版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
理論力學(xué)習(xí)題解答練習(xí)冊動(dòng)力學(xué)
2P37
習(xí)題:1AOmm1m2aM動(dòng)量矩定理:wvvLO
=
JOw
+(
m1v)r+(m2v)r
21=(m
+m1
+m2)rv
SMO(Fi
)=
M–
m1gr
+
m2gr其中:v=
rw
JO
=
mr221dtdLO=SMO(Fi
)21(m
+m1
+m2)ra
=
M–
m1gr
+
m2gr∴M
=2.89kN·m對系統(tǒng):?。篻=9.8m/s2dtdLO=SMO(Fi)研究對象m1gm2gP37
習(xí)題:2FⅠ
OGⅡ
OPGwFOxFOyFOxFOySMO(Fi
)=
Fr剛體定軸轉(zhuǎn)動(dòng)微分方程:JOa
=SMO
(Fi
)∴JOFra
=
JOPr=
質(zhì)心運(yùn)動(dòng)定理:SFx
=
0
FOx
=
0
SFy
=
0
FOy
-
G
-
F
=0∴FOy=
G
+
F=
G
+
Pa動(dòng)量矩定理:LO
=
JOw
+
vr
gP=
(JO
+
r2)w
gPSMO(Fi
)=
PrdtdLO=SMO(Fi
)(JO
+
r2)a
=
PrgPPra
=
JO
+
r2gPJOg
+
Pr2Pr=g
質(zhì)心運(yùn)動(dòng)定理:SFx
=
0
FOx
=
0
FOy
–
G
–
F
=
-
agPFOy=
G
+
JOg
+
Pr2PJOgv=
rw
wavSFy
=
-
agPJOP38
習(xí)題:4AaCmgFaC剛體平面運(yùn)動(dòng)微分方程:S
Fx
=
0
S
Fy
=maCSMC
(Fi
)=JCaaCx
=
0
mg
–
F
=
maC
aC
=raFr
=
JCa其中:JC
=
mr221∴3r2ga
=32aC
=g31F
=mg平面運(yùn)動(dòng)P39
習(xí)題:1qCAaaCmgqFTFFNxy剛體平面運(yùn)動(dòng)微分方程:S
Fx
=
0
S
Fy
=maCSMC
(Fi
)=JCa
FN
–
mgcosq
=
0
FN
=
mgcosqF
=fFN=fmgcosqmgsinq
–
FT
–
F
=
maCFT
=
mg(sinq
–
fcosq)
–
mra(FT
–
F
)r
=JCa
aC
=ra
其中:JC
=
mr221∴3r2ga
=(sinq
–
2fcosq)32=(sinq
–
2fcosq)gaC
=ra
FT
=
mra
+
fmgcosq21平面運(yùn)動(dòng)
圖!摩擦力:f?
f
:動(dòng)摩擦系數(shù)P40
習(xí)題:3AOhlSMA
(Fi
)=JAaA正方形板:A相對于質(zhì)心的動(dòng)量矩定理
mgaA
=0SMA
(Fi
)=0∴整體:相對于轉(zhuǎn)軸O的動(dòng)量矩定理FOxFOyFOxFOymgmgdtdLO=SMO(Fi
)SMO(Fi
)=
mgl+
mgl21LO
=
JOwO
+
mvAl=
mlvA
34=
mgl23mlaA
3431JO
=
ml
2wO
=lvA=
mgl23∴aA=
g89質(zhì)心運(yùn)動(dòng)定理:S
Fx
=
0
FOx
=
0
aAaCaC=
g169FOy
–
2mg=
–
3maCS
Fy
=
–
maA
–
maCFOy=
mg165wOS
Fy
=
–
2maEaEP40
習(xí)題:4qACBaCxaCyFAaAmga剛體平面運(yùn)動(dòng)微分方程:S
Fx
=maCx
S
Fy
=maCySMC
(Fi
)=JCa
運(yùn)動(dòng)學(xué):aCx=aA
–
a2√32laCy=
aA21FA
=
m()aA
–
a2√32l21×
=(ml
2)a1212FA2lmg
–
FA
=
maA212√3FA
=
mla31aA
=
la94√3∴a
=
7l6√3gaA
=
g78FA
=
mg72√3=
12.12
rad/s2=
11.2
m/s2=
14.55
NaCAtaCA
=
at2l平面運(yùn)動(dòng)
補(bǔ)充方程
P41
習(xí)題:1OkD=(1
–
)k
√221W=k(d12
–
d22)
d2=2r
–
l0
d1=r
–
l0
√2=–
20.7J
ABdW
P41
習(xí)題:2ABPMSW
=
∫
Mdj
–
Fd
S
0
4p
=
∫
(bj
+
hj
2)dj
–
fP
×4pr
0
4p
=8bp2
+
hp
3
–
4
fPrp364Fd
=
f
PS
=4pr其中:M=
bj
+
hj
2
P41
習(xí)題:3OCCAwwJO
=
JO桿
+
JO盤31=
ml
221+
mR
2+
ml
22435=
ml
221T=
JOw
24835=
ml
2w
2vC=v0R–
rrw
=R–
rv0v0vC21T=
mvC2
+
JCw
221其中:
JC
=
mr
2=
2(R
–
r
)2
(r2
+
r2)mv02JOT
(b)鼓輪為mJA
=
JC
+
mr2AvC、vO
w~P42
習(xí)題:5ABCPPvAvCPwhAC桿平面運(yùn)動(dòng):瞬心P
121JP
=
ml
2+m()2
2l21TAC
=
JPw
2w
=hvA31=
ml
2ml2=
vA
26h2T=
2TACPl2=
vA
23gh221T=
JPw
2
×2T
:與開始時(shí)靜止無關(guān)vA
w~P43
習(xí)題:2wvAvCaAMOACBqs
T
–
T0
=
SW動(dòng)能定理:21T=mvA2
+
JOw2
+
mvC22121w
=r2vA=r1vCJO
=
mr
2
=
(
r22+
r2+r12)vA
2
2r22mSW
=
Mj
+
mgs
–
mg×sCsinq
代入:dtd:m(r22+r2+r12)
[
M
+
mg(r2
–r1sinq]r2aA
=
∴=
[+
mg(1
–
sinq)]
s
r2Mr2r1(
r22+
r2+r12)vA
2
2r22m–
T0
=
[+
mg(1
–
sinq)]s
r2Mr2r1(
r22+
r2+r12)2vAaA
2r22m–
0
=
[+
mg(1
–
sinq)]vA
r2Mr2r1動(dòng)能定理JO
=mr
2
TO
≠
0
求導(dǎo)
a
(對象)
sCjP44
習(xí)題:4ACBP2P3P1vBvAwAwCT2
–
T1
=
SW動(dòng)能定理:xSW
=
P3x
aAvB
=vA=RwA
=rwC
(摩擦力不作功)
T1
=
021T2
=m1vA2
+
JAwA2212121+
JCwC2
+
m3vB23P1
+P2
+2P3
4g=
vA2
12JA
=
m1R
2
12JC
=
m2r
2
代入:vA2
=
x
3P1
+P2
+2P3
4P3g∴2vAaA
=
vB
3P1
+P2
+2P3
4P3gvA
=√x
√3P1
+P2
+2P3
√4P3gdtd:aA
=3P1
+P2
+2P3
2P3gP45
習(xí)題:2Ak12l5lBCD5lwT2
+V2
=
T1
+V1
機(jī)械能守恒定律:取初瞬時(shí)為零勢能位置
T1
=
0
V1
=
021T2
=
JBw
2625=
ml
2w
2其中:=
ml
2325JB
=
(
5l
)2×22m3121V2=k[(
2l
)2
–
(
8l
)2]
=–
30kl
2
代入:mw2625=30k
∴w=√36k√5m機(jī)械能守恒定理T2、JB
~
md?求:角加速度?
(零位置)
P46
習(xí)題:3ABCDEm1m2m3vCvAwCwBT2
+
V2
=
T1
+
V1
機(jī)械能守恒定律:取初瞬時(shí)為零勢能位置
T1
=
0
V1
=
0sV2
=–
m1gs
21T2
=
m1vA2
+
JBwB2
+
JPwC22121PJB
=
m2r
2
其中:wC
=wB=rvC=RvA32JP
=
m3r
2
2m1R2+2m2r2+3m3r2
4r2=
vC2
代入:=m1gs
2m1R2+2m2r2+3m3r2
4r2vC2
=m1gvA
2m1R2+2m2r2+3m3r2
4r22vCaC
vC
=2r√s
√m1g√2m1R2+2m2r2+3m3r2
dtd:aC=
g
2m1R2+2m2r2+3m3r2
2m1RraCABCDEm1m2m3vCvAwCwBsPJB=m2r2wC=wB=rvC=RvA32JP
=
m3r
2
vC
=2r√s
√m1g√2m1R2+
2m2r2+
3m3r2
aC=
g
2m1R2+
2m2r2+
3m3r2
2m1Rr物塊A:Am1gFaCaA
=aCrR=
g
2m1R2+
2m2r2+
3m3r2
2m1R2m1g–F=m1aA∴F
=m1g
2m1R2+
2m2r2+
3m3r2
2m2r2+3m3r2
aAJB=m2r2aAP4俱6習(xí)題議:4qABm1m2vAvBwAT2–T1=SW動(dòng)能辭定理:21T2
=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版陶瓷禮品代理銷售與定制服務(wù)合同3篇
- 2024年度新型建材及五金配件銷售合同3篇
- 2024年度預(yù)制構(gòu)件鋼筋加工與質(zhì)量追溯合同范本3篇
- 2024年度環(huán)保設(shè)備設(shè)計(jì)與制造供應(yīng)合同3篇
- 2024年人員借調(diào)與市場調(diào)研服務(wù)合同3篇
- 2024年汽車租賃同購車銷售合同協(xié)議
- 2024年度旅游產(chǎn)品委托代理合同范例3篇
- 2024版?zhèn)€人與個(gè)人之間土地承包經(jīng)營權(quán)投資合同范本3篇
- 2024年槽罐車液態(tài)煤炭運(yùn)輸合同
- 2024年二零二四年度旅游用車短期租賃合同樣本3篇
- 臨滄網(wǎng)約車模擬考試軟件下載
- 實(shí)驗(yàn)四 哈夫曼樹與哈夫曼編碼
- 預(yù)防早戀 早婚早育
- 廣西壯族自治區(qū)桂林市2023-2024學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題(無答案)
- 拆除鋼結(jié)構(gòu)安全施工方案
- 國際仲裁和調(diào)解案例分析
- GB/T 43333-2023獨(dú)立型微電網(wǎng)調(diào)試與驗(yàn)收規(guī)范
- 心理健康教育主題班會(huì)課件(共38張)
- 五年級上冊《勞動(dòng)與技術(shù)》期中期末復(fù)習(xí)測試卷(附答案)
- 了解世界各大宗教的信仰
- 《社會(huì)調(diào)查研究與方法》課程復(fù)習(xí)題-課程ID-01304試卷號(hào)-22196
評論
0/150
提交評論