2022-2023學年山東省威海市文登區(qū)八校聯(lián)考招生適應性考試數(shù)學試題試卷含解析_第1頁
2022-2023學年山東省威海市文登區(qū)八校聯(lián)考招生適應性考試數(shù)學試題試卷含解析_第2頁
2022-2023學年山東省威海市文登區(qū)八校聯(lián)考招生適應性考試數(shù)學試題試卷含解析_第3頁
2022-2023學年山東省威海市文登區(qū)八校聯(lián)考招生適應性考試數(shù)學試題試卷含解析_第4頁
2022-2023學年山東省威海市文登區(qū)八校聯(lián)考招生適應性考試數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年山東省威海市文登區(qū)八校聯(lián)考招生適應性考試數(shù)學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.用配方法解下列方程時,配方有錯誤的是()A.化為 B.化為C.化為 D.化為2.設α,β是一元二次方程x2+2x-1=0的兩個根,則αβ的值是()A.2B.1C.-2D.-13.如圖,在⊙O中,O為圓心,點A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°4.下列運算中,正確的是()A.x2+5x2=6x4 B.x3 C. D.5.小軍旅行箱的密碼是一個六位數(shù),由于他忘記了密碼的末位數(shù)字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.6.如圖①是半徑為2的半圓,點C是弧AB的中點,現(xiàn)將半圓如圖②方式翻折,使得點C與圓心O重合,則圖中陰影部分的面積是()A. B.﹣ C.2+ D.2﹣7.若反比例函數(shù)的圖像經(jīng)過點,則一次函數(shù)與在同一平面直角坐標系中的大致圖像是()A. B. C. D.8.如圖,小橋用黑白棋子組成的一組圖案,第1個圖案由1個黑子組成,第2個圖案由1個黑子和6個白子組成,第3個圖案由13個黑子和6個白子組成,按照這樣的規(guī)律排列下去,則第8個圖案中共有(

)和黑子.A.37 B.42 C.73 D.1219.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.10.下列各式:①3+3=6;②=1;③+==2;④=2;其中錯誤的有().A.3個 B.2個 C.1個 D.0個二、填空題(共7小題,每小題3分,滿分21分)11.關于x的方程x2-3x+2=0的兩根為x1,x2,則x1+x2+x1x2的值為______.12.不等式組的解集是_____________.13.的相反數(shù)是_____,倒數(shù)是_____,絕對值是_____14.小明和小亮分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途中會經(jīng)過奶茶店C,小明先到達奶茶店C,并在C地休息了一小時,然后按原速度前往B地,小亮從B地直達A地,結果還是小明先到達目的地,如圖是小明和小亮兩人之間的距離y(千米)與小亮出發(fā)時間x(時)的函數(shù)的圖象,請問當小明到達B地時,小亮距離A地_____千米.15.如圖,在邊長為1正方形ABCD中,點P是邊AD上的動點,將△PAB沿直線BP翻折,點A的對應點為點Q,連接BQ、DQ.則當BQ+DQ的值最小時,tan∠ABP=_____.16.分解因式:__________.17.分解因式:a2b?8ab+16b=_____.三、解答題(共7小題,滿分69分)18.(10分)鄂州市化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千克30元.物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元.經(jīng)市場調查發(fā)現(xiàn):日銷售量y(千克)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=1.在銷售過程中,每天還要支付其他費用450元.求出y與x的函數(shù)關系式,并寫出自變量x的取值范圍.求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關系式.當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?19.(5分)如圖1,在等邊三角形中,為中線,點在線段上運動,將線段繞點順時針旋轉,使得點的對應點落在射線上,連接,設(且).(1)當時,①在圖1中依題意畫出圖形,并求(用含的式子表示);②探究線段,,之間的數(shù)量關系,并加以證明;(2)當時,直接寫出線段,,之間的數(shù)量關系.20.(8分)某市為了解市民對已閉幕的某一博覽會的總體印象,利用最新引進的“計算機輔助電話訪問系統(tǒng)”(簡稱CATI系統(tǒng)),采取電腦隨機抽樣的方式,對本市年齡在16~65歲之間的居民,進行了400個電話抽樣調查.并根據(jù)每個年齡段的抽查人數(shù)和該年齡段對博覽會總體印象感到滿意的人數(shù)繪制了下面的圖(1)和圖(1)(部分)根據(jù)上圖提供的信息回答下列問題:(1)被抽查的居民中,人數(shù)最多的年齡段是歲;(1)已知被抽查的400人中有83%的人對博覽會總體印象感到滿意,請你求出31~40歲年齡段的滿意人數(shù),并補全圖1.注:某年齡段的滿意率=該年齡段滿意人數(shù)÷該年齡段被抽查人數(shù)×100%.21.(10分)如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;(3)當0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).22.(10分)如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙O交AB于點D,交AC于點G,直線DF是⊙O的切線,D為切點,交CB的延長線于點E.(1)求證:DF⊥AC;(2)求tan∠E的值.23.(12分)如圖,正六邊形ABCDEF在正三角形網(wǎng)格內,點O為正六邊形的中心,僅用無刻度的直尺完成以下作圖.(1)在圖1中,過點O作AC的平行線;(2)在圖2中,過點E作AC的平行線.24.(14分)為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀念品生產(chǎn)訂單,按要求在15天內完成,約定這批紀念品的出廠價為每件20元,設第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關系,部分數(shù)據(jù)如表:天數(shù)(x)13610每件成本p(元)7.58.51012任務完成后,統(tǒng)計發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關系:y=,設李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.直接寫出p與x,W與x之間的函數(shù)關系式,并注明自變量x的取值范圍:求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?任務完成后.統(tǒng)計發(fā)現(xiàn)平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.【詳解】解:、,,,,故選項正確.、,,,,故選項錯誤.、,,,,,故選項正確.、,,,,.故選項正確.故選:.【點睛】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).2、D【解析】試題分析:∵α、β是一元二次方程x2+2x-1=0的兩個根,∴αβ=考點:根與系數(shù)的關系.3、B【解析】

根據(jù)題意得到△AOB是等邊三角形,求出∠AOB的度數(shù),根據(jù)圓周角定理計算即可.【詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【點睛】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關鍵.4、C【解析】分析:直接利用積的乘方運算法則及合并同類項和同底數(shù)冪的乘除運算法則分別分析得出結果.詳解:A.x2+5x2=,本項錯誤;B.,本項錯誤;C.,正確;D.,本項錯誤.故選C.點睛:本題主要考查了積的乘方運算及合并同類項和同底數(shù)冪的乘除運算,解答本題的關鍵是正確掌握運算法則.5、A【解析】∵密碼的末位數(shù)字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當他忘記了末位數(shù)字時,要一次能打開的概率是.故選A.6、D【解析】

連接OC交MN于點P,連接OM、ON,根據(jù)折疊的性質得到OP=OM,得到∠POM=60°,根據(jù)勾股定理求出MN,結合圖形計算即可.【詳解】解:連接OC交MN于點P,連接OM、ON,由題意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,則圖中陰影部分的面積=S半圓-2S弓形MCN=×π×22-2×(-×2×1)=2-π,故選D.【點睛】本題考查了軸對稱的性質的運用、勾股定理的運用、三角函數(shù)值的運用、扇形的面積公式的運用、三角形的面積公式的運用,解答時運用軸對稱的性質求解是關鍵.7、D【解析】

甶待定系數(shù)法可求出函數(shù)的解析式為:,由上步所得可知比例系數(shù)為負,聯(lián)系反比例函數(shù),一次函數(shù)的性質即可確定函數(shù)圖象.【詳解】解:由于函數(shù)的圖像經(jīng)過點,則有∴圖象過第二、四象限,

∵k=-1,

∴一次函數(shù)y=x-1,

∴圖象經(jīng)過第一、三、四象限,

故選:D.【點睛】本題考查反比例函數(shù)的圖象與性質,一次函數(shù)的圖象,解題的關鍵是求出函數(shù)的解析式,根據(jù)解析式進行判斷;8、C【解析】解:第1、2圖案中黑子有1個,第3、4圖案中黑子有1+2×6=13個,第5、6圖案中黑子有1+2×6+4×6=37個,第7、8圖案中黑子有1+2×6+4×6+6×6=73個.故選C.點睛:本題考查了規(guī)律型:圖形的變化類:通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.9、B【解析】

如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,

NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.

∵四邊形ABCD是菱形,AB=4,∠DAB=60°,

∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB

∴∠HDE=∠DAB=60°,

∵點E是CD中點

∴DE=CD=1

在Rt△DEH中,DE=1,∠HDE=60°

∴DH=1,HE=

∴AH=AD+DH=5

在Rt△AHE中,AE==1

∴AN=NE=,AE⊥GF,AF=EF

∵CD=BC,∠DCB=60°

∴△BCD是等邊三角形,且E是CD中點

∴BE⊥CD,

∵BC=4,EC=1

∴BE=1

∵CD∥AB

∴∠ABE=∠BEC=90°

在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.

∴EF=由折疊性質可得∠AFG=∠EFG,

∴sin∠EFG=sin∠AFG=,故選B.【點睛】本題考查了折疊問題,菱形的性質,勾股定理,添加恰當?shù)妮o助線構造直角三角形,利用勾股定理求線段長度是本題的關鍵.10、A【解析】3+3=6,錯誤,無法計算;②=1,錯誤;③+==2不能計算;④=2,正確.故選A.二、填空題(共7小題,每小題3分,滿分21分)11、5【解析】試題分析:利用根與系數(shù)的關系進行求解即可.解:∵x1,x2是方程x2-3x+2=0的兩根,∴x1+x2=,x1x2=,∴x1+x2+x1x2=3+2=5.故答案為:5.12、x<-1【解析】解不等式①得:x<5,解不等式②得:x<-1所以不等式組的解集是x<-1.故答案是:x<-1.13、,【解析】∵只有符號不同的兩個數(shù)是互為相反數(shù),∴的相反數(shù)是;∵乘積為1的兩個數(shù)互為倒數(shù),∴的倒數(shù)是;∵負數(shù)得絕對值是它的相反數(shù),∴絕對值是故答案為(1).(2).(3).14、1【解析】

根據(jù)題意設小明的速度為akm/h,小亮的速度為bkm/h,求出a,b的值,再代入方程即可解答.【詳解】設小明的速度為akm/h,小亮的速度為bkm/h,,解得,,當小明到達B地時,小亮距離A地的距離是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案為1.【點睛】此題考查一次函數(shù)的應用,解題關鍵在于列出方程組.15、﹣1【解析】

連接DB,若Q點落在BD上,此時和最短,且為,設AP=x,則PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根據(jù)三角函數(shù)的定義即可得到結論.【詳解】如圖:連接DB,若Q點落在BD上,此時和最短,且為,設AP=x,則PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD=PQ,即1﹣x=,∴x=﹣1,∴AP=﹣1,∴tan∠ABP==﹣1,故答案為:﹣1.【點睛】本題考查了翻折變換(折疊問題),正方形的性質,軸對稱﹣最短路線問題,正確的理解題意是解題的關鍵.16、a(a-4)2【解析】

首先提取公因式a,進而利用完全平方公式分解因式得出即可.【詳解】故答案為:【點睛】本題主要考查因式分解,熟練掌握提取公因式法和公式法是解題的關鍵.分解一定要徹底.17、b(a﹣4)1【解析】

先提公因式,再用完全平方公式進行因式分解.【詳解】解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.【點睛】本題考查了提公因式與公式法的綜合運用,熟練運用公式法分解因式是本題的關鍵.三、解答題(共7小題,滿分69分)18、(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2+2000);(3)當銷售單價為60元時,該公司日獲利最大,為1950元【解析】

(1)設出一次函數(shù)解析式,把相應數(shù)值代入即可.(2)根據(jù)利潤計算公式列式即可;(3)進行配方求值即可.【詳解】(1)設y=kx+b,根據(jù)題意得解得:∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2+2000)(3)W=-2(x-65)2+2000∵30≤x≤60∴x=60時,w有最大值為1950元∴當銷售單價為60元時,該公司日獲利最大,為1950元考點:二次函數(shù)的應用.19、(1)①;②;(2)【解析】

(1)①先根據(jù)等邊三角形的性質的,進而得出,最后用三角形的內角和定理即可得出結論;②先判斷出,得出,再判斷出是底角為30度的等腰三角形,再構造出直角三角形即可得出結論;(2)同②的方法即可得出結論.【詳解】(1)當時,①畫出的圖形如圖1所示,∵為等邊三角形,∴.∵為等邊三角形的中線∴是的垂直平分線,∵為線段上的點,∴.∵,∴,.∵線段為線段繞點順時針旋轉所得,∴.∴.∴,∴;②;如圖2,延長到點,使得,連接,作于點.∵,點在上,∴.∵點在的延長線上,,∴.∴.又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,即為底角為的等腰三角形.∴.∴.(2)如圖3,當時,在上取一點使,∵為等邊三角形,∴.∵為等邊三角形的中線,∵為線段上的點,∴是的垂直平分線,∴.∵,∴,.∵線段為線段繞點順時針旋轉所得,∴.∴.∴,又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,∴.∴.【點睛】此題是幾何變換綜合題,主要考查了等邊三角形的性質,三角形的內角和定理,全等三角形的判定和性質,等腰三角形的判定和性質,銳角三角函數(shù),作出輔助線構造出全等三角形是解本題的關鍵.20、(1)11~30;(1)31~40歲年齡段的滿意人數(shù)為66人,圖見解析;【解析】

(1)取扇形統(tǒng)計圖中所占百分比最大的年齡段即可;(1)先求出總體感到滿意的總人數(shù),然后減去其它年齡段的人數(shù)即可,再補全條形圖.【詳解】(1)由扇形統(tǒng)計圖可得11~30歲的人數(shù)所占百分比最大為39%,所以,人數(shù)最多的年齡段是11~30歲;(1)根據(jù)題意,被調查的人中,總體印象感到滿意的有:400×83%=331人,31~40歲年齡段的滿意人數(shù)為:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,補全統(tǒng)計圖如圖.【點睛】本題考點:條形統(tǒng)計圖與扇形統(tǒng)計圖.21、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標,利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標及對稱軸,可設出M點坐標,表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關于M點坐標的方程,可求得M點的坐標;(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設出E點坐標,表示出F點的坐標,表示出EF的長,進一步可表示出△CBE的面積,利用二次函數(shù)的性質可求得其取得最大值時E點的坐標.試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,∴B(3,0),C(0,3),把B、C坐標代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當MC=MP時,則有=|t+1|,解得t=,此時M(2,);②當MC=PC時,則有=2,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);③當MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點M,其坐標為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點F,交x軸于點D,設E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴當x=時,△CBE的面積最大,此時E點坐標為(,),即當E點坐標為(,)時,△CBE的面積最大.考點:二次函數(shù)綜合題.22、(1)證明見解析;(2)tan∠CBG=.【解析】

(1)連接OD,CD,根據(jù)圓周角定理得∠BDC=90°,由等腰三角形三線合一的性質得D為AB的中點,所以OD是中位線,由三角形中位線性質得:OD∥AC,根據(jù)切線的性質可得結論;

(2)如圖,連接BG,先證明EF∥BG,則∠CBG=∠E,求∠CBG的正切即可.【詳解】解:(1)證明:連接OD,CD,∵BC是⊙O的直徑,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位線∴OD∥AC,∵DF為⊙O的切線,∴OD⊥DF,∴DF⊥AC;(2)解:如圖,連接BG,∵BC是⊙O的直徑,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,∵S△ABC=,即6×4=5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論