 50a2 a 10a23[][][0.2][下二次積的二次積的]2y2x.0 0[]2y2x 50 0=4. 10[][][0.2][下二次積的二次積的]9x41 0
xydy.[]9
xdx4
51 0832= . 109[][][0.2][下二次積的二次積的][內(nèi)容]
x
y4dy20 cosx[]220
151dx 5=8. 1010 75[][][0.3][下二次積的][][二次積的]xsxy2ny0 0[]1n1s)3x 5304= . 103[][][0.3下二重積的二重積的][內(nèi)容]
ysyx2n
ydx2 02[]2922
sin
ycos3
5=12. 105[][][0.3][下二重積分的][][二重積分的][內(nèi)容]D
11y2
d,Dx2,|y1.[答案及評(píng)分準(zhǔn)]2x1 1 y 52 11y2=42arctan1.. 10[][][0.2][下二重積分的二重積分的][內(nèi)容]
D:0
x1,0
y2.D[答案及評(píng)分準(zhǔn)]1x2y 40 01x2y. 70 0=1 10[][][0.2][下二重積分的二重積分的][內(nèi)容]
,
D:0
xa,0
yb.D[答案及評(píng)分準(zhǔn)]=a
dxb
50 024(ab)3 29[][][0.2][下二重積分的二重積分的][內(nèi)容]D
y d,D01x
x1,0
y2.[答案及評(píng)分準(zhǔn)]1 1 x2y 501x 02ln2 [][][0.2][下二重積分的二重積分的][內(nèi)容]ex,
D:0
x1,0
y1.D[答案及評(píng)分準(zhǔn)]1exx1eyy 50 0(e[][][0.2][下二重積分的二重積分的][內(nèi)容]D
x21y2
,D0
x1,0
y1.[答案及評(píng)分準(zhǔn)]1x2x1 1 y 50 01y218 1012[][][難程度][1][關(guān)鍵詞][][][0.2][下二重積分的][][二重積分的][答案及評(píng)分準(zhǔn)]1x2x2y 51 04 3[][][0.2][下二重積分的二重積分的][內(nèi)容]D
x 1y2
, D0
x1
y1.[答案及評(píng)分準(zhǔn)]2x1 1 y 40 11y222arctan1 7 10[][][0.2][下二重積分的二重積分的][內(nèi)容]D
,
D:0
x,0
y .2[答案及評(píng)分準(zhǔn)]2sinxsy 520 02 [][][0.2][下二重積分的二重積分的][內(nèi)容]分,中D:1
x3,0
y2.y1D[答案及評(píng)分準(zhǔn)]式3x2x2 1 y 51 01y28ln3 103[][][0.2][下二重積分的二重積分的][內(nèi)容]
,D0x1,0
y4.D[答案及評(píng)分準(zhǔn)]式13x4y 50 03 10[][][0.2][下二重積分的二重積分的][內(nèi)容]xsinD
D:1
x2,0y2.[答案及評(píng)分準(zhǔn)]2原式2dx21 0
53 102[][][0.3][下二重積分的二重積分的][內(nèi)容](x
d
,
D,|y1.D[答案及評(píng)分準(zhǔn)]原式0
x1
y1
yx 510[][][0.3][下二重積分的二重積分的][內(nèi)容]x(x,
D3,|y1.D[答案及評(píng)分準(zhǔn)]原式3
x2x1
y3
x1
510[][][0.2][下二重積分的二重積分的][內(nèi)容](x3
,
D1,0y1.D[答案及評(píng)分準(zhǔn)]
3x1y
x1y2y1 023
1 0[][][0.2][][][][],DO(0,0),D。[答案及評(píng)準(zhǔn)]1x1y 40 x11)x 701 6[][][0.2][][][][],
D:0x1
y0.D[答案及評(píng)準(zhǔn)]1x
40 111x)x 701 e[][][0.2][][][][](xy2
D:0
yx,0x.D[答案及評(píng)準(zhǔn)]xnx(xy2)y 40 0(xinx1in3)dx 70 34 109[][][0.3][][][][],D由曲線y,線y0, x2,所圍成D。[答案及評(píng)準(zhǔn)]2x0 0
412dx 72 016 103[][][0.3][][][][]
,Dyx,
y2x
x4。D[答案及評(píng)準(zhǔn)]原式4x2x
xydy 4043x2
xxdx 702384 107[][][0.3][][][][],
D:xy
x2.D[答案及評(píng)準(zhǔn)]原式2x
3x41 x2x3dx 7133 4[][][0.3][][][][]xD是線x0,y和y
x。原式x(x
Dy)dy 30 x(x)n2)x 702 [][][0.3][][][][](x2y2,D是線yx,
yx1,
y1,Dy3。[答案及評(píng)準(zhǔn)]原式3y
(x2y2y)dx 41 y13[11 3
y3(y1)3)
y2
y]dy3[2y22y1]dy 71 310 10[][][0.3][][][][]xcos(2,D
D:0x4
,1
y1.[]4x4
xcos240 14sin27401 102[][][0.2][][][][]ex,
D:1x1
y1.D[]11
exx111
eydy 5(e )2 e[][][0.2][][][][](2,
D:|x,0
y1.D[]2x1y 5 00[][][0.2][][][][](x,Dyxx0,y1D[]1yx(x0 0
y)dx 411(x02
y)2|ydy01(2y21
y2)dy 70 21y312 01 102[][][0.2][][][][](x6,Dyx,
y5xx1D。[答案評(píng)準(zhǔn)]1x5x(x6)y 40 x16x2x 70251 103[][][0.3][][][][],D
y1
yxx2D。[答案評(píng)準(zhǔn)]2xxy
x4121
1xx(x2
1)dx 712 x2151ln2 8 2[][][0.2][][][][]D
ydxdy,Dyx
xx2x4。[答案評(píng)準(zhǔn)]41dx2xdy 42x x437229 [][][0.3][][][]yy,Dxy1.D[答案評(píng)準(zhǔn)]41xxy 40 0211x2)x 702 3[][][0.3][]yd,Dxy1.D[]41xxy 40 0211)2x 701 6[][][0.3][][][][],D:1x1x
yx.D[]2xxy2y 41 1x12(x41)dx 731 x219 1010[][][0.3][][][][]D
1(x
,D:3x
y2.[]4x3 1
(x
dy 3y)243
1 x1
1x
)dx 7ln25 1024[][][0.3][][][][](x2y2,Dy
x, y
xa, ya及y
D(a0[]3ayya ya
(x2
y2)dx 43a(2ay2a2y1a3)dy 7a 314a4 [][][0.3][][][]3x3x(2x0 0
y)dy.[]3(93x3x2)dx 50 2 227 102[][][0.3][][][][]D
1(xy
,D0
x1,0
y1.[]1x1 1 y 40 0xy)210
1 1x
12
)dx 7ln4 3[][][0.3][][][][]
,D:x y
2x,0
x1.D[]1x
2x
40 x11(2x2x2)dx 7021 106[][][0.3][][][][],Dyx, 1,x3D[]3xxy 41 1331(x31)dx 712 3101ln3 2[][][0.3][][][][](x2y2,Dy2,yx,
y2xD。[答案及評(píng)準(zhǔn)]2yy(x2
y2x)dx 402(19
y323y3
y2)dy 70136
24 810[][][0.3][][][]y[](x,D曲線x1 y
y1xy1D。[答案及評(píng)準(zhǔn)]1y0
y(x1)dx 41102
y(yy2)dy 7 1 1024[][][0.3][][][][]D
11x4
,Dyx
y0
x1。[答案及評(píng)準(zhǔn)]1 1
dxxdy 301x4 01 1 dxxdy 601x4 011x22 01x4 108[][][0.3][][][]4y2[],4y2
x0。D4y4y2
y2dy
42 02y2(4y2)dy 7064 1015],DD
y x2121
yx
4。]42
xx4y 41x21214218
(x2
4x x3)dx 7210]yy,Dyx,y0,x1。D]1exxxeyy 40 01ex(ex)x 70e2e1 2 2]D
,D曲1,y與x2y2。]解得交點(diǎn)(2,12
(2,4)原式2x2x21y 41 1 y2x2x2(x1234
1)dx 7x210[][][0.3][][][][](x2y2,D:1x2,0y1.D[]2x1(x21 02(x21)dx
y2)dy 471 322 103[][][0.3][][][]2[]4y2,Dx0,y ,y2
xD。[]24ydyyyxy)dx 420 024y)dy 72202 [][][0.3][][][][](xy2, D
D:0
y
x,0
x .2[]2dxx(x20 0
y2)dy 42(x13x)dx 720 37 109[][][0.3][][][]x[]x ,D拋物線y yxD。[](0,0)10
yxdx 4y2y11(y y4 y)y 7y2 06 1055[][][0.4][下二重積的二重積的][內(nèi)容]xdxdy,D2xD
y1
1x2,0x1.[]1xx0 21x(x0
x241x21)dx 71 6[][][0.3][極下二重積的二重積的][內(nèi)容]r2drdD
,其中
D:a
ra,0
(a0)2 .[]2da2
r2dr 40 a21a3)d723a2
0(2) 3 2 3[][][0.3][極下二重積的][][二重積的][內(nèi)容]利用極二重積x2y2
, 其中D:x2y
D1x0,y0.[]2d11r2)rdr 520 0 1r2)n1r2)(r21 84 0(2n2 4[][][0.3][下二次積分的二次積分的]二次積分
4x
x2y2[答案及評(píng)分準(zhǔn)]d2r20 0
2 05r[ ]2 r3 08 3[][][0.3][下二次積分的二次積分的]a2y2二次積分a2y20 0
(x2y2
(a0).[答案及評(píng)分準(zhǔn)]2dar30 02 a48[][][0.3][下二重積分的二重積分的]2d2er20 0(e4
x2y2
ex2y2dxdy .510[][][0.3][直角下二重積分的二重積分的][內(nèi)容]
, Dx2y
2,x
y2.D[答案及評(píng)分準(zhǔn)]11
dy2y2y2
xdx 41(2y2y4)y 7022 1015[][][0.3][][][][]e2ddy,Dyxy3D。[答案及評(píng)準(zhǔn)]1e2xxy 401(e0
x3x3ex2)dx 71 e1 12[][][0.3][][][][],D(x2)2y21上半圓x軸D。[答案及評(píng)準(zhǔn)]4xx234xx231 0
413x(4xx23)dx 7214 3[][][0.3][][][][],
D:x2
R2.D[答案及評(píng)準(zhǔn)]RR
y2dyR2R2y2R2y2
x3dx 4R2R2y2R2y2
x3dx被函數(shù)為奇函數(shù) 7故為. [][][0.3][][][]xy,D:2y2
a2,
y0.D[答案及評(píng)準(zhǔn)]2ax0
a2x242ax a2x2702a3 103[][][0.3][][][][]|x,D:D
a2 b2
1.[]D一象限部D上4倍在一象限1|xx,b4bdyb0 0
b2y2
42ba2
(b2y2)dy 70b24 a2b 103[][][0.4][][][][]x||y,
D:x2y2
1.D[]1e2xxy 501(e0
x3x3ex2)dx 81 e1 12[][][0.3][][][]x||y, Dx||y1.D[]41xx(x0 0541(11x2)x 80 2 24 103[][][0.4][][][][]
,D為y1,
y2xx0所圍成區(qū)x1yxD。[試題答案及評(píng)分標(biāo)準(zhǔn)]yyxyyx2 1 yyxdx5011yy101y11
yx2 y y
82 8 012
0 11
y19321 8 2[試題編號(hào)][計(jì)算題][較易0.4][直角坐標(biāo)系下二重積分的計(jì)算][][二重積分的計(jì)算][試題內(nèi)容]計(jì)算二重積分
x2y2D是以O(shè)(0,0)
為頂點(diǎn)D的三角形區(qū)。[試題答案及評(píng)分標(biāo)準(zhǔn)]1xx
x2y250 xy2x2yy2x2y2
x y
x dx01026
x2dx
arcsin )|2 x x810[試題編號(hào)][計(jì)算題][較易0.3][直角坐標(biāo)系下二重積分的計(jì)算][][二重積分的計(jì)算]sinx[試題內(nèi)容]分
,Dyx
y0
x1所圍成的區(qū)。xD[試題答案及評(píng)分標(biāo)準(zhǔn)]1
xdxxdy 40 x 01nx 701cos1 10[試題編號(hào)][計(jì)算題][較易0.3][直角坐標(biāo)系下二重積分的計(jì)算][][二重積分的計(jì)算][試題內(nèi)容]計(jì)算二重積分
sinx中 x
y所圍成的區(qū)。D[試題答案及評(píng)分標(biāo)準(zhǔn)]1sinxdxx2dy 40 x 01xnx 7010[][][0.3][下二重積分的二重積分的][內(nèi)容]x2y2,
D:x2y2
4
x0
y0.D[答案及評(píng)分準(zhǔn)]2d2r2)rdr 420 0574 1(5ln54) 104[][][0.3][下二重積分的二重積分的][內(nèi)容](x2y2
D:x2
2x,
x2y2
4x.D[答案及評(píng)分準(zhǔn)]222
d4cosr3dr 42cos2260cos4d72045 102[][][0.4][下二重積分的二重積分的][內(nèi)容]
x2
y2, D
2x.D[答案及評(píng)分準(zhǔn)]rdD222
d2cosr250282
d3 2216d823 0623 332 109[][][0.3][下二重積分的二重積分的][內(nèi)容]利用
x2
y2dxdy
Dx2y
4.D[答案及評(píng)分準(zhǔn)]2d2r2 60 016 103[][][0.3][下二重積分的二重積分的][內(nèi)容]利用
x2
y2dxdy,Dx2y
1.D[答案及評(píng)分準(zhǔn)]r22d1r20 0
65 6[][][0.3][下二重積分的二重積分的][內(nèi)容]
1x2y2dxdy
,Dx2y
1,
x0
y0.D[答案及評(píng)分準(zhǔn)]1r2rdrdD1r221r220 0
5 1 2 3 [ 2 2 36
r2)280[][][0.3][下二重積分的二重積分的][內(nèi)容]利用
ydxdy
, Dx2y
a2,
x0
y0D(a0).[答案及評(píng)分準(zhǔn)]rrdrdD2dar2dr 520 01a3 83a33[][][0.3][下二重積分的二重積分的]2[內(nèi)容]利用二重積分(x2y2)3dxdy2
,Dx2y
R2,
x0,Dy0,(R.[答案及評(píng)分準(zhǔn)]r3rdrd5D2dRr4dr 820 0R52 5R5 1010[][][0.3][下二重積分的二重積分的]內(nèi)容利用二重積分
x2
y2
, 其中
D:a2
x2y
b2,D(ba0).[答案及評(píng)分準(zhǔn)]r3D2dbr2 50
a1(b3a3)3 (b3a3) 3[][][0.4][下二重積分的二重積分的][內(nèi)容](4x2y2,
D:x2y
4.D[答案及評(píng)分準(zhǔn)]4 x2y24
dxdy
x2y24
(x2
y2)dxdy 22r3 50 016 8410[][][0.3][下二重積分的二重積分的][內(nèi)容]xydxdy
,其中
D:x2y
1,
x2y
2x
y0.D[答案及評(píng)分準(zhǔn)]3d2ar3cosdr 530 13(4cos51)d730 49 1016[][][0.4][下二重積分的二重積分的][內(nèi)容]利用xdxdy,D:x2y2
2x,x2y
x.D[答案及評(píng)分準(zhǔn)]rrdrdD222
d2cosr25cos212
(8cos3)d32214d823 07 8[][][0.4][下二重積分的二重積分的]
x2y2
,
D:x2y
R2
(R0),Dx0,y0.[答案及評(píng)分準(zhǔn)]r2D2dR1r2)rdr 520 01r2)ln(1r2)r2]R 82 2 0 R2)ln(1R2)R2] 104[][][0.4][下二重積分的二重積分的][內(nèi)容]利用二重積分sin x2y2dxdy,中D:1x2y
4
x0,Dy0.[答案及評(píng)分準(zhǔn)]sinrrdrdD2d2rsinrdr 520 1([rcosr]22cos82 1 1(cos12cos2sin2sin1) 2[][][0.3][下二重積分的二重積分的]
(63x2y
, 其中
D:x2y
R2,D(R0).[答案及評(píng)分準(zhǔn)]2dR6rs2rsn) 50 03R2R(6r2rsin)rdr 706R2[][][0.4][下二重積分的二重積分的][內(nèi)容]利用二重積分2x3y
,Dx2y
a2,
x0,Dy0, (a0).[答案及評(píng)分準(zhǔn)]2rcossin)rdrdDrdrdr2(2cos3sin)drDD D2a2(2cos3sin)ar224 0 0a3a2(2a34 3(5a)a24 3[][][0.3][下二次積分的二次積分的]二次積分3x2
y2dy.1[答案及評(píng)分準(zhǔn)]
x12ny2yyx 40 12ysiny2701cos4) 102[][][0.3][下二次積分的二次積分的]二次積分1xxx0 0
1x2y2.[答案及評(píng)分準(zhǔn)]1y1
1x2y240 y11(y3)dy 7301 104[][][0.3][下二次積分的][][二次積分的]二次積分1x2x1ey2y.0 x[答案及評(píng)分準(zhǔn)]1ey2yyx2x 40 011y3ey2y 73011 106 [][][0.3][下二次積分的二次積分的]1y3二次積分11y3
xy 0 x2[]1y31y3
y dy
5y0 0y1y311 y2 y1y32 021(23
[][][0.3][下二次積的二次積的]1x1x
y3dy.0 x[]1yyx0 0
y3dx 510
y3121
y2dy 816[][][0.3][下二次積的][二次積的]1y1n2x.0 y[]1xxnx2y 50 01xnx2x 8012[][][0.3][下二次積的二次積的][內(nèi)容]
y
sinxdx.2 20 y 2 2[]22
xdxxdy 5001
x 028210[][][0.4][][][][]D
,Dy1x
y2
x1x2。[答案及評(píng)準(zhǔn)]1y2eyx2y2eyx 51 1 1 12 y1(e2ye)y2(e2yey)y 81 12e2(e22
[][][0.4][][][][]|y2x,
D:0x1,0
y2.D[答案及評(píng)準(zhǔn)]1x2x(2x)x1x20 0 0 21(424x)x0
(y2x)dy 584 3[][][0.4][][][][]|yx,
D:0x1,0
y1.D[答案及評(píng)準(zhǔn)]1xx(x)x1yy(y)x 50 0 0 021xx(x)y 80 01 3[][][0.4][極][][]1x2y2[]D
1x2y2
, D:
1.[答案及評(píng)準(zhǔn)]2d11r20 01r11udu01u
58(2ln2[][][0.4][下二重積分的二重積分的][內(nèi)容](x2
y2
a2x2y2dx
,Dx2y
a2,Da0.[答案及評(píng)分準(zhǔn)]2dar0 0
a2r25令rat2a53tsin5t)dt 8204a5 1015[][][中等0.5][下二次積分的][][二次積分的]4x2二次積分14x20 1x2
ex2y2
2x44x2
ex2y2dy.[答案及評(píng)分準(zhǔn)]2d2er2 520 1 (e4e) 4[][][中等0.5][下二次積分的][][二次積分的]R[內(nèi)容]積分R
2x(x2y2
(x2y2)dy
(R0).R2R2x2R2[答案及評(píng)分準(zhǔn)R24dRr3 640 0 R4 1016[][][中等0.5][下二次積分的][][二次積分的][內(nèi)容]
R2ey2yex2
ey2
R2x2ex2
(R0).0 0 R 02[答案及評(píng)分準(zhǔn)]2dRer2 62 04eR2) 8[][][中等0.5][下二重積分的][][二重積分的][]D
1x2y1x2y
dxdy
D:x2y
a2(0
a.[]1r42darr31r40 01r41r4
a r3
] 70 01r4[arcsinr2]1r40
[a 1r42 1a4a21a4[][][0.5][下的][][的]a2x2aa2x2
1 , (a0)4a24a2x2y2
0 x04
d2asin0
r 54a2r24a2r24
4a2r
asind702a04
cos)da(2
2 2) 10[][][0.5][下的][][的][](4x
,
D:x2y
2y.D[]設(shè)xr, yrsind2sin(4rsrn) 50 08n21n3s1n4)d 80 3 310[][][0.5][下次的次的]2xxnxy4nxy.1 x 2y 2 2y[]2dyy2sinxdx 41 y 2y22y(cosy)dy 71 2 42) 2 [][][0.6][][][]1 x
y2[][]
dx 0 0
2dy.0
y1y2
y22dx 410
22y2)dy
y2
1
y2e 2dy ye 2dy 70 0ee
y2
1
y2 )2dy 2e22dy 2e2dy2e1 102[][][0.7][][,][]
lim
x2y2.[]
t0t2x2y21m1(r2) 50 0 m1n0 2(unuu)1 80 t2[][][0.5][][][][],D(x1)2y21(y1)2
1D[]xryrsin4 2sinr2sr2cosr2s 54 0 0 0488sns s83 44 2 703 34 1 4 2[][][0.5][下二重積的二重積的][內(nèi)容](x
y
, Dx2y2xy.D[]sin)D43sin)dsinr254 0441sin)4d4344 3 3 4
sin4
)d844sin4tdt3 028sin4tdt230 102[][][0.5][下二重積的二重積的]D
1x2y
, Dx2y24
x2y
16,x2y24x.[]3(430 4cos
r4r) 5 232cos)d223 70 334 1033[][][0.5][下二重積分的二重積分的][內(nèi)容]
x2y2dxdy
,Dx2y
4
x2y
2x.D[答案及評(píng)分準(zhǔn)]22420 2cos
r2r22r2 5 022220
8 (1cos3 )d 7 3 33 9[][][0.6][下二重積分的二重積分的][內(nèi)容][答案及評(píng)分準(zhǔn)]
x2y2
|x2y24.當(dāng)4x2y
9時(shí)
|x2y24x2y24,x2y
4時(shí)
|x2y244x2y2.原式
4x2y2
(x2y2
x2y2
(4x2y2523(r2)r22r(4r2) 80 2 0 02(81294884)441 102[][][0.8][][][,]] ft)Fu) x2y2z2(2u)2
ef
x2y2z2,F(u。[答案及評(píng)標(biāo)準(zhǔn)]14x2Fu)x y2ur2nef(r)14x20 0 02r2ef(r)60F(u)32u2ef(2u) [][][0.7][][ ][][]
,z3x2
y2z1x2y0部分立體。[答案及評(píng)標(biāo)準(zhǔn)]2V2
dx
yx2
414x21 0 3x214x2214x2214x22
y(14x2y2)dy1 0222
4x2)28114122 1015[][][0.65][][ ]xy[]xy
x2
,其中是由曲面z ,x
y10z0所圍界閉區(qū)域。[答案及評(píng)標(biāo)準(zhǔn)]xyV1xxy x2z 4xy0 0 01xx1x3 60 0 211x3104dx 8 1 10240[][][0.65][][ ][]
yx,y
x, y0
z0
xz2。[答案及評(píng)標(biāo)準(zhǔn)]Vxxyxy(xz)z2 2 40 0 02dx20 0
x)dy 6220
xx)dx 821 1016 2[][][0.7][][ ][][]z0,(a0).
xy為:x
yza,x0,y0,[答案及評(píng)標(biāo)準(zhǔn)]Vaxaxyaxy(xy)z 40 0 0axax(xy)sa 60 0aax(ax)cos80aacosa1a22
cosa [][][0.7][][ ][]]1z1x1
y2dy.0 0 x[答案及評(píng)標(biāo)準(zhǔn)]I1yyx10 0 0
y2dz 51y0
y2812[][][0.6][][ ][][]
(x
dvy
,:1
x2,1
y2,1
z2.[]I2x2y1 1 112x2[
(x1
1yz)3dz 1
2521
(xy1)2
(x
y2)212[ 1
2
1 821 x
x
x27235 2 2[][][0.6][][ ][][]1
x3y2
x1
x2,
y0
yx2,z0,z x[]xI2xx2y1x3y2z 4x1 0 02xx2y2 61 012x2 861255 1048[][][0.65][][ ][]
z
xy
xy1,
z0所。[]I1xxyyz 40 0 021x2(1x)3dx 713 1 10180[ ]。
xzy2
dvx0,
z0,
z1
y2x
y答案評(píng)標(biāo)準(zhǔn)]I1y
yxy2
dz 40 0 0
y2)1y
yx1
y2)260 011y1
2(1y2)2dx 84 01 1048[ ]設(shè)是x1,y。答案評(píng)標(biāo)準(zhǔn)]
xy2xz0z
5x2
y2有界閉區(qū)域。5x2y2I1x5x2y2
40 x 01x2
x(5
x2
y2)dx 60 x 21(5x25x4)dx 80 2 31 102[ ][],yz,
z0
yx0x
。[答案及評(píng)標(biāo)準(zhǔn)]Ixnxyyz 40 0 0xnx 60 008
1x2
810[編號(hào)][][難0.65][三重積][ 三重積][]2
,x2
1,
y0
y1位z0立體。[答案及評(píng)標(biāo)準(zhǔn)]1x221x1y 21x20 0 021x1y1x2) 60 011x2) 802 3[編號(hào)][][難0.7][三重積][ ][三重積][]7xy2z3dv,yx,
x1, z
xyzx2y有界閉。[答案及評(píng)標(biāo)準(zhǔn)]1xxy
7xy2z3dz 40 0 x2y1xx7x51x4)y6 60 0411xx21x4) 84 0 0 1 10221[][][0.6][][ ][]]ex2y2dv,0[答案及評(píng)標(biāo)準(zhǔn)]1x1yy3ex2y2z0 0 01x1ex2y3ey20 0
x1,0
y10zxy3。35e1 4[][][0.6][次][ ][次]xxyy()3z.0 0 0[答案及評(píng)標(biāo)準(zhǔn)]zy()3 50 z y()3zy)0 z1z)2()3z 72 01cos3) 106[][][0.6][次][ ][次]1x1y1
1z4.0 x y[答案及評(píng)標(biāo)準(zhǔn)]1zzyy0 0 0
1z451zzy0 0
1z4dy1103
1z4dz 721(2218
10[][][0.6][][ ][][]
1dv.x1x2z0xx2y2
yy
z。[答案評(píng)分標(biāo)準(zhǔn)]2xxy1 0 0
1x2y2dz 42xx y 61 0x2y2821n(x2y2)x812021ln2dx 91212 2[編號(hào)][][難0.65][三重積分的][ 三重積分的][] 是x
yz
算
1.(xyz1)3.[答案評(píng)分標(biāo)準(zhǔn)]1xxyxy 1 z 30 0
(1x
yz)31xx1 1
15 0 0 2xy)2 411 1 x3 82 1x 4 0 125) 2 8[編號(hào)][][難0.65][三重積分的][ 三重積分的][]
,是0
x1,0
y1,0z
x
y確定的立體。[答案評(píng)分標(biāo)準(zhǔn)]1y1xx1y)z 20 0 01y1[x1y0 01[1yy1y 6021 102sin2xy2[][][0.65][sin2xy2[0x,。[答案及評(píng)標(biāo)準(zhǔn)]
yx,
0z
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年新款安全生產(chǎn)培訓(xùn)記錄表模板下載
- 環(huán)保污泥合同范本
- 施工合同范本發(fā)包方承包方
- 臨街餐飲店鋪轉(zhuǎn)讓合同范本
- 房屋認(rèn)定合同范本
- 商品攝影合同范本
- 合作社車(chē)輛出租合同范本
- 貼膜合同范本
- 2024建筑效果設(shè)計(jì)與咨詢(xún)協(xié)議
- 包干簡(jiǎn)易合同范本
- 心臟驟停急救-課件
- XX醫(yī)院康復(fù)科建設(shè)方案
- 出差申請(qǐng)表(模板)
- 中藥材技術(shù)創(chuàng)新中心的可行性研究報(bào)告
- 有機(jī)合成化學(xué)(山東聯(lián)盟)知到章節(jié)答案智慧樹(shù)2023年青島科技大學(xué)
- 商標(biāo)法題庫(kù)1(答案)
- TMF自智網(wǎng)絡(luò)白皮書(shū)4.0
- 電視劇《國(guó)家孩子》觀影分享會(huì)PPT三千孤兒入內(nèi)蒙一段流淌著民族大愛(ài)的共和國(guó)往事PPT課件(帶內(nèi)容)
- 所水力除焦設(shè)備介紹
- 改革開(kāi)放英語(yǔ)介紹-課件
- pet考試歷屆真題和答案
評(píng)論
0/150
提交評(píng)論