版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年湖南省株洲市7校高三下學期第四次月考數學試題文試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是的共軛復數,則()A. B. C. D.2.已知函數,,若成立,則的最小值為()A.0 B.4 C. D.3.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.34.設全集,集合,,則()A. B. C. D.5.正三棱錐底面邊長為3,側棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.6.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數可以表示為兩個素數(即質數)的和”,如,.在不超過20的素數中,隨機選取兩個不同的數,其和等于20的概率是()A. B. C. D.以上都不對7.已知集合,,則中元素的個數為()A.3 B.2 C.1 D.08.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.9.已知橢圓的右焦點為F,左頂點為A,點P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.10.金庸先生的武俠小說《射雕英雄傳》第12回中有這樣一段情節(jié),“……洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現(xiàn)有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數為()A.20 B.24 C.25 D.2611.用電腦每次可以從區(qū)間內自動生成一個實數,且每次生成每個實數都是等可能性的.若用該電腦連續(xù)生成3個實數,則這3個實數都小于的概率為()A. B. C. D.12.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實數滿足約束條件,設的最大值與最小值分別為,則_____.14.內角,,的對邊分別為,,,若,則__________.15.已知函數在點處的切線經過原點,函數的最小值為,則________.16.若函數為自然對數的底數)在和兩處取得極值,且,則實數的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,它的導函數為.(1)當時,求的零點;(2)當時,證明:.18.(12分)在中,角,,所對的邊分別是,,,且.(1)求的值;(2)若,求的取值范圍.19.(12分)如圖,在四棱錐中底面是菱形,,是邊長為的正三角形,,為線段的中點.求證:平面平面;是否存在滿足的點,使得?若存在,求出的值;若不存在,請說明理由.20.(12分)已知數列的前n項和為,且n、、成等差數列,.(1)證明數列是等比數列,并求數列的通項公式;(2)若數列中去掉數列的項后余下的項按原順序組成數列,求的值.21.(12分)在ABC中,角A,B,C的對邊分別為a,b,c,已知,(Ⅰ)求的大??;(Ⅱ)若,求面積的最大值.22.(10分)在①,②,③這三個條件中任選一個,補充在下面問題中,并解答.已知等差數列的公差為,等差數列的公差為.設分別是數列的前項和,且,,(1)求數列的通項公式;(2)設,求數列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先利用復數的除法運算法則求出的值,再利用共軛復數的定義求出a+bi,從而確定a,b的值,求出a+b.【詳解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故選:A.【點睛】本題主要考查了復數代數形式的乘除運算,考查了共軛復數的概念,是基礎題.2、A【解析】
令,進而求得,再轉化為函數的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數在研究函數最值中的應用,考查了轉化的數學思想,恰當的用一個未知數來表示和是本題的關鍵,屬于中檔題.3、A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.4、D【解析】
求解不等式,得到集合A,B,利用交集、補集運算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補集混合運算,考查了學生概念理解,數學運算的能力,屬于中檔題.5、D【解析】
由側棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設球半徑為,則由得,解得,∴.故選:D.【點睛】本題考查球體積,考查正三棱錐與外接球的關系.掌握正棱錐性質是解題關鍵.6、A【解析】
首先確定不超過的素數的個數,根據古典概型概率求解方法計算可得結果.【詳解】不超過的素數有,,,,,,,,共個,從這個素數中任選個,有種可能;其中選取的兩個數,其和等于的有,,共種情況,故隨機選出兩個不同的數,其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.7、C【解析】
集合表示半圓上的點,集合表示直線上的點,聯(lián)立方程組求得方程組解的個數,即為交集中元素的個數.【詳解】由題可知:集合表示半圓上的點,集合表示直線上的點,聯(lián)立與,可得,整理得,即,當時,,不滿足題意;故方程組有唯一的解.故.故選:C.【點睛】本題考查集合交集的求解,涉及圓和直線的位置關系的判斷,屬基礎題.8、D【解析】
根據面面關系判斷A;根據否定的定義判斷B;根據充分條件,必要條件的定義判斷C;根據逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.9、C【解析】
不妨設在第一象限,故,根據得到,解得答案.【詳解】不妨設在第一象限,故,,即,即,解得,(舍去).故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力.10、D【解析】
利用組合的意義可得混合后所有不同的滋味種數為,再利用組合數的計算公式可得所求的種數.【詳解】混合后可以組成的所有不同的滋味種數為(種),故選:D.【點睛】本題考查組合的應用,此類問題注意實際問題的合理轉化,本題屬于容易題.11、C【解析】
由幾何概型的概率計算,知每次生成一個實數小于1的概率為,結合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數小于1的概率為.∴這3個實數都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.12、A【解析】
畫出約束條件的可行域,利用目標函數的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數形結合是解決本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫出可行域,平移基準直線到可行域邊界位置,由此求得最大值以及最小值,進而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當直線過點時,取得最大值7;過點時,取得最小值2,所以.【點睛】本小題主要考查利用線性規(guī)劃求線性目標函數的最值.這種類型題目的主要思路是:首先根據題目所給的約束條件,畫出可行域;其次是求得線性目標函數的基準函數;接著畫出基準函數對應的基準直線;然后通過平移基準直線到可行域邊界的位置;最后求出所求的最值.屬于基礎題.14、【解析】∵,∴,即,∴,∴.15、0【解析】
求出,求出切線點斜式方程,原點坐標代入,求出的值,求,求出單調區(qū)間,進而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點,所以,,,.當時,;當時,.故函數的最小值,所以.故答案為:0.【點睛】本題考查導數的應用,涉及到導數的幾何意義、極值最值,屬于中檔題..16、【解析】
先將函數在和兩處取得極值,轉化為方程有兩不等實根,且,再令,將問題轉化為直線與曲線有兩交點,且橫坐標滿足,用導數方法研究單調性,作出簡圖,求出時,的值,進而可得出結果.【詳解】因為,所以,又函數在和兩處取得極值,所以是方程的兩不等實根,且,即有兩不等實根,且,令,則直線與曲線有兩交點,且交點橫坐標滿足,又,由得,所以,當時,,即函數在上單調遞增;當,時,,即函數在和上單調遞減;當時,由得,此時,因此,由得.故答案為【點睛】本題主要考查導數的應用,已知函數極值點間的關系求參數的問題,通常需要將函數極值點,轉化為導函數對應方程的根,再轉化為直線與曲線交點的問題來處理,屬于常考題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)證明見解析.【解析】
當時,求函數的導數,判斷導函數的單調性,計算即為導函數的零點;
當時,分類討論x的范圍,可令新函數,計算新函數的最值可證明.【詳解】(1)的定義域為當時,,,易知為上的增函數,又,所以是的唯一零點;(2)證明:當時,,①若,則,所以成立,②若,設,則,令,則,因為,所以,從而在上單調遞增,所以,即,在上單調遞增;所以,即,故.【點睛】本題主要考查導數法研究函數的單調性,單調性,零點的求法.注意分類討論和構造新函數求函數的最值的應用.18、(1);(2)【解析】
(1)利用正弦定理邊化角,結合兩角和差正弦公式可整理求得,進而求得和,代入求得結果;(2)利用正弦定理可將表示為,利用兩角和差正弦公式、輔助角公式將其整理為,根據正弦型函數值域的求解方法,結合的范圍可求得結果.【詳解】(1)由正弦定理可得:即(2)由(1)知:,,即的取值范圍為【點睛】本題考查解三角形知識的相關應用,涉及到正弦定理邊化角的應用、兩角和差正弦公式和輔助角公式的應用、與三角函數值域有關的取值范圍的求解問題;求解取值范圍的關鍵是能夠利用正弦定理將邊長的問題轉化為三角函數的問題,進而利用正弦型函數值域的求解方法求得結果.19、證明見解析;2.【解析】
利用面面垂直的判定定理證明即可;由,知,所以可得出,因此,的充要條件是,繼而得出的值.【詳解】解:證明:因為是正三角形,為線段的中點,所以.因為是菱形,所以.因為,所以是正三角形,所以,而,所以平面.又,所以平面.因為平面,所以平面平面.由,知.所以,,.因此,的充要條件是,所以,.即存在滿足的點,使得,此時.【點睛】本題主要考查平面與平面垂直的判定、三棱錐的體積等基礎知識;考查空間想象能力、運算求解能力、推理論證能力和創(chuàng)新意識;考查化歸與轉化、函數與方程等數學思想,屬于難題.20、(1)證明見解析,;(2)11202.【解析】
(1)由n,,成等差數列,可得,,兩式相減,由等比數列的定義可得是等比數列,可求數列的通項公式;(2)由(1)中的可求出,根據和求出數列,中的公共項,分組求和,結合等比數列和等差數列的求和公式,可得答案.【詳解】(1)證明:因為n,,成等差數列,所以,①所以.②①-②,得,所以.又當時,,所以,所以,故數列是首項為2,公比為2的等比數列,所以,即.(2)根據(1)求解知,,,所以,所以數列是以1為首項,2為公差的等差數列.又因為,,,,,,,,,,,所以.【點睛】本題考查等比數列的定義,考查分組求和,屬于中檔題.21、(1)(2)【解析】
分析:(1)利用正弦定理以及誘導公式與和角公式,結合特殊角的三角函數值,求得角C;(2)運用向量的平方就是向量模的平方,以及向量數量積的定義,結合基本不等式,求得的最大值,再由三角形的面積公式計算即可得到所求的值.詳解:(1)∵,,(Ⅱ)取中點,則,在中,,(注:也可將兩邊平方)即,,所以,當且僅當時取等號.此時,其最大值為.點睛:該題考查的是有關三角形的問題,涉及到的知識點有正弦定理,誘導公式,和角公式,向量的平方即為向量模的平方,基本不等式,三角形的面積公式,在解題的過程中,需要正確使用相關的公式進行運算即可求得結果.22、(1);(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專案投資貸款協(xié)議(2024版)
- 二零二四商鋪租賃合同(含裝修驗收標準)最終修訂3篇
- Unit 2 Lesson 7說課稿 2024-2025學年冀教版八年級英語下冊
- 第四章 第1節(jié)《多變的天氣》說課稿- 2024-2025學年人教版(2024)七年級地理上冊
- 22《讀不完的大書》說課稿-2024-2025學年三年級上冊語文統(tǒng)編版(五四制)
- 滬科版 信息技術 必修 3.1.7動畫信息的加工說課稿設計
- 二零二五年度高品質菊花種植基地采購合作合同3篇
- Unit 1 Cultural Heritage 說課稿-2024-2025學年高中英語人教版(2019)必修第二冊
- 專用設備加工費協(xié)議模板2024版
- 《記念劉和珍君》《為了忘卻的記念》比較閱讀 說課稿 2023-2024學年統(tǒng)編版高中語文選擇性必修中冊
- 常見老年慢性病防治與護理課件整理
- 履約情況證明(共6篇)
- 云南省迪慶藏族自治州各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 設備機房出入登記表
- 六年級語文-文言文閱讀訓練題50篇-含答案
- 醫(yī)用冰箱溫度登記表
- 零售學(第二版)第01章零售導論
- 大學植物生理學經典05植物光合作用
- 口袋妖怪白金光圖文攻略2周目
- 光伏發(fā)電站集中監(jiān)控系統(tǒng)通信及數據標準
- 三年級下冊生字組詞(帶拼音)
評論
0/150
提交評論